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What happens if...
your combinatorics professor gives the following exercises:

(a) An independent set of a graph G = (V ,E ) is a subset of vertices
I ⊆ V such that for all v1, v2 ∈ I , (v1, v2) /∈ E . An independent set I
is maximal if there is no independent set I ′ such that I ⊂ I ′. Give a
recurrence that counts the maximal independent subsets in Cn, the
cycle of n vertices, and solve it.

5 maximal independent sets in a pentagon,
5 maximal independent sets in a hexagon,

7 independent sets in a heptagon, etc.
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What happens if...

your combinatorics professor gives the following exercises:

(b) Two rectangles with dimension a, b and a′, b′ are similar if
a/b = a′/b′. Find all ways to split a square into 3 similar rectangles.

From Wikipedia, by David Eppstein - Own work, Public Domain,
https: // commons. wikimedia. org/ w/ index. php? curid= 64940235
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What happens if...
your combinatorics professor gives the following exercises:

(c) Let [x ] denote the closest integer to x . Prove that starting with
p = 7, for all prime numbers p, 3
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≈ 119.1511, 119 = 7× 17
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(d) Find a relationship between exercises (a), (b), (c) and the number
271441.
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The story started at RES 2022 Spring...
The chips taking game

Let A = {a1, a2, . . . ak} be a set of positive integers, let n > max{A} be a
positive integer, and let g be a function mapping from {1, 2, . . . ,max{A}}
to {0, 1}.

Starting with n chips, Alice and Bob take any ai ∈ A chips from the pile of
chips. The number of the chips in the pile will be eventually some
x ≤ max{A}. The winner of the game is the current player if g(x) = 1,
and the opposite player if g(x) = 0.
The discrete mathematical problem is to compute who has the winning
strategy.
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Chips taking game example

A = {1, 2, 3, 4}, g(1) = g(2) = g(3) = g(4) = 1, n = 20
Who has the winning strategy?

Claim: Bob has the winnig strategy. The strategy is that if Alice takes a
chips, Bob takes 5− a. Then after each pair of steps, the number of chips
in the pile will be divisable by 5. Then Alice has to take some chips from
5. This leads to an x < 5, and now Bob is the current player. x ≤ 4, and
g(x) = 1, so Bob won the game.

Who has the winning strategy if the number of chips at the beggining is
n = 21?
It is now Alice. She takes 1 chips, so now n = 20, and Bob is the first
player, Alice is the second one, and she has the winning strategy, see
above.
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Dynamic programming recursion

Claim

We define f (n) = 1, if Alice has the winning strategy starting by n chips,
and f (n) = 0 if Bob has the winning strategy. Then f (n) = g(n) for all
n ≤ max{A}, and for n > max{A}

f (n) = 1− min
ai∈A

f (n − ai ).

Proof.

The first player has a winning strategy if and only if s/he can navigate to a
position where the first (current) player does not have a winning
strategy.

For example, if A = {1, 2, 3, 4}, and g(1) = g(2) = g(3) = g(4) = 1, then

n 1 2 3 4 5 6 7 8 9 10 11

f(n) 1 1 1 1 0 1 1 1 1 0 1
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The winning positions becomes periodic

Claim

For any A and g f eventually becomes periodic.

Proof.

By Pigeonhole Principle. We can consider the dynamic programming
recursion as a mapping in a {0, 1}max{A} space. The mapping is that we
shift the coordinates to the left by one, thus losing the first coordinate,
and the last coordinate is given by the dynamic programming recursion.By
PHP, the recursion must return to a position that was already visited, and
thus becomes periodic.

From this proof, it is clear that the largest possible period is 2max{A}. It is
an open question if there exists a period larger than a suprapolynomial
function of max{A}. The typical period length is a linear function of
max{A}.
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Periods of A = {n,m}, g .c .d(n,m) = 1

Theorem

Let A = {n,m} and let n and m be relatively primes. Then for all
d |(n + m), d 6= 1, 4, 6, there exists a g such that the period length of f is
d. No other period length is possible.

We first prove the theorem for A = {1, k − 1}, and then for any n and m
that are relatively primes. Some easy claims are already proved for
A = {n,m} at this stage, too.
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István Miklós (Rényi) The complex dynamics of the chips taking game or BSM Seminar 10 / 37



Superperiod

Definition

A superperiod is any positive integer multiple of a period.

Claim

If A = {n,m}, then n + m is a superperiod length (independently what g
is).

Proof.

If f (x) = 0, then both f (x + n) = 1 and f (x + m) = 1, since we can
navigate from that position to a losing position. But then
f (x + n + m) = 0 as both f (x + n + m− n) and f (x + n + m−m) equal 1.
Similarly, if f (x) = 1, then either f (x − n) or f (x −m) is 0 (or both).But
then either f (x + n) = f (x −m + n + m) or f (x + m) = f (x − n + n + m)
is 0 (or both). Then f (x + n + m) is also equal to 1.
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Longest run of 0’s and 1’s

Now we consider A = {1, k − 1}.

Claim

The longest run of 0’s in the periodic phase has length 1. The longest run
of 1’s in the periodic phase has length 2.

Proof.

If f (x) = 0, then f (x + 1) = 1, since we can navigate from here to a losing
position (take 1 chips).Thus the longest run of 0’s has length 1.
If f (x) = f (x + 1) = 1, then f (x + 2) must be 0. Assume contrary, that
there exists f (x) = f (x + 1) = f (x + 2) = 1. But then both
f (x) = f (x + 1− 1) = 1 and f (x + 2− k) = f (x + 1− (k − 1)) = 1,
contradicting that f (x + 1) = 1.

The corollary is that any superperiod is tiled by patterns 01 and 011. Then
any period is a divisor of k , and the period length cannot be 1 (not
tilable), 4 and 6 (these are also superperiods).
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How the heck will we prove in 10 minutes from now that
for any prime number p at least 7, p divides 3

√
9 +
√

69

18
+

3

√
9−
√

69

18

p?!?!?!
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Any superperiod build from 01 and 011 patterns is
repeated

The superperiod started by 0 and ended by 1. Then the next k pattern
also starts by 0 since the second and the last positions are 1s in the
previous superperiod. The 1s are also repeated since either the previous
number was 0 or there was a 0 k − 1 positions earlier in the previous
superperiod. The next superperiod also ends by 1 as started by 0.

Corollary: any period length d |k d 6= 1, 4, 6 is possible as periods with such
lengths have a tiling with 01 and 011 patterns that are not superperiods.
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Logan’s trick
Going from A = {1, k − 1} to A = {n,m}

If n and m are relatively primes, then so n and n + m.

Thus < n >
generates Z+

n+m. Observe that

(n + m − 1)× n ≡ m mod (n + m).

Thus there is a 1-1 correspondence between the superperiods of
A = {n,m} and the superperiods of A = {1, k − 1} with k = n + m.

It can be shown (non-trivial!) that this bijection preserves the period
lengths, too.
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István Miklós (Rényi) The complex dynamics of the chips taking game or BSM Seminar 15 / 37



Logan’s trick
Going from A = {1, k − 1} to A = {n,m}

If n and m are relatively primes, then so n and n + m. Thus < n >
generates Z+

n+m. Observe that

(n + m − 1)× n ≡ m mod (n + m).

Thus there is a 1-1 correspondence between the superperiods of
A = {n,m} and the superperiods of A = {1, k − 1} with k = n + m.

It can be shown (non-trivial!) that this bijection preserves the period
lengths, too.
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Number of periods

Proposition

Let s(k , d) denote the number of g functions such that f{1,k−1},g has
superperiod d, and let n(k , d) denote the number of g functions factorized
by cyclic permutations such that f{1,k−1},g has period d. Then

n(k, d) =
s(k , d)−

∑
d ′|d(d ′ × n(k , d ′))

d

Observation

Observe that for any d |k, s(k , d) = s(d , d) and n(k , d) = n(d , d).
Therefore, if we denote s(k , k) by s(k) and n(d , d) by n(d), we get that

n(k) =
s(k)−

∑
d |k(d × n(d))

k
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Number of superperiods and maximal independent sets of
Ck

Claim

There is a 1-1 correspondence between superperiods of length k built from
01 and 011 and the maximal independent sets of Ck .

Proof.

The 0’s denote the members of the maximal independent set. Such
selection of vertices form an independent set since there are no
consecutive 0s, and they are maximal independent sets since the longest
run of 1s has length 2.

Example:

01011011
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Recurrence for the number of maximal independent sets

Claim

Let S(k) denote the number of maximal independent sets in Ck . Then

S(k) = S(k − 2) + S(k − 3)

with initial conditions S(0) = 3, S(1) = 0, S(2) = 2.

Furthermore,
S(k) = ρk1 + ρk2 + ρk3 ,

where ρi , i = 1, 2, 3 are the roots of the characteristic polynomial
x3 − x − 1 = 0.

ρ1 =
3

√
9 +
√

69

18
+

3

√
9−
√

69

18
.
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Solving exercise (c)

Claim

For any prime number p,

p|S(p) = ρp1 + ρp2 + ρp3 .

Proof.

All superperiods of length p are periods, so the number of them can be
divided by p.

But then why p can divide 3

√
9 +
√

69

18
+

3

√
9−
√

69

18

p
for large p’s?
Because both ρ2 and ρ3 are smaller than 1 in absolute value!

István Miklós (Rényi) The complex dynamics of the chips taking game or BSM Seminar 19 / 37



Solving exercise (c)

Claim

For any prime number p,

p|S(p) = ρp1 + ρp2 + ρp3 .

Proof.

All superperiods of length p are periods, so the number of them can be
divided by p.

But then why p can divide 3

√
9 +
√

69

18
+

3

√
9−
√

69

18

p
for large p’s?
Because both ρ2 and ρ3 are smaller than 1 in absolute value!
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Pisot-Vijayaragavhan numbers

Definition

A Pisot-Vijayaragavhan number or simply a PV number or Pisot number is
a positive real algebraic integer larger than 1 such that all of its Galois
conjugates have absolute value less than 1.

That is, a PV number is a positive, greater than 1 root of a polynomial
with integer coefficients and leading coefficient 1, such that all other roots
of that polynomial are smaller than 1 in absolute value.
The powers of the PV numbers modulo 1 have a very biased distribution.
That is for any PV number ρ, it holds that

lim
n→∞

|ρn − [ρn]| = 0.
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Funny properties of the Fibonacci numbers
The golden ratio is also a PV number!

It is known that

Fn =

(
1+
√

5
2

)n+1
−
(

1−
√

5
2

)n+1

√
5

Therefore
lim
n→∞

{√
5F2n

}
= 0 lim

n→∞

{√
5F2n+1

}
= 1.

√
5× 1 ≈ 2.236

√
5× 1 ≈ 2.236√

5× 2 ≈ 4.472
√

5× 3 ≈ 6.708√
5× 5 ≈ 11.180

√
5× 8 ≈ 17.888√

5× 13 ≈ 29.068
√

5× 21 ≈ 46.957√
5× 34 ≈ 76.026

√
5× 55 ≈ 122.984√

5× 89 ≈ 199.010
√

5× 144 ≈ 321.994√
5× 233 ≈ 521.004

√
5× 377 ≈ 842.998
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Pisot-Vijayaragavhan numbers

Salem proved that the set of PV numbers is closed

, therefore there is a
smallest PV number (as they are greater than 1). The smallest PV
number is

3

√
9 +
√

69

18
+

3

√
9−
√

69

18
,

called the plastic number.
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The geometry of the plastic number

Golden ratio spiral
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The geometry of the plastic number

Golden ratio spiral

F 2
0 + F 2

1 + . . .+ F 2
n = Fn × Fn+1

Plastic ratio spiral

From Wikipedia, by Hyacinth - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=75091766
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The geometry of the plastic number

From Wikipedia, by Hyacinth - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=75028431

The 1967 St. Benedictusberg Abbey church by Hans van der Laan

has plastic-number proportions,

https://commons.wikimedia.org/w/index.php?curid=75091766
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The geometry of the plastic number
Solving subexercise (b)

From Wikipedia, by David Eppstein - Own work, Public Domain

https://commons.wikimedia.org/w/index.php?curid=64940235

ρ 1
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The Perrin pseudoprimes
Solving subexercise (d)

The sequence

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, . . .

is also called the Perrin sequence.

Also called the “Skiponacci sequence”,
as we skip the previous term and add the next two terms, that is,
Pn = Pn−2 + Pn−3. Perrin gave an alternative proof that p divides Pp if p
is a prime, and conjectured the “only if ” direction. The conjecture was
diproved. Actually, there are infinitely many counterexamples called Perrin
pseudoprimes, although they are rare. The smallest one is 271441.
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Geometric/combinatorial proof of Euler’s theorem

Color a p-gon with a colors! There are a colorings that use only one color,
and there are ap colorings altogether. Those colorings that use more than
one color have no rotational symmetry. Therefore

p|(ap − a)

that is,
ap ≡ a mod p
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István Miklós (Rényi) The complex dynamics of the chips taking game or BSM Seminar 28 / 37



Geometric/combinatorial proof of Euler’s theorem

Color a p-gon with a colors! There are a colorings that use only one color,
and there are ap colorings altogether.

Those colorings that use more than
one color have no rotational symmetry. Therefore

p|(ap − a)

that is,
ap ≡ a mod p
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More general divisibility rule for PV numbers
(courtesy of prof. Péter Maga)

Claim

Let ρ be a PV number such that it is a root of f (x) =
∑n

k=0 akx
k with an−1 = 0. Then

there exists a p0 such that for all prime numbers p ≥ p0, p| [ρp].

Proof.
We know that the sum of the roots of f (x) is 0 (since an−1 = 0). That is, for all p (and
actually for all positive integers), (

n∑
k=0

ρi

)p

= 0.

Applying the multinomial expansion theorem:

0 =
n∑

k=0

ρpk +
∑

s1+s2+...+sn=p, sk 6=p

(
p

s1, s2, . . . , sn

)
n∏

k=0

ρ
sk
k .
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Proof (cont’d)

Proof.

0 =
n∑

k=0

ρpk +
∑

s1+s2+...+sn=p, sk 6=p

( p

s1, s2, . . . , sn

) n∏
k=0

ρ
sk
k .

Recall that
( p

s1, s2, . . . , sn

)
=

p!

s1!× s2!× . . .× sn!

That is,

0 =
n∑

k=0

ρpk + p × [algebraic integer].

But
∑n

k=0 ρ
p
k is an integer (for example, due to Newton’s sums), thus the algebraic integer in

question is rational.However, any rational algebraic integer is an integer, thus we get that

n∑
k=0

ρpk ≡ 0 mod p.

Due to the PV property, we get that for large p,

p| [ρp ] .
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ρpk ≡ 0 mod p.

Due to the PV property, we get that for large p,

p| [ρp ] .
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Yet another funny divisibility rule on Fibonacci numbers

The characteristic polynomial of the Fibonacci numbers is x2 − x − 1 = 0.

So an−1 is not 0 but −1. Therefore, the sum of the roots is 1. But
1p = 1.That is, we get that

Claim

Starting with p = 5, for all prime numbers p,

p|
[√

5Fp−1 − 1
]
.
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István Miklós (Rényi) The complex dynamics of the chips taking game or BSM Seminar 31 / 37



Generalizing the dynamic programming recursion

Recall that
f (n) = 1−min

a∈A
{f (n − a)}.

Observe that the minimum of 0’s and 1’s is equal to their product. That
is, we have that

f (n) = 1−
∏
a∈A

f (n − a).

This equation can be interpreted for any complex number. It is a non
linear dynamics. Most of the non-linear dynamics over complex numbers
yields fractals!
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István Miklós (Rényi) The complex dynamics of the chips taking game or BSM Seminar 32 / 37



Generalizing the dynamic programming recursion

Recall that
f (n) = 1−min

a∈A
{f (n − a)}.

Observe that the minimum of 0’s and 1’s is equal to their product. That
is, we have that

f (n) = 1−
∏
a∈A

f (n − a).

This equation can be interpreted for any complex number.

It is a non
linear dynamics. Most of the non-linear dynamics over complex numbers
yields fractals!
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Fractals of the chips taking game
Let g ≡ c for some c ∈ C.

Then the dynamics might be convergent or
divergent (blue channel). If convergent, then the dynamics might be
periodic or chaotic (red channel).If periodic then the length of the periods
might vary (green channel).
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Continuous time dynamics

The chips taking game is a discrete dynamics. How to sneak in some
continuity?

For any positive real t, 1t = 1 and 0t = 0. Thus we might
consider the recursion

f (n) = 1−

(∏
a∈A

f (n − a)

)t

.

How to extend the exponential function to complex numbers? For a
z = r × (cos(ϕ) + i × sin(ϕ)), we might define

z t := r t × (cos(ϕ× t) + i × sin(ϕ× t)).

This function is not continuous at the positive real axis, but we can live
with that.
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Conclusions

Life is complicated :)
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Conclusions

More and more interactions between different fields of mathematics is
expected.

Combinatorial and algebraic methods will be widespread.

It is not easy to find the connections between different fields.
Particularly, searching previous results is not easy as they might use
different keywords.

Mathematics is beautiful.
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Thank you!
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