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A Survey of Old and New Results

Notation. Given a graph, hypergraph Gn, . . . , the upper index always de-
notes the number of vertices, e(G), v(G) and χ(G) denote the number of
edges, vertices and the chromatic number of G respectively. Given a family
L of graphs, hypergraphs, ex(n,L) denotes the maximum number of edges
(hyperedges) a graph (hypergraph) Gn of order n can have without containing
subgraphs (subhypergraphs) from L. The problem of determining ex(n,L)
is called a Turán-type extremal problem. The graphs attaining the maximum
will be called extremal and their family will be denoted by EX(n,L).
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1. Introduction

Let us restrict our consideration to ordinary graphs without loops and multi-
ple edges. In 1940, P. Turán posed and solved the extremal problem of Kp+1,
the complete graph on p + 1 vertices [39, 40]:

TURÁN THEOREM. If Tn,p denotes the complete p–partite graph of
order n having the maximum number of edges (or, in other words, the graph
obtained by partitioning n vertices into p classes as equally as possible, and
then joining two vertices iff they belong to different classes), then

(a) If Tn,p contains no Kp+1, and
(b) all the other graphs Gn of order n not containing Kp+1 have less

than e(Tn,p) edges. Using a theorem of Erdős and Stone [24], Erdős and

Simonovits [18] derived that if L is an arbitrary family of forbidden graphs,
and

p(L) = min
L∈L

χ(L) − 1, (1)

then

ex(n,L) =

(

1 − 1

p

)(

n

2

)

+ o(n2). (2)

They also conjectured, and later proved independently [13, 14, 30]

Theorem 1. Given a family L of forbidden graphs with minimum chromatic
number p + 1 and an L ∈ L with chromatic number p + 1, then for c =
2 − 1/v(L),

ex(n,L) =

(

1 − 1

p

)(

n

2

)

+ O(nc), (2∗)

and every extremal graph Sn can be obtained from a Tn,p by deleting and
adding O(n2−c) edges. Further, the minimum degree

d(Sn) =

(

1 − 1

p

)

n + O(nc−1).

This means that the extremal numbers and the extremal structure de-
pend very loosely on L, they are asymptotically determined by the minimum
chromatic number p+1. Further, (2) implies that ex(n,L) = o(n2) iff p = 1,
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that is, iff L contains at least one bipartite graph. This case will be called
degenerate.

Recently, writing a survey on extremal graph theory [36], I came to realize
that one of the most intriguing, most important and rather underdeveloped
areas of extremal graph theory is the theory of degenerate extremal graph
problems. In this case the structure of extremal graphs tends to become very
complicated.

Of course, there are very many interesting results in this field, see e.g.
[1, 2, 6, 7, 12, 15, 17, 20, 26, 29, 32]. Still, this underdevelopment was one of
the reasons why the author with some other coauthors started investigating
degenerate extremal graph problems more systematically. Some of the newer
results achieved by the author and others can be found in [25, 21, 22, 32].
Here I would like to give a survey which is almost completely devoted to de-
generate extremal graph problems, degenerate extremal hypergraphs prob-
lems and the corresponding theory of supersaturated graphs. Some repeti-
tion compared to [36] is unavoidable, but I have tried to minimize it. Anyone
wishing to find further literature on extremal graph theory is recommended
to read, among others, Bollobás’ excellent book [5], or my survey [36].

Before restricting our consideration to degenerate extremal problems, let
us pose the following question:

2. Which General Questions Should be

Asked in Extremal Graph Theory?

Obviously, such a question can be answered in many different ways, and most
of the answers are biased in some way or other. Perhaps one fair answer could
be:

(a) Try to find general questions, related to the general theory of ex-
tremal graphs, and

(b) try to ask specific questions, which cannot be answered by the general
theory, which attack completely new areas, new phenomena, and therefore
lead to completely new (and meaningful!) theories.
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It is meaningless to speak too much of (b) in generalities. The reader,
however, should remember that the whole of extremal graph theory (and
many other theories) developed this way, inductively: through solving par-
ticular problems, proving conjectures which often seemed too particular at
first glance, and still they often led to many other interesting and general
results, rich theories. So let us get back to (a) and try to give a sketch of the
general problems in extremal graph theory.

The problems in extremal graph theory can be classified according to their
OBJECTS and their TYPES. This is illustrated (without much explanation)
on the chart on the next page.

Below we shall see that many of the extremal graph theorems can quite
well be described by these categories.

3. Degenerate Extremal Graph and Hyper-

graph Problems

Above we restricted our consideration to ordinary graphs, however, extremal
graph problems naturally arise for r–uniform hypergraphs as well. Further,
extremal graph theorems are known for multigraphs, multidigraphs, multi-
hypergraphs as well, see e.g. [7, 8, 12, 29, 32]. However, in the “multi-”
cases we have to fix an upper bound on the multiplicity of edges to get finite
maxima. For the sake of simplicity, in this survey we shall restrict ourselves
to ordinary graphs and uniform hypergraphs. The definitions of ex(n,L) and
EX(n,L) are obvious.

Definition 1. Let us consider r–uniform hypergraphs and let L be a family
of forbidden hypergraphs. The extremal hypergraph problem of L will be
called degenerate if ex(n,L) = o(nr).

4



TWO EXAMPLES.

Theorem 2 (Kővári–T. Sós–Turán, [26]). Let Kp,q denote the complete bi-
partite graph with p and q vertices in its color-classes. Then

ex(n,Kp,q) ≤
1

2
p
√

q − 1n2−1/p + O(n). (3)
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OBJECTS TYPES OF QUESTIONS

ordinary graphs non-degenerate extremal problems
multigraphs degenerate extremal problems
digraphs – lower bounds using random graphs
hypergraphs – lower bounds by finite geometrical

constructions
...................... – upper bounds by counting arguments

-upper bounds by recursions
graphs with partitioned vertex supersaturated graphs
set (subgraphs of K(n1, . . . , nr)) compactness results

.............................
Perturbation problems
– degree perturbation
– chromatic perturbation
– Turán-Ramsey theorems
(Ramsey perturbation)

APPLICATIONS (α) application of other principles in
extremal graph theory
– algebraic methods, eigenvalue methods
– random graph “constructions” (see above)
(β) Application of extremal graph theory in
combinatorial geometry, analysis,
probability theory.
(γ) continuous versions of extremal graph
theorems.

This was generalized by Erdős [12]: #

Theorem 3. Restrict ourselves to r–uniform hypergraphs. Let
K

(r)
r (m, . . . ,m) denote the r–uniform hypergraph obtained by fixing rm ver-

tices xij (i = 1, . . . , r, j = 1, . . . ,m) and taking all the mr “transversals
(x1,j1 , x2,j2 , . . . , xr,jr

) as hyperedges. Then

ex(n,K(r)
r (m, . . . ,m)) = O(nr−m−(r−1)

).
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Remark 1. Theorem 3 is a very good example of what was stated of ques-
tions about type (b) in §1. Its proof is neither trivial nor too complicated,
and one not too much acquainted with extremal graph theory will find it
too particular. However, on the one hand it is a direct and elegant gener-
alization of Theorem 2, (apart from the value of the constant). and on the
other hand, it is widely applicable in extremal graph problems. One of its
important applications is

Proposition 1. Restrict our considerations to r–uniform hypergraphs. The
problem of L is degenerate iff L contains an L∗ the vertices of which can be
colored by r colors so that each r–edge gets r different colors.

Proof. The condition of the proposition is equivalent to the requirement that
L∗ be contained in some K

(r)
r (m, . . . ,m) = L′ . By (4) ex(n, L′) = o(nr).

If L ⊆ L′, then ex(n, L) = o(nr), and consequently, ex(n,L) = o(nr).
This proves one half of Proposition 1. The other half follows easily from
the fact that if no L ∈ L is contained in any K

(r)
r (m, . . . ,m), then Sn :=

K
(r)
r (m, . . . ,m) for m = n/r contains no prohibited subhypergraphs and has

cnr edges. Thus L is not degenerate. Further applications of (4) will be given
later.

If we wish to give some other examples of degenerate extremal problems
- as we do - then we should start with the simplest ones. The extremal
problem for paths was solved by Erdős and Gallai [15], the problem for even
cycles by Erdős (unpublished), and a generalization of it was given by Bondy
and Simonovits [2]. Here we mention only the original result on ex(n,C2t),
(where C2t denotes the cycle of 2t vertices).

Theorem 4. ex(n,C2t) = O(n1+1/t).

Turán asked the following question: if we fix one of the regular polyhe-
dra, (tetrahedron, cube, octahedrcn, dodecahedron, icosahedron), and de-
note the graph formed by its vertices and edges by L, how large is ex(n, L)?
His theorem answers the case of the tetrahedron, the others were settled
by Simonovits (dodecahedron, icosahedron, [33],[34], and by Erdős and Si-
monovits, (octahedron, cube), see [20],[19]. Again, rather surprisingly, one
of the simplest polyhedra, the cube turned out to be the most difficult case.
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Theorem 5. If Q denotes the graph determined by the vertices and edges of
a cube, and Q* denotes the graph obtained by joining two opposite vertices
of the cube, then

ex(n,Q) ≤ ex(n,Q∗) = O(n8/5).

We conjecture that these results are sharp 1. Unfortunately, no nontrivial
lower bound is known for the cube problem. (In this sense the word “settled”
does not apply to the cube.)

4. Why are Degenerate Extremal Graph

Problems Important?

Since the main topic of this survey is the theory of degenerate extremal
graph problems, it is quite natural to ask the above question. There are
always many possible answers to such questions. One of them could be that
in some sense many nondegenerate extremal graph problems can be reduced
to degenerate extremal problems. More precisely, if L is a given family of
forbidden graphs, one defines p = p(L) by (l) and then one can find (in many
cases) families M1, . . . ,Mp of forbidden graphs such that

(a) If Sn is extremal for L, then we can find p extremal graphs Ti ∈
EX(n,Mi) of n/p + o(n) vertices each, such that “Sn is the product of the
Ti’s”, where the product of the Ti’s is defined as follows: take vertex disjoint
copies of these graphs and join every x ∈ V (Ti) to every y ∈ V (Tj) for every
1 ≤ i < j ≤ p. (The product of many graphs will be denoted by XTi, of two
graphs G and H by G × H.)

(b) If Ti are now arbitrary graphs not containing subgraphs from Mi,
then XTi contains no L ∈ L .

(c) The extremal graph problem of Mi is degenerate.

Here I give only one illustration of such “reduction’ theorems, namely
the octahedron theorem. However, there are many other similar reduction
theorems, e.g. the icosahedron and the dodecahedron theorems [34, 33].

1This means the existence of a c > O such that ex(n,Q) > cn8/5 (n > 8).
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6 (THE OCTAHEDRON THEOREM). (Erdős, Simonovits [20]). If L de-
notes the octahedron graph (=K2,2,2), then there exists an n1 such that for
n > n1 every extremal graph Sn ∈ EX(n, L) is the product of two other
graphs: Sn = U1 × U2, where U1 is extremal for C4 , U2 is extremal for P3,
v(Ui) = n/2 + o(n) (where v(G) denotes the number of vertices of G), and
if U ′ and U ′′ are some other graphs and U’ contains no C4, U ′′ contains no
P3, then U ′ × U ′′ contains no octahedron graph L.

Generally, theorems stating that the extremal graph for a non-degenerate
extremal problem is the product of some extremal graphs of a degenerate
problem, will be called REDUCTION THEOREMS. And now we can say
that degenerate extremal graph problems are interesting partly in their own
right, and partly because nondegenerate extremal graph theorems are often
reducible to degenerate extremal graph theorems, see [35].

5. Some General Open Questions on

Degenerate Extremal Graph Problems

To be sincere, many of the open problems on degenerate extremal problems
seem to be completely hopeless because the extremal graphs conjectured
have a fairly regular and yet very complicated structure. Still, it is worth
formulating quite general and hopeless conjectures, since they often indicate
very well in which direction we should go, or which types of simpler questions
should be solved.

Below, we formulate four general questions.

5.1. The Problem Of Rational Exponents

Conjecture 1. Let L be a family of bipartite graphs. Does there exist a
rational α ∈ [1, 2) such that ex(n,L)/nα converges to a positive limit.

Here the requirement that the limit should be positive, is important oth-
erwise the conjecture would immediately follow from Kővá’ri- T. Sós-Turán
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theorem. A weakening of this conjecture is

Conjecture 2. Given a family L of bipartite forbidden graphs, there exist
constants, c and c′ > O and α ∈ [1, 2) for which

cnα ≤ ex(n, L) ≤ c′nα.

The main idea behind both conjectures is that while the structure of
extremal graphs may be fairly complicated, it must be simple in some other
sense. For 3-uniform hypergraphs, Conjecture 2 does not hold, as was shown
by Ruzsa and Szemerédi [29].

5.2. The Problem of Strong Compactness

Conjecture 3. Let L be a finite family of bipartite graphs. Then there is an
L in L such that

1 ≤ ex(n, L)/ex(n,L) = 0(1)

Conjecture 4. Let L be a finite family of bipartite graphs. Then there is an
L ∈ L such that

ex(n, L)/ex(n,L) → 1.

Clearly, the second conjecture is much stronger. Both assert that if we
prohibit a finite family of bipartite graphs, then there is always one among
them, the exclusion of which has almost the same effect as if we excluded
the whole of L : one forbidden graph dominates the whole problem. Here
the finiteness of L is very important: if L is the (infinite) family of all the
cycles, then ex(n,L) = n − 1. However, for any finite subclass L of L there
exists an α > 0 such that ex(n, L∗) > cn1+α.

For non-degenerate extremal graph problems even the stronger Conjec-
ture 4 immediately follows from the Erdős-Simonovits theorem [18]. One
final remark should be made: we stated Conjectures 3,4 in affirmative form,
however some examples suggest that perhaps they are false. It would be
interesting to find counterexamples.
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5.3. The Problem of Everywhere Dense Exponents

Conjecture 5. For every 1 ≤ α ≤ β ≤ 2 there exists a finite family L of
forbidden graphs such that

nα < ex(n,L) < nβ,

if n is large enough.

Conjecture 6 (Stronger). For every 1 ≤ α < β ≤ 2, there exists a finite L
and a γ ∈ (α, β) such that lim ex(n, L)/nγ exists and is positive.

(Perhaps for every rational γ ∈ (1, 2) there exists such a finite L.)

5.4. The Problem of Weak Vertices

In some reduction theorems the following property of L plays important role:
”One can delete a vertex v of L so that ex(n, L− v) = o(ex(n, L)).’ Vertices
satisfying this condition will be called weak. The problem we would like to
state is: “Characterize those bipartite graphs which have weak vertices. ”

Clearly, the trees have no weak vertices, C2k, Kp,q for p = 2, 3 do have
(and probably Kp,q does have weak vertices even for p ≥ 4) The graph in
Figure 1 (as it is easy to check) has no weak vertices. (For some literature,
see [31].)

Figure 1:
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PROOF METHODS: Obviously, to solve an extremal problem we
need an upper and a lower bound on ex(n,L). Both may be fairly difficult
to find. However, at present, we know much less about how to get lower
bounds. That is why we start with this question.

6. How to Get Lower Bounds?

In trying to find a lower bound for a degenerate Turán-type extremal prob-
lems we usually need a construction, but sometimes use the method of ran-
dom graphs. However, the method of random graphs somehow turns out to
be rather weak; I do not know of any case of a finite degenerate L when
the method of random graphs gave a sharp lower bound. The explicit con-
structions are mostly based on FINITE GEOMETRICAL arguments. The
method of using finite geometrical constructions seems to be fairly powerful,
and many times gives sharp lower bounds. Still, we do not know enough
about finite geometries, and perhaps this is why in many cases we only con-
jecture that an appropriate finite geometrical construction could help, but
are unable to find it. I shall not go into detailed discussion of this method,
it is described in [5] or [36], or in the original papers, e.g., [1, 6].

7. How to Get Upper Bounds in Degenerate

Extremal Problems?

Mostly we use one or two of the following methods (combined):
(a) blowing up
(b) recursion theorems
(c) application of supersaturated theorems

Since we often combine these methods, several of the illustrations given
below will be “mixed” ones.
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8. Blowing Up

First we sketch the method, then give some applications. In many extremal
graph problems, we first apply some regularization theorem to the original
graph, asserting that in any graph Gn we can find a subgraph Gm the mini-
mum degree of which is almost its average degree and such that Gm still has
many edges. One such theorem is

Theorem 7. Let Gn be a graph with E edges and average degree d = 2E/n.
Then there exists a subgraph Gm with d(Gm) > d/2, where d(G) denotes the

minimum degree. (Clearly, if d = 2E
m

→ ∞, then m → ∞, too.)

This theorem is mostly applied with e(Gn) = cnα where α > 0. Sometimes
we need the sharper result of Erdős and Simonovits [20]:

Theorem 8. For every α > 0 and c1 > 0, there exist a β > 0 and c2, c3 > 0,
such that if e(Gn) > c1n

α, then Gn contains a subgraph Gm with m > nβ,
and d(Gm) > c2m

α , d(Gm) < c3m
α 2 where d(G) the denotes the maximum

degree. If c1 → ∞, then c2, c3 → ∞.

Both results say that we may restrict our consideration primarily to regu-
lar graphs. The next lemma asserts that we may assume that Gn is bipartite:

Lemma 1. If G is an arbitrary graph and H is a bipartite subgraph of G hav-
ing the maximum number of edges, then dH(x) ≥ dG(x)/2 for every vertex,
where dH(x) and dG(x) denote the degrees in the corresponding graphs.

Assume now that we would like to prove that ex(n,L) = O(n1+α). Then
we fix a graph Gn with at least c1n

1+α edges, choose a Gm ⊆ Gn according to
Theorem 7 and then a bipartite Hm ⊆ Gm with d(Hm) ≥ (1/2)c2m

α . After
these two preparatory steps, we can carry out the actual “blowing up”. We
choose an arbitrary x ∈ V (Hm) and denote by Sj the set of vertices having
distance j from x. Then we prove that the condition “L 6⊆ Hm” implies
that, for some r = rL the size of Sj is much larger than the size of Sj−1,
j = 1, 2, . . . , r. We know that |S1| ≥ d(Hm) ≥ c2m

α, and we known also that

2Correction!
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|Sr| < m. These two facts yield that for the considered exponent α , c2 is
bounded, and therefore c1 is bounded as well. This yields that

ex(n,L) = O(n1+α).

This method was used by Bondy and Simonovits to prove the even cycle
theorem [2] and also by Faudree and Simonovits to prove a generalization of
this result, see below [25].

Bondy and Simonovits conjectured the following generalization Theorem
4:

Definition 2. Let Ck,t denote the graph obtained by joining two vertices
x, y by k vertex-independent paths of t edges each.

yx

C3,6

Figure 2: C3,6

Theorem 9 (Faudree, Simonovits [25]). ex(n,Ck,t) = O(n1+1/t).

Clearly, this generalizes Theorem 4. As a matter of fact, Faudree and
Simonovits have proved a much more general theorem.

Definition 3. Let L be a bipartite graph with a given 2-colouring χ, say in
red and blue. Let x be a new vertex and join it to each blue vertex of L by
vertex-independent paths of t− 1 edges (Figure 3). The resulting graph will
be denoted by Lt or Lt(L, χ).3

Now we can formulate the Faudree-Simonovits recursion theorem.

3Simonovits, 2010: In the original version the colouring was denoted by c.
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L

L5

Figure 3: L and Lt(L, χ)

Theorem 10. If T is a tree or a forest with a given 2-colouring χ, and
L∗ = Lt(L, χ), then ex(n, L∗) = O(n1+1/t).

Clearly, starting with a star T = K1,k we get back to Theorem 9. In
proving Theorem 10 we used again the blowing up method. Theorem 10 has
many different applications and some generalization. Here, we have no space
to go into the details.

9. Recursion Theorems

If we wish to prove general degenerate extremal graph theorems, (or super-
saturated theorems, see below), one way to do this is to look for recursion
theorems. These assert that if we have bounds for a graph L, then we can
obtain other bounds for some more complicated graph L∗. Generally, this L
is obtained from L by some given operation. Theorem 10 above is one illus-
tration of such recursion theorems. Below, we shall give another recursion
theorem, due to Erdős and Simonovits.

Definition 4. Let L be a bipartite graph properly coloured by red and blue.
Let Kt,t be coloured by red and blue and join each red vertex of Kt,t to each
blue one of L, each blue vertex of Kt,t to each red one of L, (see Fig. 4). The
resulting graph will be denoted by L(t).
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L

BLUE

RED
RED

BLUE

K 2,2

Figure 4:

Theorem 11. Assume that L is a given bipartite graph with a fixed 2-
colouring, and that ex(n, L) = O(n2−α). Define β by

1

β
− 1

α
= t.

Then ex(n, L(t)) = O(n2−β).

One application of this theorem is when L = C6, hence ex(n, L) =
O(n4/3). Since β = 8/5, and L(1) = Q∗ of Theorem 5, Theorem 11 im-
mediately yields Theorem 5 . As a matter of fact, Theorem 11 was obtained
by trying to prove Theorem 5. However Theorem 11 has many other inter-
esting consequences, too; for example,

Theorem 12. Let L be a bipartite graph properly coloured by red and blue.
If we may graph delete t red and t blue vertices so that the resulting graph is
a tree, then ex(n, L) = O(n2−1/(t+1)).

The proof of Theorem 12 from Theorem 11 is trivial. Theorem 12 contains
a result of Erdős (a sharpening of the Kővári-T. Sós-Turán theorem) as a
special case. Indeed, let L = (Kp+1,p+1–an edge). Then Theorem 12 can be
applied: we may delete p − 1 red and p − 1 blue vertices of L so that the
resulting graph is a path P3. Thus

ex(n, L) = O(n2−1/p)
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There are also recursion theorems of other types. For instance, Erdős and
Simonovits [22] proved a result where they obtained upper bounds on (r +
1)-uniform hypergraph problems from r–uniform hypergraph results: the
recursion goes according to the edge-size of the hypergraph. This theorem
implies Theorem 3 immediately.

10. Supersaturated Graphs

To describe how supersaturated graph theorems imply degenerate extremal
graph results, we first explain what we mean by a supersaturated graph.

Let us consider the case when L is fixed and Gn has E > ex(n, L) edges.
Clearly, Gn must contain forbidden subgraphs L ∈ L. As it turns out, in
most cases Gn must contain not only one but very many prohibited L ∈ L.
Such graphs will be called supersaturated or L–supersaturated .

There exists a fairly extensive literature on the case when Gn is Kp–
supersaturated. Without trying to be complete in any sense, we list the
following references: [3, 4, 5, 11, 12, 27, 28]. For the case of L- supersaturated
graphs in general, see [21, 22, 23, 37].

Here we are interested primarily in supersaturated graphs where the cor-
responding extremal problem is degenerate. Nevertheless, let us start with a
quite general theorem.

Theorem 13 (Erdős, Simonovits, [22]). Let us consider r–uniform hyper-
graphs and let L be a given finite family of forbidden graphs. Assume (for
the sake of simplicity) that all the graphs L ∈ L have v vertices. Then, for
every c > O, there exists a c′ > O such that, if

e(Gn) > ex(n, L) + cnr,

then Gn contains at least c′nv copies of L ∈ L .

Obviously, this result is sharp in the sense that Gn has at most O(nv)
copies of L ∈ L. We arrive at much deeper and more difficult problems
if we consider the case of “weakly supersaturated graphs”: the case when
e(Gn) = ex(n,L) + o(nr). For the sake of simplicity, we shall restrict below
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our considerations to the case of ordinary graphs (r = 2). Further, we shall
assume that L consists of bipartite graphs only. The theorems below state
(in some sense) that if e(Gn) > ex(n, L) is fixed, then Gn has the minimum
number of copies of L ∈ L if Gn is a random graph. Observe first that if Gn

is a random graph with E edges, then Gn contains on average

(

n

v

)(

2E

n2

)e

≈ cL · Ee

n2e−v

copies of L ∈ L.

Conjecture 7. Let L be a bipartite forbidden graph such that ex(n, L) =
O(n2−α), for some α ∈ (0, 1). Then there exist two constants c and c′ > 0
such that if E = e(Gn) > cn2−α, then Gn contains at least c′Ee/n2e−v copies
of L, where e = e(L), v = v(L).

A weakening of this conjecture is

Conjecture 8. For every L, there exists an α and c, c′ > 0 such that if
e(Gn) > cn2−α, then Gn contains at least

c′
Ee

n2e−v

copies of L, where e = e(L) and v = v(L).

In [37], Simonovits proved Conjecture 7 for C2t, with 2 − α = 1 + 1/t;
in [21], Erdős and Simonovits proved it for Pt

4; in [23] they proved it for
many other cases, including the cube graph and Kp,q. Since [23] is published
in this very volume, there is no reason to repeat the results listed either in
the introduction of [23] or among its main results. The reader will find there,
among other things, a conjecture stronger than Conjecture 7. Further, one
of the main results of [23] is a “RECURSION THEOREM ON SUPERSAT-
URATED GRAPHS”:

Theorem 14. If Conjecture 7 holds for L with some constant α, then it also
holds for the β defined in Theorem 11 and the L(t) defined in the preceding
definition.

4 For walks W k of length k the analogous (or, more precisely, a sharper) inequality
follows from some matrix theoretical inequalities.
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(Thus, for example, the fact that Conjecture 7 holds for C6 implies that
it also holds for the graph Q∗ obtained from the cube graph Q by joining
two opposite vertices.)

11. How to Apply Theorems on Supersatu-

rated Graphs to Prove Extremal Graph

Theorems

The method of using supersaturated graph results to prove Turán-type ex-
tremal theorems is as follows: We would like to prove that ex(n, L) =
O(n2−α). Assume that we can find another bipartite graph L′ such that

(i) if e(Gn) > E = cn2−α for some large c, then Gn contains at least
N = N(L′, E) copies of L′;

(ii) if Gn contains at least N copies of L′, then it contains a copy of L.

From (i) and (ii) we derive that ex(n, L) < cn2−α.

Of course, this very method is often used with a slightly different “ide-
ology”: we say that “we count the number of copies of L′ in Gn”. First we
get an upper bound on this, using the fact that L 6⊆ Gn, then we get a lower
bound on the number of copies of L′ in Gn, using the fact that it has many
edges. Comparing the two estimates, we obtain that Gn cannot have too
many edges.

Obviously, there is not much difference between the two viewpoints. Still,
in this survey we choose the first one, which will turn out to be quite useful.

Let us give some illustrations. (l) The proof of the Kővári-T. Sós-Turán
theorem is one good example: we calculate the number of copies of L′ = K1,p

in a graph. Each vertex of degree d yields
(

d
p

)

such K1,p’s. Hence one can

easily find a (sharp) lower bound on the number of copies of K1,p in Gn in
terms of e(Gn) and n. On the other hand, if the number of these is larger
than (q − 1)

(

n
p

)

, then there exists a p-tuple x1, . . . , xp occurring in at least q

stars (yj, x1, . . . , xp). These vertices x1 and yj form a Kp,q in Gn.
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The cube theorem (Theorem 5), and the more general Theorem 11 (The
recursion theorem on L(t)) were proved also by using a supersaturated graph
argument. There we counted the number of copies of C4 in Gn. Further, the
“supersaturated graph recursion theorem” of [23], that is, Theorem 14, was
again proved by a similar method.

One interesting application of this method is to the case when the for-
bidden graphs are cycles. To describe this application we first formulate two
conjectures [21].

Conjecture 9.

ex(n,C2t) =
1

2
n1+1/t + o(n1+1/t).

Conjecture 10. For any t and k ≥ 2

ex(n,C2t, C2k−1) =
(n

2

)1+1/t

+ o(n1+1/t).

In both cases the upper bound of the conjecture follows from the Bondy-
Simonovits or the Erdős theorem, apart from the value of the multiplicative
constants. The background to these conjectures is that one may reasonably
believe that the extremal graphs are almost regular, and if we exclude only
C2t, then the degrees are around t

√
n, while in the second case the extremal

graphs are bipartite, with roughly n/2 vertices in each colour class and the
degrees are only around t

√

n/2. Although many results are known on similar
problems about even cycles, Conjecture 9 has been specified only for t = 2.
5 In [21], Erdős and Simonovits proved that

ex(n,C4, C5) =
(n

2

)3/2

+ o(n3/2).

Their proof uses sharp supersaturated graph theorems on walks length k in
graphs. It follows from some well known inequalities non-negative matrices
[41] (see comments below) that

Theorem 15. If E = e(Gn) and d = 2E/n is the average degree, then
Gn contains at least (1/2)ndk walks of length k (where we regard the walks
(x0, . . . , xk) and (xk, . . . , x0) as identical). Further, if d → ∞, then Gn

contains at least (1/2)ndk + o(ndk) paths of length k.

5Simonovits, 2010: Some of our conjectures listed here were later disproved, see e.g.
[42]
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Theorem 15 is sharp: a regular graph contains exactly (1/2)ndk walks of
length k and (1/2)ndk − o(ndk) paths of length k if d → ∞. This theorem
was conjectured by Simonovits, proved by Godsil for walks of even length
and by Faudree and McKay for k = 3s. Finally Godsil found some matrix
inequalities [41] immediately implying it for all walks. Below, we sketch how
one can use it to prove the upper bound in

Theorem 16.

(n

2

)3/2

− o(n3/2) ≤ ex(n,C4, C5) ≤
(n

2

)3/2

+ O(n). 6

To prove this theorem we take a graph of Gn with E edges, cou- how many
walks of length three occur in it, and conclude that there exists an edge (x, y)
contained in more than n paths of the form (x, y, z, t) or (y, x, z, t). Hence, we
find two paths of the form (x, y, z, t) and (x, y, z′, t) or two paths of the form
(x, y, z, t) and (y, x, z′, t). In the first case we find a C4, in the second one
a C5. (In trying to gi- precise proofs for such theorems, the main difficulty
is always to get rid of the “coincidences”: above, for example, we have to
ensure that z z’, otherwise our C4 or C5 is degenerate.)

12. Final Remarks

Supersaturated extremal theorems can be used in many other cases, too.
Thus, for example, we may use supersaturated theorems on some L to prove
supersaturated theorems on other ones. This happened in the proof of the re-
cursion theorem on supersaturated graphs (Theorem 14). A similar situation
occurred in [22], where we gave a recursion theorem yielding supersaturated
hypergraph theorems. The recursion uses results on r–uniform hypergraphs
to prove supersaturated theorems on (r+1)-uniform hypergraphs. Right now,
one of the most intriguing supersaturated graph conjectures, which does not
seem completely hopeless (though we cannot prove it), is Conjecture 8.

6Simonovits, 2010: Actually, O(n) should here be replaced by o(n3/2). This was pointed
out for me by Benny Sudakov and Jacques Verstraete. In our original proof with Erdős
we treated distinguishing the walks and paths slightly too loosely. The proof can easily
be corrected.
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One more remark: applying supersaturated graph theorems to prove ex-
tremal graph theorems or other supersaturated graph results seems to be a
fairly powerful method. The reason for this may be that, in these applica-
tions we may use rough averaging methods and convexity arguments, which
are not greatly affected by the irregularities in the structure of our graph.
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[21] P. Erdős and M. Simonovits: Compactness results in extremal graph
theory. Combinatorica, 2 (3) (1982) 275–288.
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