EXTREMAL GRAPH PROBLEMS

M. Simonovits

Budapest, Hungary

Notations. \(\nu(G), \sigma(G), \chi(G) \) denote the number of vertices, edges and the chromatic number of the graph \(G \). Here the graphs have no directed, multiple or loop edges. \(\times \sum_{i=1}^{d} G_i \) denotes the product of graphs \(G_i \), i.e. the graph, obtained by joining vertices of \(G_i \) to the vertices of the other \(G_i \)-s.

Generalizing a well-known theorem of Turán [1] Erdős and I have proved independently [3], [4] that for any given graph \(M_1, \ldots, M_k \) and fixed \(n \) if \(K_n \) has maximum number of edges among graphs of \(n \) vertices, not containing any \(M_i \) as a subgraph, then

Theorem A. There exist graphs \(N_1, \ldots, N_d \), \((d+1 = \min \chi(M_i))\) such that \(K_n \) can be obtained from \(\times \sum_{i=1}^{d} N_i \), omitting \(O(n \frac{2}{d-1}) \) edges from it. Here is an integer depending only on \(M_1, \ldots, M_k \) and

\[
\nu(N_i) = \frac{n}{d} + O(n \frac{1}{d-1}), \quad \sigma(N_i) = O(n \frac{2}{d-1})
\]

and

\[
\nu(N_i) = \frac{n}{d} + O(n \frac{1}{d-1})\]

(2) any vertex of \(N_i \) has valence \(\geq \frac{n}{d} (d-1) + O(n \frac{1}{d-1}) \)

(3) the number of vertices of \(N_i \) joined to at least one vertex of the same \(N_i \) is 0 (1).

The graph \(K_n \) is called the extremal graph for \(M_1, \ldots, M_k \). Theorem A shows that the extremal graphs for \(M_1, \ldots, M_k \) are fairly well determined by \(\min \chi(M_i) \), they depend loosely on the structure of \(M_i \)-s.

How the structure of \(M_i \)-s influence the structure of the extremal graphs? Erdős and I have proved [5] that the extremal graphs for \(K(3, r_1, \ldots, r_d) \) are products: \(K^n = \times \sum_{i=1}^{d} N_i \) where \(3 \leq r_1 \leq r_d \) and

399
(1) \(\nu(N_t^d) = \frac{n}{d} + o(n^{2/3}) \)

(2) \(N_t^d \) is an extremal graph for \(K(3,r) \).

(3) \(N_1, \ldots, N_d \) are extremal graphs for \(K(n, r) \).

Here 3 can be replaced by 2 or 1 as well.

I have found the following generalization of this latest theorem:

Notation.

(1) \(f(n, M_1, \ldots, M_d) \) denotes the number of edges of the extremal graphs for \(M_1, \ldots, M_d \).

(2) Let \(\chi(M) = 2 \) and colour both \(M \) and \(K(n, n) \) by two colours: red and blue. We consider subgraphs \(G^{2n} \) of \(K(n, n) \) such that if \(M \) is the subgraph of \(G^{2n} \), then the class of blue vertices of \(M \) is not contained by the class of blue vertices of \(K(n, n) \). The maximum of \(\varepsilon(G^{2n}) \) will be denoted by \(h(n, G^{2n}) \).

Definition. \(x \in M \) is a weak point for \(M_1, \ldots, M_d \) if \(\chi(M_1) = 2 \) and \(h(n; M_1 - x) = o(f(n; M_1, \ldots, M_d)) \).

Remark. If there exists an automorphism of \(M_1 - x \) changing the colours, then our condition with \(f(n; M_1 - x) = o(f(n; M_1, \ldots, M_d)) \).

Examples.

(1) \(K(r_0, \ldots, r_d) \) has weak points if either \(r_0 \not\in \mathbb{Z} \), or if \(n_0^2 - 3r_0 + 3 > r_1 \). [5] Probably it always has.

(2) If \(M \) is not a tree, but \(M - x \) is, \(\chi(M) = 2 \) then \(x \in M \) is a weak point of it.

(3) Let \(C(2l) \) be a circuit of \(2l \) vertices, \(x \in C(2l) \) and let \(z \) be joined to 5 or more vertices of \(C(2l) \) so that the obtained graph \(M \) is two-chromatic. Then \(x \in M \) is a weak point of it.

(4) Let \(M \) be a graph, obtained from two \(C(2l) \) or from two \(K(r, r) \) by joining them by a path of length 2. Then \(M \) has no weak point.

Theorem. Let \(M \) be a \(d+1 \) chromatic graph and let us colour it by \(1, 2, \ldots, d+1 \). \(L_{i,j} \) denotes the subgraph of \(M \) spanned by the vertices of the \(i \)-th and \(j \)-th colours. If \(x \in L_{i,j} \) is a weak point of \((L_{i,j}) \) and \(K^d \) is an extremal graph for \(M \), then \(K^d \) can be obtained from a suitable product \(\prod_{i=1}^{d} N_i \) omitting \(o(n) \) edges from it. Here
(1) \(\nu(N_i) = \frac{n^2}{d} + o(n) \)

(2) \(N_i \) is almost an extremal graph for \((L_{d,j}^i) \) it has
\(f(n; \ldots, L_{d,j}^i, \ldots) + o(n) \) edges, but it does not contain any \(L_{d,j}^i \).

(3) The vertices of \(N_i \) (i=2,\ldots,d) are joined to less than \(s \) other vertices of \(N_i \), if \(s \) is joined to \(e \) vertices of the 3rd colour.

Theorem 2. If in Theorem 1, \(r \leq 3 \), then \(o(n) \) can be replaced by \(o(1) \).

If \(r \leq 2 \), then there exists an extremal graph \(K^3 \) such that
\[
K^3 = \times_{i=1}^d N_i \text{ whenever } n \text{ is large enough.}
\]

Remarks.

(1) Similar theorems hold if \(M \) is replaced by \(M_1^1, \ldots, M_\mu^\mu \). The only change is that \(L_{d,j}^i \)-s must be replaced by those subgraphs of \(N_i^i, \ldots, M_\mu^\mu \), for which \(\chi(N_d^i - L_e) = \min \chi(N_d) - 2 \) if \(L_e \subseteq N_d^i \).

(2) Theorem 1 has "assymptotic" character, but it has many corollaries of "exact" character. One of them is the theorem of Erdös and mine about the extremal graphs for \(K(3, P_1, \ldots, P_d) \).

Another one is

Theorem 3. Let \(\Gamma(3k) \) be the graph, having the vertices \(x_1, \ldots, x_k \);
\(y_1, \ldots, y_k \); \(z_1, \ldots, z_k \) and defined by

(1) \(x_i \rightarrow y_i \rightarrow z_i \rightarrow x_i \) is an automorphism of \(\Gamma(3k) \).

(11) \(x_1, \ldots, x_k, y_1, \ldots, y_k \) determine a \(C(2l) \).

Then for \(n > n_0 \) any extremal graph \(K^n \) for \(\Gamma(3k) \) is a product:
\[
K^n = k_1 \times k_2 \text{ where } v(k_1) = \frac{n}{2}, e(k_2) = 0 \text{ and } K_1 \text{ is an extremal graph for } \{ \ldots, C(2l), \ldots \} \frac{k_1}{2} \leq l \leq k.
\]

References

2. Turán, P., Matematikai Lapok, 48 (1941), 436-452. (in Hungarian).

