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Abstract

We say that an oriented contact manifold (M, �) is Milnor fillable if it is contactomorphic to the contact boundary of
an isolated complex-analytic singularity (X, x). In this article we prove that any three-dimensional oriented manifold
admits at most one Milnor fillable contact structure up to contactomorphism. The proof is based on Milnor open
books: we associate an open book decomposition of M with any holomorphic function f : (X, x) → (C, 0), with
isolated singularity at x and we verify that all these open books carry the contact structure � of (M, �)—generalizing
results of Milnor and Giroux.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Let (X, x) be an irreducible germ of complex analytic variety, which is smooth outside x. Choose a
local embedding (X, x) ⊂ (Cs, 0) and intersect X with small euclidian spheres centered at 0. One gets
like this a naturally oriented manifold whose diffeomorphism type is independent of the embedding and of
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the (sufficiently small) spheres. Hence one gets (the diffeomorphism type of) a closed oriented manifold
M(X), which is called the (abstract) boundary (or the link) of (X, x).

Now, for any fixed embedding e and small sphere (of radius
√

�), the above intersection Me,�—being
a real one-codimensional submanifold in the complex manifold X\{x}—is naturally endowed with a
complex hyperplane distribution �e,�, with complex multiplication i|�e,�. Then the triple (Me,�, �e,�, i|�e,�)

is a CR-manifold. By a result of Scherk [26] it is an absolute invariant: it determines the analytic type of
the germ (X, x). On the other hand, this CR-manifold really depends on the parameters (e, �).

Nevertheless, one gets a well-defined intermediate invariant object by removing the complex multipli-
cation i|�e,� (but keeping the orientation of �e,� induced by this multiplication). Indeed, Varchenko has
showed in [29] that the couple (Me,�, �e,�) is a contact manifold, which, up to a contact isotopy, only
depends on the analytic type of (X, x). This isotopy type is called the contact boundary of (X, x) and
denoted by (M(X), �(X)). In this way, one associates to any isolated singular point of a complex variety
a contact manifold. (For a more general definition, see Section 3.)

Definition 1.1. Let (M, �) be a connected closed oriented contact manifold. If there exists a germ (X, x)

of (normal) complex analytic space with isolated singularity such that (M, �) is isomorphic to the contact
boundary (M(X), �(X)) of (X, x), then we say that (M, �) admits a Milnor filling (or is Milnor fillable).
The germ (X, x) is called a Milnor filling of (M, �).

We will use the same terminology for any oriented manifold M (forgetting the contact structure) if M
is isomorphic to the abstract boundary M(X) of some singularity x ∈ X.

Above, the normality assumption is not restrictive: (M(X), �(X)) is isomorphic to the contact boundary
(M(X̂), �(X̂)) of the normalization (X̂, x̂) of (X, x) (see e.g. Proposition 3.3).

Some natural questions arise, the most basic one being the classification of Milnor fillable contact
manifolds. In this paper we will concentrate on three-dimensional oriented manifolds. In this case the
existence of a Milnor filling is a topological property and it is completely understood: an oriented
3-manifold M is Milnor fillable if and only if it is a graph-manifold obtained by plumbing along a
weighted graph which has a negative definite intersection form (see [9]).

Our main theorem establishes the uniqueness property:

Theorem 1.2. Any Milnor fillable 3-manifold admits a unique Milnor fillable contact structure up to
contactomorphism.

Here some comments are in order.
(i) All Milnor fillable contact 3-manifolds are Stein fillable. Indeed, if the surface singularity (S, 0) is

smoothable, a simple application of Gray’s Theorem shows that its contact boundary coincides with the
contact boundary of any Milnor fiber, which is Stein. But even if (S, 0) is not smoothable, its contact
boundary can still be filled with a complex manifold (e.g., with the resolution of the singularity) and
results of Bogomolov and de Oliveira (see [1]) show that the complex structure of the filling can be made
Stein without changing the contact boundary. In particular, Milnor fillable contact structures are tight, by
a general theorem of Gromov and Eliashberg.

(ii) All these manifolds contain at least one incompressible torus, except for the lens spaces and
some small Seifert spaces. Therefore, in general, by a theorem of Colin and Honda–Kazez–Matić
(see [4]) all these manifolds admit infinitely many different tight contact structures up to isomorphism.
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In particular, Theorem 1.2 indicates that Milnor fillability is a very special property of tight contact
structures.

(iii) Finally notice that the above classification Theorem 1.2 is in a big contrast with the phenomenon
valid for higher dimensional singularities. For instance, Ustilovsky in [27] discovered on the spheres
S4n+1, n�1, infinitely many different Milnor fillable contact structures. (Also, the authors know no
criterions which would ensure, in general, Milnor fillability.)

In Section 2, we recall the work of Giroux on contact structures and open books. The key message
is that in dimension 3 any open book carries a unique contact structure up to isotopy. This descrip-
tion of contact structures is perfectly adapted to the contact boundaries exploited in Section 3. There
we start with a rather general definition of the contact boundary. Then we prove that any analytic
function f : (X, x) → (C, 0) (with an isolated singularity at x) defines an open book decomposi-
tion of the boundary M(X)—we call them Milnor open books. The point is that (see Theorem 3.9 for
more details):

Theorem 1.3. Any Milnor open book carries the natural contact structure �(X) on M(X).

We emphasize that this result is valid in any dimension. We believe that it will be an essential tool in
the further study of contact boundaries.

Now, the proof of Theorem 1.2 runs as follows (see the end of Section 4). For any Milnor fillable
3-manifold M, using its plumbing representation, we construct an oriented link in it which is isotopic
to the binding of a Milnor open book for any Milnor filling of M (see 4.1). Then, using the work of
Chaves [3] and Pichon [22], we show that all the possible Milnor open books with this binding are, in
fact, isomorphic (see 4.8).

A short preliminary version of this article appeared in [2]. In it, Theorem 1.2 was proved for rational
homology spheres. In the meantime, we succeeded to replace the old proof by a more natural one and to
extend the result to all Milnor fillable 3-manifolds.

2. Contact structures and open books

Let M be an oriented (2n − 1)-dimensional manifold, where n�1. A (coorientable) contact structure
on M is a hyperplane distribution � in TM defined by a global 1-form � such that � ∧ (d�)∧(n−1) �= 0.
We say that the pair (M, �) is a contact manifold and � a contact form. The form � is called positive
if � ∧ (d�)∧(n−1) defines the chosen orientation of M. If n is even, then the orientation defined by
� ∧ (d�)∧(n−1) does not depend on the choice of the defining form �, hence one can speak about positive
contact structures.

If � is a contact form on M, the condition � ∧ (d�)∧(n−1) �= 0 implies that d�|� is a symplectic form.
This shows that ker(d�) is a one-dimensional vector subspace of TM, transversal to �. Therefore, there
exists a unique vector field R on M such that �Rd� := d�(R, ·) = 0 and �(R) = 1. It is called the Reeb
vector field associated to �.

Two contact structures � and �′ on M are isotopic (resp. isomorphic or contactomorphic) if there is an
isotopy (resp. a diffeomorphism) of M which sends � on �′.

For more about contact structures, see e.g. Eliashberg and Mishachev’s book [6].
In the study of contact manifolds one of the main tools is provided by open books carrying contact

structures.
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Definition 2.1. An open book with binding N in a manifold M is a couple (N, �), where N is a (not
necessarily connected) two-codimensional closed submanifold of M with trivializable normal bundle and
� : M\N → S1 is a smooth fibration which in a trivialized neighborhood N × D2 of N coincides with
the angular coordinate. The fibers of � are called the pages of the open book.

Notice that d� induces natural co-orientations on the binding and the pages of the open book. Thus,
any fixed orientation of M induces a natural orientation on N. If N itself is oriented a priori, then
we say that the open book is compatible with the orientations of M and N if the two orientations of
N coincide.

Finally, we say that the open books (N, �) and (N ′, �′) in the manifolds M, respectively M ′, are
isomorphic if there exists a diffeomorphism � : (M, N) → (M ′, N ′) which preserves the pages and their
co-orientations.

Every construction of open books we will consider rests on the following lemma. Its proof is straight-
forward.

Lemma 2.2. Let M be an oriented closed manifold and let � : M → C be a differentiable function. If
there exists a number � > 0 such that

• d(arg �) �= 0 if |�|��, and
• d(�) �= 0 if |�|��

then (�−1(0), arg �) is an open book in M.

Remark 2.3. With the exception of 3.8, where one chooses the branch arg ∈ (−�, �], the argument of a
non-zero complex number is regarded as an element of R/2�Z 	 S1.

Next we recall the relationship between contact structures and open books.

Definition 2.4 (Giroux [7]). We say that a contact structure � on an oriented manifold M is carried by
an open book (N, �) if it admits a defining contact form � which verifies the following:

• � restricts to a contact form on N;
• d� restricts to a symplectic form on each fiber F of �;
• The orientation of N induced by � coincides with its orientation as the boundary of the symplectic

manifolds (F, d�).

If a contact form � satisfies these conditions we say that it is adapted to (N, �).

One has the following criterion for an open book to carry a contact structure:

Lemma 2.5 (Giroux [8]). Let � be a positive contact form on the oriented manifold M. Suppose that
there exists an open book (N, �) in M and a neighborhood V = N × D2 of N = N × {0} such that:

• � is the normal angular coordinate in V;
• � restricts to a contact form on each submanifold N × {∗} in V;
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• d� restricts to a symplectic form on each fiber F ′ of � in M\IntV ;
• The orientation of N × {∗} = �F ′ induced by � coincides with its orientation as the boundary of the

symplectic manifold (F ′, d�).

Then the open book (N, �) carries the contact structure � = ker �.

The relevance of this notion for our study of three-dimensional contact boundaries lies in the following
result:

Theorem 2.6 (Giroux [7,8]). On a closed oriented 3-manifold, two positive contact structures carried
by the same open book are isotopic.

In particular, in order to show that two contact structures on a given 3-manifold are isomorphic, it is
enough to show that they are carried by isomorphic open books.

Remark 2.7. (a) In fact, any open book in an oriented manifold carries positive contact structures. This
was proven for 3-manifolds by Thurston and Winkelnkemper and in the general case by Giroux [7].

(b) Giroux [7] also proved that a version of Theorem 2.6 holds in all dimensions if one further asks that
the two contact structures induce the same symplectic structure on the pages up to isotopy and completion
(see again [7] and [8]). He also proved in collaboration with Mohsen that any contact structure is carried
by an open book. Hence, in fact in any dimension, one can translate statements of contact geometry into
properties of open books.

3. Contact boundaries and Milnor open books

Let (X, x) be an irreducible germ of a complex analytic space with isolated singularity. Sometimes,
we will denote by X a sufficiently small representative of this germ. Let mX,x ⊂ OX,x be the ideal of
germs of holomorphic functions on (X, x) vanishing at x.

3.1. The contact boundary associated with a holomorphic immersion

Write X∗ for the complex manifold X\{x}. Let J : TX∗ → TX∗ be the operator of fiberwise multi-
plication by i, when TX∗ is seen as a real vector bundle. We will also denote it by i·, when no confusion
is possible. Set dc := J ∗ ◦ d, i.e. dcF = dF ◦ J for any differentiable function F : X∗ → R. Then
dc = i(� − �̄).

A real function F on X∗ is called strictly pluri-subharmonic (spsh) if and only if −ddc(F ) > 0, that is
if −ddc(F )(v, Jv) > 0 for any non-zero tangent vector v of X∗.

For any �1, . . . , �N ∈ mX,x consider the holomorphic map 	 : (X, x) → (CN, 0) with components
�i , and the real analytic function


 :=
N∑

k=1

|�k|2 : (X, x) → (R, 0).
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For each � > 0, define

M
,� := 
−1(�).

Clearly, M
,� is a smooth compact manifold for � > 0 sufficiently small if and only if 	 is a finite analytic
morphism. In the sequel we will assume that this fact holds.

On X∗ we consider the following natural objects associated with 
:

� := −dc
,

� := d� = −ddc
,

g(u, v) := �(u, Jv) ∀u, v ∈ TX∗,

h := g + i�.

Then, on X∗ define

�
 := ker(d
) ∩ ker(dc
).

It is a field of complex tangent hyperplanes of the real tangent bundle of X∗ endowed with its canonical
(almost) complex structure. Moreover, it is tangent to the levels M
,� of 
. In fact

�
,� := �
|M
,� = ker(�|M
,�).

Lemma 3.1. The following conditions are equivalent:

(1) The pair (M
,�, �
,�) is a contact manifold for � sufficiently small.
(2) The morphism 	 is an immersion of X∗ into CN .
(3) The function 
 is spsh.

Proof. An easy computation shows that

−ddc
(v, Jw) = 2
N∑

k=1

det

(
d�k(v) −d�k(w)

d�k(v) d�k(w)

)

for any tangent vector fields v, w of X∗. This shows that ker d	=ker(−ddc
) and −ddc
�0. The lemma
is an immediate consequence of this. �

From now on we fix 	, and we assume that it induces an immersion of X∗ into CN ; we will briefly say
that it is a holomorphic immersion. In such a case, we say that the function 
 : X∗ → R defined above
is an euclidian rug function. In the view of the previous lemma, the objects associated with an euclidian
rug function 
 have the following properties:

• the levels M
,� are naturally oriented as boundaries of the complex manifolds 
−1(0, �], endowed with
their canonical orientations;

• �—restricted to the levels M
,�—is a positive contact form;
• � is a symplectic form compatible with the complex structure on X∗;
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• g is a riemannian metric on X∗;
• h is a Kähler metric.

(Notice that not all the real analytic rug functions, e.g. as in [14], have all these properties, although they
are perfectly good to identify the boundary manifold M
,�.)

Now, using Gray’s theorem (see [6] for instance), it is easy to prove:

Proposition/Definition 3.2. The pair (M
,�, �
,�) is a positive contact manifold, whose contact isotopy
type does not depend on the choice of the holomorphic immersion 	 and of � > 0 sufficiently small. This
isotopy type is called the contact boundary of (X, x) and denoted by (M(X), �(X)).

This generalizes Varchenko’s result [29] which corresponds to the case when 	 is an embedding.
Considering arbitrary holomorphic immersions and their associated rug functions (instead of embeddings
and euclidean spheres) has many advantages: it does not only increase the possibilities to realize the isotopy
type of the natural contact structure, but it also gives the possibility to compare the corresponding contact
structures under finite maps unramified outside the singular point:

Proposition 3.3. Suppose that � : (X, x) → (Y, y) is a finite map between irreducible complex analytic
germs and that the restriction � : X∗ → Y∗ is an unramified covering between connected smooth spaces.
Then one can choose representatives of the contact boundaries (M(X), �(X)) and (M(Y), �(Y)) such
that the restriction of � to (M(X), �(X)) surjects onto (M(Y), �(Y)) and is a local contactomorphism.

Proof. Choose an embedding  : (Y, y) → CM and define � := ∑ |�k|2, 
 := � ◦ �, 	 :=  ◦ �. Then
compare the contact structures associated with these rug functions. �

As a particular case of the previous proposition, if G is a finite group of analytic automorphisms of (X, x)

acting freely on X∗ and if (Y, y) is the quotient of (X, x) by G, then the isotopy type of (M(X), �(X))

admits a representative on which G acts via contactomorphisms, and the quotient is a representative of
(M(Y), �(Y)).

3.2. The Milnor open book associated with a holomorphic function

Fix a function f ∈ mX,x which defines an isolated singularity at x. Set

N
,�(f ) := M
,� ∩ f −1(0).

For � > 0 sufficiently small N
,�(f ) is smooth and naturally oriented. The argument of f restricted to
M
,�\N
,�(f ) gives a well-defined function

��(f ) := arg f : M
,�\N
,�(f ) → S1.

We then have the following generalization of Milnor’s Fibration Theorem (see [15]):

Proposition/Definition 3.4. For � > 0 sufficiently small, the pair (N
,�(f ), ��(f )) is an open book in the
boundary M
,� which is compatible with the orientations. Furthermore, its isotopy type does not depend
on the choice of � > 0 nor on the choice of holomorphic immersion 	. It is called the Milnor open book
of f and denoted by (N(f ), �(f )). The pair (M(X), N(f )) is called the link of f.
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This statement splits into two parts: a fibration and an invariance result. The first one, for 	 an em-
bedding, appears in [10], Satz 1.6. That proof, based on Lemma 2.2, extends to our new situation once
a key fact is verified. Since this fact is used by us in other places as well, we provide its complete proof
in Proposition 3.8, after having stated two preliminary lemmas. For all the other details, we refer to [10].
The invariance statement can be proved similarly using the classical tools of local analytic singularities:
we leave the verification to the interested reader.

Remark 3.5. (a) In fact, a fibration result has been proved in a more general context by Durfee in [5], but
without specifying the fibration map: he actually proves that the complement of f −1(0) in the boundary of
any analytic neighborhood of a (non necessarily isolated) singularity x in X is the total space of a fibration
(with no more precision about the projection map) whose fiber is homeomorphic to the intersection of
a smooth fiber of f with this neighborhood. The above Proposition 3.4 shows that, in the neighborhoods
defined by euclidian rug functions, this fibration can be defined by the argument of f. A corresponding
statement in the general case is not guaranteed: we use indeed the peculiar form of 
 in the computations
in 3.8. We also emphasize that if one wishes to verify the compatibility of an open book with a contact
structure, then one needs very precise information about � and about (a “well chosen”) contact form �.
This actually explains why we need the fibration to be given by the argument of f.

(b) Fix the boundary M of an analytic germ (X, x) as above. In general it is extremely difficult to
verify that an open book (N, �) in M (or a link N in M) is isotopic with a Milnor open book (or link) of
a function germ f on (X, x). Even in the surface case it can happen that some open book is determined
by a function germ for some analytic structure of (X, x), but the same fact is not true if one modifies the
analytic structure of (X, x) (see [17], (2.15)).

For any real function F defined on X∗, its gradient ∇F will be taken with respect to the riemannian
metric g. If � ∈ mX,x , we also denote by ∇� its gradient with respect to the hermitian metric h, that is
d� = h(∇�, ·) (� being holomorphic, this field is well-defined).

The proof of the following lemma is straightforward:

Lemma 3.6. If � ∈ mX,x , one has

(1) ∇|�|2 = 2�∇�;
(2) In X\�−1(0), d arg � = Im(d�/�) and ∇ arg � = i(∇�/�̄).

Lemma 3.7. Let p : (R+, 0) → (X, x) be a non-constant real analytic arc, and set ṗ := dp/dt . Then:

lim
t→0

h

( ∇


‖∇
‖ (p(t)),
ṗ(t)

‖ṗ(t)‖
)

= 1.

Proof. Let h0 be the canonical hermitian form on CN . If 
0 = ∑N
k=1 |zk|2, then its imaginary part is

�0 = −ddc
0. As 
 = (
0|	(X)) ◦ 	, we get:

h = 	∗(h0|	(X)),

	∗(∇
) = ∇0(
0|	(X)),

	∗(ṗ) = q̇,
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where q := 	 ◦ p and ∇0 is the gradient with respect to the riemannian metric g0 := Re h0|	(X). Hence,
we get the following equalities of functions of t (where we write briefly ∇
 instead of (∇
)(p(t))):

h

( ∇


‖∇
‖ ,
ṗ

‖ṗ‖
)

= 	∗h0

( ∇


‖∇
‖ ,
ṗ

‖ṗ‖
)

= h0

(
	∗

( ∇


‖∇
‖
)

, 	∗
(

ṗ

‖ṗ‖
))

= h0

( ∇0(
0|	(X))

‖∇0(
0|	(X))‖ ,
q̇

‖q̇‖
)

.

Take now a semi-analytic neighborhood U(p) of the image of p in X∗ which is embedded in CN by 	.
Then the pair (	(U(p)), {0}) verifies Whitney’s condition (b) at 0 (see e.g. [14]), which shows that the
angle between the vector q(t) ∈ CN and the tangent space to 	(U(p)) at the point q(t) converges to 0
when t → 0. This implies that

∇0(
0|	(X))

‖∇0(
0|	(X))‖(q(t)) = ∇0
0

‖∇0
0‖
(q(t)) + o(1) = q

‖q‖(t) + o(1),

where ∇0
0 denotes the gradient on the ambient space CN . From the previous computation we get

h

( ∇


‖∇
‖ ,
ṗ

‖ṗ‖
)

= h0

(
q

‖q‖ ,
q̇

‖q̇‖
)

+ o(1). (1)

Let q(t) = q0t
Q + o(tQ) be the beginning of the series expansion of q(t), where q0 ∈ CN − {0} and

Q ∈ N∗. Then q̇(t) = Qq0t
Q−1 + o(tQ), which implies:

q

‖q‖ = q0

‖q0‖ + o(1),
q̇

‖q̇‖ = q0

‖q0‖ + o(1).

Using Eq. (1), the lemma is proved. �

The next proposition—which is the key step in the proof of 3.4—generalizes Lemma 4.3 of [15] to the
case of singular ambient spaces and immersions 	 (which are not necessarily embeddings). Our proof
runs rather similarly, with the difference that our computations are intrinsic, they do not depend on any
choice of local coordinates.

Proposition 3.8. Let � ∈ mX,x . For any �0 ∈ (0, �/2), there exists a neighborhood U�0 of 0 in X such
that inside U�0\�−1(0) the following implication holds:

∇ arg � = i�∇
 with � ∈ C∗ �⇒ | arg �| < �0. (∗)

Proof. Suppose, by contradiction, that (∗) does not hold. Then, by the Curve Selection Lemma (see [14]),
there exists an analytic arc p : (R+, 0) → (X, x) such that along it we have the equality:

∇(arg �)(p(t)) = i�(t)∇
(p(t)), (2)

with | arg �(t)|��0 for any sufficiently small t.
As ∇ arg � = i∇�/�̄ by Lemma 3.6, part 2, we get

d

dt
�(p(t)) = h

(
∇�,

dp

dt

)
= h(−i�̄∇ arg �, ṗ) = h(�̄�∇
, ṗ) = ��̄h(∇
, ṗ).
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This implies

�(t) = (�(p(t)))−1 · d

dt
�(p(t)) · ‖∇
‖−1 · ‖ṗ‖−1 · h

( ∇


‖∇
‖ ,
ṗ

‖ṗ‖
)−1

. (3)

Eq. (3) shows that the function �(t) has a Laurent expansion of type

�(t) = ltL + o(tL), l �= 0, L ∈ Z. (4)

Consider now the other two expansions as well

�(p(t)) = atA + o(tA), a �= 0, A ∈ N∗,

‖∇
‖−1 · ‖ṗ‖−1 = btB + o(tB), b > 0, B ∈ Z.

From the first one we deduce

d

dt
�(p(t)) = AatA−1 + o(tA−1).

Combining them with Lemma 3.7 and with Eq. (3), we get:

l = A · b > 0. (5)

Since (4) and (5) contradict the hypothesis | arg �(t)|��0, the proposition is proved. �

3.3. The Milnor open books carry the natural contact structure on the boundary

Let us summarize: we have associated to any isolated singularity (X, x) a well-defined contact struc-
ture on its boundary M
,�, and to any function f ∈ mX,x with an isolated singularity an open book
(N
,�(f ), ��(f )) on M
,�. These two objects are naturally related, as is shown in the following theorem,
which is a more precise version of Theorem 1.3 stated in the introduction:

Theorem 3.9. Let (X, x) be an irreducible complex analytic germ having an isolated singularity at x,
and let f : (X, x) → (C, 0) be a holomorphic function having also an isolated singularity. Then the
Milnor open book (N
,�(f ), ��(f )) of f carries the natural contact structure on the boundary M
,� of X.

Remark 3.10. (a) Theorem 3.9 stengthens a result of Giroux (see [8] for more details) and generalizes
it to a singular ambient space: Giroux’s original proof is valid only up to isotopy, the contact boundary
M
,� being replaced there by one of its deformations—a level of the function 
c := 
 + c|f |2, for c?1.

(b) The particular case of the function z0 ∈ mXk,0 with Xk = {zk
0 + z2

1 + · · · + z2
n = 0} ⊂ Cn+1 has

been studied by Van Koert and Niederkrüger in [28], in relation with Ustilovsky’s spheres.
(c) Theorem 3.9 has the following consequence. Let us fix the analytic germ (X, x). Then all the

open books associated with all the possible holomorphic function germs f (with isolated singularity at
x) determine (up to isotopy) the same contact structure. Notice also that function germs f with isolated
singularity always exist. Indeed, once an embedding of (X, x) into (CN, 0) is chosen, it is enough to take
the restriction to X of a linear form whose kernel is not a limit of tangent hyperplanes to X\{x} (see Lê
and Teissier [13] for details).
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We start the proof of 3.9 with some lemmas.
Fix an euclidian rug function 
 : X → R. For � sufficiently small, the 1-form � = −dc
 defines the

natural contact structure on the smooth level M
,� = 
−1(�). Denote R ∈ �(M
,�, T M
,�) its Reeb vector
field.

Lemma 3.11. The Reeb vector field R of � is given by R= i∇
/‖∇
‖2. Moreover, the contact distribution
�
,� on M
,� is exactly the orthogonal complement of C.R=C.∇
 in TX∗|M
,� with respect to the hermitian
form h associated with 
.

Proof. Since R is a generator of the kernel of � restricted to T M
,�, on TX∗|M
,� we have �R� = kd
 for
some k ∈ C∞(M
,�, R). This shows that on TX∗|M
,� one has

�R� = g(k∇
, ·) = �(−ki∇
, ·).
Since � is non-degenerate on TX∗|M
,� , this shows that R = −ki∇
. Hence

1 = �(R) = −d
(iR) = −d
(k∇
) = −k‖∇
‖2,

which proves the first statement. For the second statement, it suffices to notice that

h(R, v) = �(R, i.v) + i�(R, v) = 0

for any section v of �
,� (here we use the fact that i.v is also a section of �
,�). �

Lemma 3.12. Fix c > 0, and put �c := e−c|f |2�. If Rc denotes the Reeb vector field of �c, on M
,�\N
,�(f )

one has:

d�(Rc) = ec|f |2(d�(R) + 2c|f |2‖pr�∇�‖2),

where pr� : TX∗|M
,� → � denotes the projection parallel to C.R.

Proof. Put H := e−c|f |2 . Put also Rc := k(R + Sc), where Sc ∈ �(M
,�, �
,�) and k ∈ C∞(M
,�, R). In
fact,

1 = �c(Rc) = H�(k(R + Sc)) = kH�(R) = kH ,

hence one has k = 1/H . Now,

d�c = dH ∧ � + Hd�

which, when applied to Rc = (1/H)(R + Sc) and restricted to � := �
,� = ker � gives

(�Scd�)|� = dH

H

∣∣∣∣
�
= −c d|f |2|�.

But on TX∗, Lemma 3.6 implies that

d|f |2 = g(∇|f |2, ·) = �(−i∇|f |2, ·) = �(−2|f |2∇�, ·).
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In particular, (�Scd�)|� = �(2c|f |2∇�, ·)|�. But d�|� = �|� is non-degenerate and �v�|� = �pr�(v)�|� for
any v ∈ TX∗|M
,� . Hence, we get

Sc = pr�(2c|f |2∇�),

which shows that

d�(Sc) = 2c|f |2d�(pr�∇�) = 2c|f |2g(∇�, pr�∇�) = 2c|f |2‖pr�∇�‖2,

the last equality being a consequence of the second statement of the preceding Lemma 3.11. Since
d�(Rc) = d�(ec|f |2(R + Sc)), we are done. �

Proof of Theorem 3.9. Fix a sufficiently small representative of X so that Re � > 0 on X\f −1(0) when-
ever a relation of the form ∇�= i�∇
 holds (see 3.8). Consider also � > 0 sufficiently small. Now let � > 0
be sufficiently small to ensure that all the fibers f −1(t) ⊂ X cut M
,� transversally for |t |2 ��. Denote

V� := M
,� ∩ {|f |2 ��}
the corresponding tubular neighborhood of the binding N
,�(f ) in M
,�. Then clearly � is a normal angular
coordinate on this neighborhoodV� 	 N
,�(f )×D2√

�. Moreover, each submanifold (f −1(t)∩M
,�) ⊂ V�,

being a level of the strictly plurisubharmonic function 
 on the complex manifold f −1(t)\{0}, is a contact
submanifold of M
,�. Thus, Lemma 2.5 will imply Theorem 3.9 if we can find a convenient c > 0 such
that d�c restricts to a symplectic form on each fiber of � in M
,�\IntV� which induces the same orientation
on its boundary as the contact form �c. But this is exactly equivalent to the inequality d�(Rc) > 0.

Now, there is a m > 0 such that d�(R)� − m on the compact set M
,�\IntV�. Put

Z� := (M
,�\IntV�) ∩ {d�(R)�0} and k := min
Z�

(|f |2‖pr�∇�‖2).

Since Z� is compact, k is well defined. If k > 0, then for c := m/k we will always have d�(Rc) > 0 on
M
,�\IntV� by Lemma 3.12, and the theorem is proved.

Next, assume k = 0. This means that there is a p ∈ Z� so that pr�p
∇�(p) = 0. But this implies that

∇�(p)=i�∇
(p) for some � ∈ C. Our initial choice of the representativeX (see 3.8) implies that Re � > 0.
But then

d�(p)(R(p)) = g(∇�(p), i∇
(p)/‖∇
(p)‖2)

= 1

‖∇
(p)‖2 g(i�∇
(p), i∇
(p))

= Re � > 0,

which is impossible since p ∈ Z�. �

4. Construction of an ubiquitous Milnor open book

In this section we will restrict ourselves to normal surface singularities (see [17] for further references)
and we construct for any given 3-manifold M—which is the boundary of some Milnor filling—an open
book decomposition, which is isomorphic to a Milnor open book for any Milnor filling of M.
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4.1. A sufficient condition to be the exceptional part of the divisor of a function

We start with some notations. Let (S, 0) be the germ of a normal complex analytic surface singularity.
Fix a good resolution p : (�, E) → (S, 0). Namely, � is smooth, p is proper and realizes an isomorphism
over S − {0} and finally the set-theoretical fiber E := p−1(0) is a normal crossing divisor in � having
smooth irreducible components E1, . . . , Er . For each i, we denote by gi the genus, respectively by
vi := Ei · (E − Ei) the valency of Ei seen as a vertex of the dual graph of E. In general, we prefer to fix
a Stein representative S of (S, 0) and to set � = p−1(S).

As usual, |D| denotes the support of the divisor D of �. Then, for any D, there exists a unique decompo-
sition D =De +Ds such that |De| ⊂ E and dim(|Ds |∩E) < 1. Notice that f ∈ mS,0 defines an isolated
singularity at 0 if and only if div(f ◦ p)s in � is reduced. The next theorem guarantees the existence
of a function germ f with prescribed exceptional part div(f ◦ p)e which is resolved by p, that is, such
that div(f ◦ p) is a normal crossing divisor. Notice that in such a case, the number ni of components of
div(f ◦p)s (all of them smooth) intersecting Ei is determined by D := div(f ◦p)e: indeed, ni =−D ·Ei

for any i, as div(f ◦ p) · Ei = 0.

Theorem 4.1. Let p : (�, E) → (S, 0) be a good resolution of a normal surface singularity (S, 0) as
above. Assume that the effective divisor D = ∑

miEi �= 0 satisfies

(D + E + K�) · Ei + 2�0 for any i ∈ {1, . . . , r}.
Then there exists a function f ∈ mS,0, with an isolated singularity at 0, such that div(f ◦ p) is a normal
crossing divisor on � with div(f ◦ p)e = D. Moreover, for each i, the number of intersection points
ni = div(f ◦ p)s · Ei is strictly positive.

Proof. We refer to [25] for an introduction to the methods used in this proof.
First notice that

ni = −D · Ei �vi + E2
i + K� · Ei + 2 = vi + 2gi . (∗)

The right member is strictly positive, except when E = E1 is just a rational curve. But in this case,
D = m1E1 and E2

1 < 0, proving that n1 > 0. This answers the last statement.
For the existence of f, consider the exact sequence

0 → O�(−D − E) → O�(−D) → OE(−D) → 0.

Clearly, H 1(O�(−D − E)) = H 1(O�(K� + A)), where A := −D − E − K�, with A · Ei �2 for any
i. Therefore, this last group is vanishing by the Laufer–Ramanujam theorem (see [12] (3.2) or [24];
it is also called the ‘generalized’ Grauert–Riemenschneider vanishing theorem). This shows that � :
H 0(O�(−D)) → H 0(OE(−D)) is onto.

Next, we show that OE(−D) = �E(A|E) is generated by global sections. Firstly, if q is a smooth point
of E, then one has to show that there exists a global section s of �E(A|E) with s(q) nonzero. For this it is
enough to verify that H 0(�E(A|E)) → �E(A|E)⊗Oq is onto, or H 1(�E(A|E−q))=H 0(OE(−A|E+q))

is zero. But this last group is vanishing indeed, since −A + q is still negative on each component Ei .
Similarly, if q ∈ Ei ∩ Ej , with local coordinates (x, y) such that (E, q) = {xy = 0}, then it is convenient
to consider the ideal sheaf I generated by x + y. Then �E(A|E) ⊗ I is still locally free and its degree
drops by one on both Ei and Ej , hence again H 1(�E(A|E) ⊗ I ) = 0.
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Finally notice that the projective morphism � : E → PN induced by the globally generated OE(−D)

is finite. Indeed, assume that �(Ei) is a point. Then the general hyperplane section of PN misses this
point, which implies D · Ei = 0 contradicting (∗).

Hence, if one takes s ∈ H 0(O�(−D)) with �(s) a generic element of H 0(OE(−D)), then s = f ◦ p

for some f with the wanted properties. �

Remark 4.2. A divisor D which verifies the hypothesis in this theorem always exists (since the intersection
form is negative definite). Moreover, one can also assume that D is fixed by the automorphism group of
the weighted dual graph of p.

4.2. Vertical links and horizontal open books in plumbed manifolds

Let � be a finite connected weighted (plumbing) graph with r vertices A1, . . . , Ar . Each vertex Ai is
weighted with two integers (gi, ei), with gi �0. Let M(�) be the oriented closed 3-manifold obtained
from � by plumbing (see [16,19]). Briefly, this construction runs as follows. We associate with each
vertex Ai an oriented circle bundle pi : Mi → Si with Euler number ei , where Si is an oriented compact
connected real surface of genus gi , then we glue these 3-manifolds according to the edges of the graph.

Definition 4.3. Let M(�) be a plumbed 3-manifold. To any r-tuple n = (n1, . . . , nr) of non-negative
integers one associates an oriented link N(n) in M(�) as follows. For each i, consider ni generic fibers
of the circle bundle Mi → Si , then N(n) is their union, where i ∈ {1, . . . , r}. Any such link is called
vertical.

Any vertical link is naturally oriented by the orientations of the fibers.

Definition 4.4. Let M(�) be a plumbed manifold. A horizontal open book in M(�) is an open book
(N(n), �) whose binding is a vertical link, whose (open) pages are transversal to the fibers of the bundles
Mi → Si , and which is compatible with the orientations.

Example 4.5. The main example is provided by normal surface singularities and germs of analytic
functions (see [19]). Indeed, for any fixed good resolution p, the dual resolution graph �(p) serves as a
plumbing graph, and the boundary M(S) is diffeomorphic to the plumbed manifold M(�(p)). Moreover,
if f ∈ mS,0 defines an isolated singularity at 0, and div(f ◦ p) is a normal crossing divisor, then the
Milnor open book (N(f ), �(f )) defined in M(S) is isomorphic to a horizontal open book (N(n), �) in
M(�(p)), where each ni is exactly the number of components of the strict transform div(f ◦ p)s which
cut Ei .

Proposition 4.6. Let � be a connected weighted plumbing graph with r vertices whose associated inter-
section form I (�) is non-degenerate. Let n = (n1, . . . , nr) be a r-tuple of strictly positive integers. Then
any two horizontal open books in M(�) with binding N(n) are isomorphic.

Proof. In order to prove the proposition, we only have to collect some existing results from the literature
(all of them stated in [22]). The sequence of arguments is the following.

Any isomorphism class of open book can be characterized completely by the conjugacy class of the
monodromy h acting on the page F of the open book. In the case of plumbed (or graph) manifolds, one
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can take for the monodromy a quasi-periodical homeomorphism. In [20] and [21] Nielsen associated with
such a homeomorphism the (so called) Nielsen graph. From this graph, in general, one cannot recover
the conjugacy class of h; but Chaves in [3] completed this graph by some additional decorations—in this
way constructing the ‘completed Nielsen graph’—and proved that this completed graph characterizes
completely the conjugacy class of the quasi-periodical homeomorphism h.

On the other hand, Pichon in [22] (see especially Section 4) describes the combinatorial relationship
connecting the completed Nielsen graph and the plumbing graph �′ of the vertical linkN(n) ⊂ M . (Here �′
is obtained from the plumbing graph � of M by adding arrowheads corresponding to the link components.)
In general, the completed Nielsen graph contains more information, and cannot be recovered from �′ (see
4.7,b). Nevertheless, if each ni is strictly positive, then �′ determines completely the completed Nielsen
graph (see Algorithm 4.8 of [22]). This ends our proof as well.

For the convenience of the reader we provide a few more details. Recall that � codifies the intersec-
tion matrix I (�) = {Ei · Ej }i,j represented in a fixed basis {Ei}i . In the proof of 4.1, (∗) provides ni

as −Ei ·
(∑

j mjEj

)
. These ‘multiplicities’ {mj }j constitute a part of the decorations of the Nielsen

graphs. Since I (�) is non-degenerate, they can be computed from the integers {ni}i .
The plumbing construction provides a decomposition M(�)=⋃

i Vi of M(�), where Vi is an S1-bundle
over Si\(vi discs). Let F be the page of an open book with binding N(n), and set Fi := F ∩ Vi for each
i. Let ri be the number of connected components of Fi . It turns out that ri divides mi . The point is that,
basically, the additional information contained in the Nielsen graph (associated with the monodromy of
the open book), compared with �′, is exactly the collection of the integers {ri}i . It may help to think about
this in the following intuitive picture: one may construct a ‘covering graph’ of �′ (which is equivalent
with the Nielsen graph) by putting ri vertices above the vertex Ai of �′ (and there is a similar covering
procedure for edges as well). If the integers ri are larger than one, it can happen that for the same collection
of {ri}i’s more covering types can appear. This global twisting data is the additional information in the
completed Nielsen graph, but which is superfluous as soon as ri = 1 for all i.

In our case, since ni > 0 for all i, analyzing tubular neighbourhoods of the link components, we easily
realize that each Fi is connected, i.e. ri = 1. Therefore, the completed Nielsen graph and �′ codify the
same amount of information. �

Remark 4.7. (a) If some components of n are allowed to vanish, then 4.6 fails (see e.g. [18] and [22]).
(b) In [2], the main result 1.2 was established only for Milnor fillable 3-manifolds which are rational

homology spheres because the authors were not conscious of 4.6. Instead, they used the fact, easily
deducible from results of Stallings and Waldhausen, that in such a 3-manifold an open book is determined
up to isotopy by its binding alone.

Corollary 4.8. Let M be a closed connected oriented 3-manifold which is Milnor fillable. Then there
exists an open book (N, �) in M, which can be completely characterized by the topology of M, such that,
for any germ (S, 0) of normal complex surface with M 	 M(S), there exists a function f ∈ mS,0
having an isolated singularity at 0 whose Milnor open book (N(f ), �(f )) is isomorphic to (N, �).

Proof. First notice that by the work of Neumann [19] the homeomorphism type of M determines the
dual weighted graph �(p0) of the minimal good resolution p0 : (�0, E0) → (S, 0) of any Milnor filling
(S, 0) of M.
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Fix any of these fillings. Then choose an exceptional divisor D in �0 as in 4.1. This choice only depends
on �(p0), that is, on the topology of M. Then apply 4.1 and 4.6. �

Remark 4.9. The notion of good resolution used in [19] does not coincide with the one we use here. The
difference is that we ask the components Ei to be smooth, while in [19] self-intersections are allowed.
Nevertheless, minimal good resolutions exist and are unique for both definitions, and the way to pass
from one to the other can be completely described using the associated weighted dual resolution graphs.
Hence, Neumann’s result quoted before and proved in [19] for his definition implies the analogous result
for our definition.

4.3. Proof of Theorem 1.2

Let M be a closed connected oriented 3-manifold. By Corollary 4.8, there exists an open book (N, �)
in M which is isomorphic to a Milnor open book (N(f ), �(f )) in any Milnor filling M(S) of M. Now
each of these Milnor open books carries the corresponding contact structure (M(S), �(S)) by Theorem
3.9. Since they are all isomorphic to (N, �), Theorem 2.6 shows that these contact structures are also all
isomorphic. �

Remark 4.10. Notice that the homotopy type (as an unoriented 2-plane field) of a Milnor fillable contact
structure is well defined (it is invariant up to isotopy by the group Diff+(M) of self-diffeomorphisms
of M which preserve the orientation). Firstly, two oriented plane fields which are positively transversal
to the oriented fibers of the plumbing structure are homotopic (as one can see by taking an auxiliary
Riemannian metric and rotating at each point one plane into the other by the unique shortest path).
Secondly, the plumbing decomposition (with unoriented fibers) which corresponds to the minimal good
resolution is unique up to isotopy, which shows that it is invariant by Diff+(M), up to isotopy (see [23]).

Using this last invariance and the results of [2], we see that, on a Milnor fillable three-dimensional
rational homology sphere, all Milnor fillable contact structures are isotopic, not only contactomorphic.
Is this true in general?
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