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By Gábor Braun and András Némethi at Budapest

Abstract. We derive a cut-and-paste surgery formula of Seiberg–Witten invariants
for negative definite plumbed rational homology 3-spheres. It is similar to (and motivated
by) Okuma’s recursion formula [27], 4.5, targeting analytic invariants of splice-quotient sin-
gularities. Combining the two formulas automatically provides a proof of the equivariant
version [11], 5.2(b), of the Seiberg–Witten invariant conjecture [18] for these singularities.

1. Introduction

Problem 5 of the review article [30] of Ozsváth and Szabó is to develop cut-and-paste
techniques for calculating the Heegaard Floer homology of 3-manifolds. In this article we
obtain a possible answer at the level of the Seiberg–Witten invariant (i.e. at the level of the
normalized Euler characteristic of the Heegaard Floer homology): we provide the cut-and-
paste surgery formula (1.0.3) for the Seiberg–Witten invariants of plumbed rational homol-
ogy 3-spheres associated with negative definite plumbing graphs. In order to state it, we fix
some notations (for more details, see §3).

For any graph G, let VðGÞ denote its set of vertices. Let jSj denote the size of the
finite set S. Thus, jVðGÞj is the number of vertices of G.

Let G be a connected plumbing graph. Each vertex w A VðGÞ is decorated by an in-
teger bw. Let ~XXðGÞ be the 4-manifold with boundary obtained by plumbing from G, which
we briefly recall. The manifold ~XXðGÞ is a tubular neighbourhood of oriented 2-spheres Ew

associated with the vertices w of the graph. For every two adjacent vertices, their 2-spheres
intersect transversally at one point; beside these, the 2-spheres do not intersect each other.
The number bw is the Euler number of the normal bundle of the 2-sphere of the vertex w.

The manifold ~XXðGÞ admits a canonical Spinc structure gscanscan, see (3.3.1) for its charac-
terization.
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Set S :¼ q ~XXðGÞ. We assume that H1ðS;QÞ ¼ 0, or equivalently that G is a tree.

Set L :¼ H2

�
~XXðGÞ;Z

�
and L 0 :¼ H 2

�
~XXðGÞ;Z

�
. These groups are free with bases the

classes Ew of the 2-spheres and their duals E �
w, respectively.

The graph G is negative definite if the intersection form on L is negative definite. If
this is the case then the canonical map L ! L 0 is an embedding, which is an isomorphism
over Q, thus the intersection form extends to L 0. We shall write ð� ; �Þ for the intersection
form and x2 :¼ ðx; xÞ for any x A L 0.

For any Spinc structure s, let c1ðsÞ A L 0 denote its first Chern class.

Finally, for any s A SpincðSÞ and v A VðGÞ, let Hs; v be the rational function defined
in 3.5, which is a Weil-type twisted zeta function. We write Hpol

s; v for its polynomial part

which is the unique polynomial for which Hs; v �Hpol
s; v has negative degree (i.e. it is either

0 or the degree of the numerator is less than the degree of the denominator).

Theorem 1.0.1. Let G be a connected negative definite plumbing graph of a rational

homology 3-sphere S. Let v be a vertex of G, and let Gi be the components of Gnv. Let ~ss be

a Spinc structure of ~XXðGÞ satisfying

�1 <
c1ð~ssÞ � c1ðgscanscanÞ

2
;E �

v

� �
e 0:ð1:0:2Þ

Let s, ~ssi and si denote the restriction of ~ss to S, ~XXðGiÞ and Si :¼ q ~XX ðGiÞ, respectively. Then

swsðSÞ þ
c1ð~ssÞ2 þ jVðGÞj

8
ð1:0:3Þ

¼ �Hpol
s; v ð1Þ þ

P
i

swsiðSiÞ þ
c1ð~ssiÞ2 þ jVðGiÞj

8

 !
:

Remark 1.0.4. The Spinc structure s does not uniquely determine ~ss and its restric-
tion ~ssi via (1.0.2). Nevertheless, the Spinc structure si is independent of the choice of ~ss; it
depends only on s.

Remark 1.0.5. Notice that this formula di¤ers from those obtained from surgery
exact triangles (of di¤erent versions) of Floer homologies (see e.g. [29]): the surgery exact
triangles involve three di¤erent 3-manifolds, while our formula only connects the plumbed
3-manifolds associated with G and Gnv (and another type of invariant, namely Hs; v).
Moreover, in general, the surgery exact triangles mix several Spinc structures (involving
all the extensions ~ss), while our formula involves only one extension ~ss and one induced
pair ð~ssi; siÞ for any fixed s.

The proof uses the fact (see [26], Theorem 2.4, recalled here in (3.4.1)) that the
Seiberg–Witten invariant of S is a linear combination of the Reidemeister–Turaev tor-
sion T ([35]) and the Casson–Walker invariant l, together with explicit formulas for these
invariants.
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In particular, the formula above is the consequence of additivity formulas for the in-
variants c1ð~ssÞ2 þ jVðGÞj, T and l, stated in (5.0.2), (5.0.4) and (5.0.5), which are interest-
ing for their own sake as well.

In §8 we exemplify 1.0.1 for Seifert manifolds and surgery manifolds S3
�dðKÞ. There

we emphasize the arithmetical nature of Hs; v, too.

Any negative definite plumbed 3-manifold appears as the link of a complex surface
singularity. For some singularity links, the Taylor expansion of Hs; v at the origin appears
as the Hilbert (Poincaré) series of a certain graded C-algebra. In this way, Hpol

s; v ð1Þ can be
related with analytic invariants of the singularity. For applications of 1.0.1 in singularity
theory, see §2 and 8.2.

2. Application in singularity theory

2.1. Seiberg–Witten invariant conjecture. Let ðX ; oÞ be an isolated complex analytic
normal surface singularity whose link S is a rational homology sphere. Let p : ~XX ! X be a
good resolution with exceptional set E (with irreducible components fEwgw), and G its dual
resolution graph (for details see e.g. [14], §2.2). Then (the underlying Cy manifold of) ~XX is
the plumbed 4-manifold ~XXðGÞ (for which in the sequel we will use all the above notations).
The intersection form on L is automatically negative definite.

The group L can also be regarded as the group of integral cycles (divisors) of
type l ¼

P
w

mwEw in ~XX with mw A Z. As customary, we denote by O ~XX ðlÞ the line bundle

associated with l. This map l 7! O ~XX ðlÞ extends uniquely to a group homomorphism
L 0 ! Picð ~XXÞ, denoted similarly by l 0 7! O ~XX ðl 0Þ, such that the Chern class (multidegree) sat-
isfies c1

�
O ~XX ðl 0Þ

�
¼ l 0 (see [11], 3.4–3.6).

As usual, h1ðLÞ denotes dimC H 1ð ~XX ;LÞ. In this way, the geometric genus is
pg :¼ h1ðO ~XX Þ. More generally, for the special set of representatives

R :¼
�P

w

rwEw A L 0 : �1 < rwe 0

�
HL 0

of the classes L 0=L, we get the equivariant geometric genera
�
h1
�
O ~XX ðl 0Þ

��
l 0 AR

of ðX ; oÞ (the
L 0=L ¼ H1ðS;ZÞ eigen-decomposition of the geometric genus of the universal abelian cover
of ðX ; oÞ, see [11], 3.7, and [27], 2.2(3)). They are subtle analytic invariants of ðX ; oÞ, which
guide crucial analytic aspects (e.g. equisingular deformations). In general, they are not to-
pological; nevertheless, in [11], 5.2(b), the second author formulated essentially the follow-
ing conjecture, which predicts that in special cases, these invariants can be recovered from
the link S:

Conjecture 2.1.1 (Seiberg–Witten invariant conjecture [11]). Set Le for the e f f ec t i ve

integral cycles, i.e. Le :¼
�P

w

mwEw : mw f 0 for all w

�
. Set Rþ Le :¼

S
l 0 AR

ðl 0 þ LeÞHL 0.
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If the analytic structure of ðX ; oÞ is ‘nice’, then for all l 0 A Rþ Le one has

�h1
�
O ~XX ðl 0Þ

�
¼ sw½l 0��scanðSÞ þ

�
c1ðgscanscanÞ þ 2l 0

�2 þ jVðGÞj
8

:ð2:1:2Þ

(For the definition of the Spinc structure ½l 0� � scan of S, see §3.3.)

Remark 2.1.3. (1) It is part of the conjecture to clarify the meaning of ‘nice’. In the
original version [11], [18] the conjecture was formulated for all Q-Gorenstein singularities,
but counterexamples are given in [10], §4. On the other hand, the conjecture holds for all
rational singularities ([11], [17], see also [16]), and, in fact, here we shall prove it for all
splice-quotient singularities, see 2.2.4. Restricted to the case of the canonical Spinc struc-
ture, it was verified for elliptic Gorenstein singularities (by combining [13] and [16]), singu-
larities with good C� action ([19]), and suspension hypersurface singularities defined by
f ðx; yÞ þ zn ¼ 0 with f irreducible ([20]). For a review of related problems, see [14], [17].
For related results, see [1], [2], [3], [7], [6], [23], [25].

(2) As a byproduct of the main theorem 1.0.1, in Theorem 2.2.1 we provide a crite-
rion which characterizes the singularities satisfying (2.1.2).

(3) The special case of the canonical Spinc structure was conjectured in [18]. It gen-
eralizes the Casson invariant conjecture of Neumann and Wahl formulated for any isolated
complete intersection with integral homology sphere link [23].

(4) In fact, (2.1.2) essentially consists of (only) jH1ðS;ZÞj di¤erent identities. The rea-
son is that the expression

h1
�
O ~XX ðl 0Þ

�
þ
�
c1ðgscanscanÞ þ 2l 0

�2 þ jVðGÞj
8

depends only on ½l 0� A H1ðS;ZÞ for l 0 A Rþ Le by [11], 5.3(c). Therefore, it is enough to
verify the identity (2.1.2), say, for all l 0 A R.

2.2. Application. Using the main theorem 1.0.1, the above Seiberg–Witten invari-
ant conjecture 2.1.1 may be transformed into an additivity property of analytic invariants
h1ðLÞ. In order to state it, we need the following notation.

For a fixed vertex v of the graph G, let Gi be the components of Gnv, and let ~XXi be a
small tubular neighbourhood of Ei :¼

S
w AVðGiÞ

Ew in ~XX . Let ðXi; oÞ be the normal surface

singularity (with dual resolution graph Gi) obtained by collapsing the curve Ei H ~XXi to a
point.

Theorem 2.2.1. Consider a family of singularities which satisfy the next property: for
any non-rational ðX ; oÞ in the family, there exists at least one vertex v (called splitting vertex)
in its (minimal) resolution graph G such that all the singularities ðXi; oÞ are in the family.

Then, for such a family, the validity of 2.1.1 for all the members of the family is equi-

valent to the next additivity property: every non-rational singularity ðX ; oÞ in the family has a

4 Braun and Némethi, Surgery formula for Seiberg–Witten invariants

(AutoPDF V7 14/7/09 11:36) WDG Tmath J-2086 CRELLE, PMU: L(D) 4/7/2009 (IDP) PMU: (WSL) 14/7/2009 pp. 1–20 2086_5905 (p. 4)



splitting vertex v satisfying

h1
�
O ~XX ðl 0Þ

�
¼ Hpol

s; v ð1Þ þ
P
i

h1
�
O ~XXi

�
Riðl 0Þ

��
for l 0 A R;ð2:2:2Þ

where Ri is the natural cohomological restriction defined in 3.6.1(2).

Note that the above additivity property (2.2.2) does not involve any part of Seiberg–
Witten theory.

Remark 2.2.3. For fixed ðX ; oÞ and v, the validity of (2.2.2) for all l 0 A R implies its
validity for all l 0 A Rþ

P
w3v

Zf0Ew.

The reason is that ½l 0� ¼
	
l 0 þ

P
w3v

mwEw



and ½Riðl 0Þ� ¼

	
Ri

�
l 0 þ

P
w3v

mwEw

�

for any

integers mw, hence Remark 2.1.3(4) and equation (5.0.2) applies to show the desired impli-
cation.

For splice-quotient singularities, the additivity formula (2.2.2) was proved by T.
Okuma in [27]. In fact, Okuma’s formula gave the idea of the existence of the set of purely
topological identities (1.0.3), and was the starting point of our investigation.

As an application, we verify Conjecture 2.1.1 for splice-quotients. These singularities
were introduced recently by Neumann and Wahl [24], [25]. Since their definition is rather
involved, we omit it. The interested reader may consult [24], [25], [27].

Splice-quotients include rational and minimal elliptic singularities (see [28]), and also
the singularities which admit a good C� action. For splice-quotient singularities and for the
canonical Spinc structure, the conjecture was verified in [21], [22] (for some sporadic cases,
see also [34]). Here, as a byproduct, we get the general case:

Corollary 2.2.4. Conjecture 2.1.1 is true for any splice-quotient singularity.

Theorem 2.2.1 and Corollary 2.2.4 are proved in §7.

3. Preliminaries and notations

3.1. Notations regarding the plumbing representation. In the sequel we fix a negative
definite tree G as in §1. Notice that L 0 can be identified with the dual lattice of L. It is gen-
erated by the elements E �

w, where ðE �
w;EuÞ ¼ dwu is the Kronecker delta function. The ma-

trix I of the inclusion L ,! L 0 in the basis fEwgw of L and the basis fE �
wgw of L 0 is exactly

the matrix of the intersection form in the basis fEwgw, namely, Iww ¼ bw for all w, and for
u3w, we have Iuw ¼ 1 if u and w are adjacent, and Iuw ¼ 0 otherwise.

By duality, L 0 GH2

�
~XXðGÞ;S;Z

�
, and L 0=LGH1ðS;ZÞ. We denote the latter group

by H. Let jHj and ĤH denote its order and Pontrjagin dual HomðH;C�Þ, respectively.
Sometimes we write d ¼ detðGÞ for detð�IÞ ¼ jHj. We define

auw :¼ �jHj � ðE �
u ;E

�
wÞ ¼ �jHj � ðI�1Þuw:ð3:1:1Þ

Notice that every auw is a positive integer.
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For any u A VðGÞ we write du for the degree of u in G and we set:

au :¼
P

w AVðGÞ
ðdw � 2Þauw;ð3:1:2Þ

bu :¼
P

w AVðGÞ
ðdw � 2Þa2uw:ð3:1:3Þ

Next we consider some topological/combinatorial invariants of S and G.

3.2. The Casson–Walker invariant. Let lðSÞ denote the Casson–Walker invariant
of S, normalized as in [9], (4.7). Then from [33] one has:

�24
lðSÞ
jHj ¼

P
w AVðGÞ

bw þ 3jVðGÞj þ 1

jHj �
P

w AVðGÞ
ðdw � 2Þaww:ð3:2:1Þ

3.3. Spinc structures. As it is well-known, see e.g. [8], (2.4.16), the set of Spinc struc-
tures is an H 2 torsor for any manifold admitting a Spinc structure. Let � denote the action
of H 2 on the set of Spinc structures. Recall that for any h A H 2 and Spinc structure s, the
action and the Chern class interact as c1ðh � sÞ ¼ c1ðsÞ þ 2h.

For our plumbed manifold ~XX ðGÞ, there is a canonical Spinc structure gscanscan, whose
Chern class is characterized by (see [18], 2.7–2.9)�

c1ðgscanscanÞ;Ew

�
¼ bw þ 2 for all w A VðGÞ:ð3:3:1Þ

Hence, there is a bijection between L 0 and the set of Spinc structures of ~XXðGÞ which assigns
l 0 A L 0 to l 0 �gscanscan.

Similarly, the set of Spinc structures of the boundary S is an H torsor. The restriction
of Spinc structures commute with the action via the canonical map L 0 ! H. Since this
homomorphism is surjective, every Spinc structure of S extends to ~XXðGÞ.

By definition, the canonical Spinc structure scan on S is the restriction of the canonical
Spinc structure gscanscan of ~XXðGÞ.

3.4. The Reidemeister–Turaev torsion and the Seiberg–Witten invariant. For any
s A SpincðSÞ, we consider the Reidemeister–Turaev torsion Ts ¼

P
h AH

TsðhÞh A Q½H� from

[35]. We will write TsðSÞ for Tsð0Þ. Then, by [26], Theorem 2.4, the Seiberg–Witten invari-

ant swsðSÞ of S associated with s A SpincðSÞ equals (note our sign convention):

swsðSÞ ¼
lðSÞ
jHj � TsðSÞ:ð3:4:1Þ

By [18], 3.8, 5.7, TsðSÞ can be determined from the graph G via Fourier transform as fol-
lows.

First, for any r A ĤH and fixed vertex u A VðGÞ, we define a rational function in t:

Pr;uðtÞ :¼
Q

w AVðGÞ

�
1� rð½E �

w�Þtawu
�dw�2

;ð3:4:2Þ
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where ½E �
w� is the class of E �

w in H ¼ L 0=L. Take also hs A H such that hs � scan ¼ s.
Next, for any non-trivial character r A ĤHnf1g, find a vertex ur A VðGÞ such that either
rð½E �

ur
�Þ3 1, or ur has an adjacent vertex u with rð½E �

u �Þ3 1. Then the Fourier transform

of T is

cTsTsðrÞ ¼ rðhsÞ�1 � lim
t!1

Pr;urðtÞ ðr3 1Þ:ð3:4:3Þ

In the sequel, this limit will be denoted simply by Pr;urð1Þ. Recall that cTsTsð1Þ ¼ 0. There-
fore:

TsðSÞ ¼
1

jHj �
P

r A ĤHnf1g

cTsTsðrÞ:ð3:4:4Þ

If jHj ¼ 1 then TsðSÞ ¼ 0 for the unique Spinc structure s, hence swsðSÞ ¼ lðSÞ.

3.5. The rational function Hs,u(t). For any s A SpincðSÞ and u A VðGÞ one defines

Hs;uðtÞ :¼
1

jHj �
P
r A ĤH

rðhsÞ�1 � Pr;uðtÞ; where hs � scan ¼ s:

3.6. Invariants associated with the distinguished vertex v. Recall that for a fixed ver-
tex v of G, the components of Gnv are the graphs Gi. Let vi denote the unique vertex of Gi

which is adjacent to v in G.

We indicate by a subscript i when we use invariants of Gi instead of G. For example,
we write di ¼ detGi, Hi ¼ H1ðSi;ZÞ, Li, auw; i and so on.

We regard Li as a sublattice of L via the natural inclusion

H2

�
~XXðGiÞ;Z

�
,! H2

�
~XX ðGÞ;Z

�
:

Hence, for any w A VðGiÞ, we have Ew; i ¼ Ew.

Definition 3.6.1. (1) Consider the setup of §1. For a Spinc structure s of S, its restric-
tion si to Si is defined to be the restriction of any extension ~ss A Spinc

�
~XXðGÞ

�
of s sat-

isfying (1.0.2) to the submanifold Si. In other words, ~ss ¼ l 0 �gscanscan for some l 0 A L 0 with
½l 0� � scan ¼ s and

�1 < ðl 0;E �
v Þe 0:ð3:6:2Þ

(2) The restriction Ri : L
0 ! L 0

i is the homomorphism induced by the inclusion
~XX ðGiÞ ,! ~XX ðGÞ on second cohomology groups. In other words, RiðE �

wÞ ¼ E �
w; i if

w A VðGiÞ, and RiðE �
wÞ ¼ 0 otherwise. Therefore, for l 0 ¼

P
w

rwEw ¼
P
w

swE
�
w, one has

Riðl 0Þ ¼
P

w AVðGiÞ
swE

�
w; i ¼ rvE

�
vi ; i

þ
P

w AVðGiÞ
rwEw:ð3:6:3Þ

Since Riðl 0Þ is characterized by
�
Riðl 0Þ;Ew

�
¼ ðl 0;EwÞ for all w A VðGiÞ, the last

equality in (3.6.3) follows. One can verify that si A SpincðSiÞ is independent of the choice
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of ~ss thanks to (3.6.2). Since the canonical Spinc structure of ~XXðGÞ restricts to the canonical
Spinc structure of ~XXðGiÞ, the restriction of the canonical Spinc structure of S to Si is the
canonical one. Moreover, the restriction of s ¼ ½l 0� � scan is ½Riðl 0Þ� � scan; i provided that
rv :¼ ðl 0;E �

v Þ A ð�1; 0�. The number rv depends only on s and not on the choice of l 0.

3.7. Pseudo-characters. We will need to extend the expression (3.4.2) for an arbi-
trary map c : VðGÞ ! C� by

Pc; vðtÞ :¼
Q

w AVðGÞ

�
1� cðwÞtawv

�dw�2
:ð3:7:1Þ

For such a map c and vertex w A VðGÞ, we define

defwðcÞ :¼ cðwÞbw
Qdw
j¼1

c
�
wð jÞ

�
;

where fwð jÞgj are the vertices of G adjacent to w. The map c is called a pseudo-character

(associated with the vertex v) if defwðcÞ ¼ 1 for all w3 v. Their collection will be denoted
by ~HH. We set defðcÞ :¼ def vðcÞ. Notice that pseudo-characters c with defðcÞ ¼ 1 are
exactly the characters of H via the correspondence cðwÞ ¼ cð½E �

w�Þ. In fact, c can be re-
garded as a character on L 0 (which does not necessarily descend to H): any c A ~HH gives a
morphism L 0 ! C� defined by

c

�P
w

mwE
�
w

�
:¼
Q
w

cðwÞmw :

3.8. Notations regarding rational functions. (1) We write any rational function R as
Rpol þ R<0, where Rpol is a polynomial and R<0 is a rational function with negative degree.
For R without pole at 0 we shall refine it further: one writes R<0 in a unique way as a finite
sum

R<0ðtÞ ¼
P
a30

ðLa RÞðtÞ;

where ðLa RÞðtÞ ¼
P
k>0

aa;k

ð1� atÞk
ða A C�; aa;k A CÞ:

(2) For any rational function RðtÞ with Laurent expansion
P
kfk0

akðt� 1Þk at t ¼ 1,

we write coef 01 RðtÞ for the coe‰cient a0. Notice that if 1 is not a pole of R then
coef 01 RðtÞ ¼ Rð1Þ.

The next identities are elementary and their proofs are left to the reader.

Lemma 3.8.1. For any 0e q < d one has

1

d

P
ad¼e

a�q

1� at
¼ tq

1� etd
;ð3:8:2Þ

coef 01

�
1

d

P
ad¼1

a�q

1� at

�
¼ d � 1� 2q

2d
;ð3:8:3Þ
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1

d

P
ad¼1

a�q

ð1� atÞ2
¼ dtq

ð1� tdÞ2
� ðd � q� 1Þtq

1� td
;ð3:8:4Þ

coef 01

�
1

d

P
ad¼1

a�q

ð1� atÞ2
�
¼ �ðd � 1Þðd � 5Þ

12d
� q2 þ 2q� qd

2d
:ð3:8:5Þ

4. Identities about determinants and restrictions

Our calculation will extensively use the following general properties of graph-
determinants.

Lemma 4.0.1. (a) Consider two vertices u;w A VðGÞ of G. Let Gnuw be the subgraph

of G obtained by deleting the path connecting u and w (including u and w). Then

auw ¼ detðGnuwÞ:ð4:0:2Þ

(b) For every component Gi of Gnv and vertex w of Gi

avw ¼ aviw; i � detðGnvnGiÞ:ð4:0:3Þ

(c) For any u A VðGÞ one has

auu �
Q

w AVðGÞ
adw�2
uw ¼ 1:ð4:0:4Þ

(d) Consider a decomposition of G as follows:

G: G 0

v
G

u
G 00

Above, the subgraphs G 0, G and G 00 can be empty. If G is empty then v and u is connected by

a single edge. The vertices v and u are not allowed to be the same.

Then (with the convention detðjÞ ¼ 1), one has:

detðGÞ � detðGÞ ¼ detðGWG 0 W vÞ � detðGWG 00W uÞð4:0:5Þ

� detðG 0Þ � detðG 00Þ � detðGnuvÞ2:

(Here GWG 0 W v and GWG 00W u also contain the edges adjacent to v and u, respec-

tively.)

Proof. Equation (4.0.2) is proved in [5], (20.2). Equation (4.0.3) follows from (4.0.2)
and by noting that the determinant of graphs is multiplicative over disjoint union of
graphs.

Statement (c) immediately follows from (4.0.2) and (4.0.4) by an easy induction on
the number of vertices of the graph.
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The claim (d) is an exercise on graph determinants. For example, let us consider the
components of G, which are connected only to v and not to u. By moving these components
from G to G 0, we reduce to the case that v and G are connected by a single edge. Similarly,
we reduce to the case when u and G are also connected by a single edge. Then (4.0.5) fol-
lows from [24], Lemma 12.7. r

Corollary 4.0.6. Using the decomposition of 4.0.1(d), for any SLVðG 00Þ, one has� Q
w BS

adw�2
wv

��1

¼ detG 0 � detðGWG 00 W uÞð4:0:7Þ

�
�
detG 0 � detðGnuvÞ

� T
w AS

dw�2
�
Q
w AS

detðG 00nuwÞdw�2:

The subgraph G is allowed to be empty. Furthermore, v and u are allowed to be the same, and
in this case G is empty and one should write G 00 instead of GWG 00W u in the formula. In par-

ticular,

Q
w AVðGÞnVðGiÞ

adw�2
wv ¼ 1

di
:ð4:0:8Þ

Proof. The left-hand side of the first equation, by (4.0.4), is avv
Q
w AS

adw�2
wv , which

equals the right-hand side by (4.0.2). The second equation follows from the first one by the
choices u :¼ v, G 00 :¼ Gi, S :¼ VðG 00Þ and G 0 ¼

S
j3i

Gj. Note that
P
w AS

ðdw � 2Þ ¼ �1 andQ
w AS

detðG 00nuwÞdw�2 ¼ 1 (the latter is (4.0.4) applied to G 00W u). r

Lemma 4.0.9. For any x A L 0 and its restrictions xi :¼ RiðxÞ (see 3.6.1(2)),

x�
P
i

xi ¼ � dðx;E �
v Þ

avv
E �
v ;ð4:0:10Þ

x2 �
P
i

x2
i ¼ � dðx;E �

v Þ
2

avv
:ð4:0:11Þ

Proof. The main idea of the proof of (4.0.10) is that since the scalar product is def-
inite, it is enough to verify that the scalar product with either side of the equation agrees, at
least on a basis of L 0 over Q. We choose the basis consisting of the Ew for w3 v and E �

v . It
is easy to verify that the scalar product of either side of (4.0.10) with Ew is 0 for w3 v, and
the scalar product of either side with E �

v is ðx;E �
v Þ.

Equation (4.0.11) is the scalar product of (4.0.10) with x. Here we use the identity
ðx; xiÞ ¼ x2

i , which is true, since xi is the restriction of x. r

5. Additivity formulas. Proof of Theorem 1.0.1

We break the main identity (1.0.2) into the additivity formulas (5.0.2) and (5.0.3), and
we also break the latter one into (5.0.4) and (5.0.5).
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Proposition 5.0.1. With the notations of §3 (especially of 3.6.1), one has:

c1ð~ssÞ2 þ jVðGÞj �
P
i

�
c1ð~ssiÞ2 þ jVðGiÞj

�
¼ 1� ðav þ d þ 2drvÞ2

davv
;ð5:0:2Þ

swsðSÞ �
P
i

swsiðSiÞ ¼ �Hpol
s; v ð1Þ �

1

8
þ ðav þ d þ 2drvÞ2

8davv
;ð5:0:3Þ

24
l

jHj �
P
i

24
li

jHij
¼ �3þ d 2 � bv

davv
;ð5:0:4Þ

TsðSÞ �
P
i

TsiðSiÞ ¼ Hpol
s; v ð1Þ þ

d 2 � bv
24davv

� ðav þ d þ 2drvÞ2

8davv
:ð5:0:5Þ

Equation (5.0.3) is a combination of (5.0.4), (5.0.5) and (3.4.1). The proof of (5.0.5) is
given in §6. Here we prove (5.0.2) and (5.0.4) as applications of (4.0.11).

Proof of (5.0.2). We apply (4.0.11) to x :¼ c1ð~ssÞ. Then xi ¼ c1ð~ssiÞ, and

c1ð~ssÞ2 �
P
i

c1ð~ssiÞ2 ¼ �
d
�
c1ð~ssÞ;E �

v

�2
avv

:ð5:0:6Þ

By the definition of rv:

2rv ¼
�
c1ð~ssÞ � c1ðgscanscanÞ;E �

v

�
:ð5:0:7Þ

Next, we compute
�
c1ðgscanscanÞ;E �

v

�
. Expressing the Chern class from (3.3.1) as

c1ðgscanscanÞ ¼
P
w

Ew �
P
w

ðdw � 2ÞE �
w;

and then using (3.1.2) we get

�
c1ðgscanscanÞ;E �

v

�
¼ 1þ av

d
:ð5:0:8Þ

Finally, combining (5.0.6), (5.0.7) and (5.0.8) gives the desired formula. r

Proof of (5.0.4). This time, we apply (4.0.11) first to x :¼ E �
w for some w3 v. Then

xi ¼ E �
w; i if w A VðGiÞ, and xi ¼ 0 otherwise. Hence, (4.0.11) reads as

� aww

d
þ aww; i

di
¼ � a2vw

davv
; w A VðGiÞ:ð5:0:9Þ

Next, we apply (4.0.11) to x :¼ Ev. Then xi ¼ E �
vi; i

and we get

bv þ
P
i

avivi; i

di
¼ � d

avv
:ð5:0:10Þ
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The claimed equality is a linear combination of (3.1.3), (5.0.9), (5.0.10) and (3.2.1), where
the latter is applied to S and all the Si. r

6. Proof of (5.0.5)

6.1. Breaking up the torsion. We start with some preparations. For an arbitrary
map c : VðGÞ ! C� we define

VðGÞc :¼ fw A VðGÞ : cðwÞ ¼ 1g;

suppðcÞ :¼ VðGÞnVðGÞc;

ci :¼ cjVðGiÞ : VðGiÞ ! C�:

Lemma 6.1.1. Let G be a negative definite tree and c : VðGÞ ! C� a function on it.

Then the least degree term of the Laurent series of Pc; v (see (3.7.1)) at 1 is

Pc; vðtÞ ¼
Q

w BVðGÞc

�
1� cðwÞ

�dw�2 �
Q

w AVðGÞc
adw�2
vw � ð1� tÞn þO

�
ð1� tÞnþ1�;ð6:1:2Þ

where

n :¼
P

w AVðGÞc
ðdw � 2Þð6:1:3Þ

¼ �2jfcomponents of VðGÞcgj þ jfedges going out of VðGÞcgj:

In particular, if every component of VðGÞc has a vertex with at least two outgoing edges

(e.g. c is a non-trivial character) then nf 0 with equality if and only if all components have

exactly two outgoing edges.

Proof. This is mainly a repetition of [18], A.7. The first formula obviously follows
from (3.7.1) by taking the least degree term in t� 1 of every factor of the product. This
gives

P
w AVðGÞc

ðdw � 2Þ for the degree n of the least degree term. The second equality of

(6.1.3) is a well-known identity for circuit-free graphs. r

Proposition 6.1.4. For all non-trivial characters r A ĤH and Spinc structures

s ¼ h � scan of S with h A H,

1

d
cTsTsðrÞ ¼

1

d
rðhÞ�1 � Pr; vð1Þ þ

1

di
cTsiTsiðriÞ if rjðVðGÞnVðGiÞÞWfvig ¼ 1;

0 otherwise;

8<:ð6:1:5Þ

where si is the restriction of s defined in Definition 3.6.1(1).

Proof. Obviously, if rðvÞ ¼ 1 then ri :¼ rjVðGiÞ is a character of Hi.

The proof of the proposition is a case-by-case verification.
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First, let us consider the case when r is non-trivial at v or one of its neighbours. Then
we can choose ur :¼ v in (3.4.3), so (6.1.5) immediately follows.

In the remaining cases, r is trivial on v and its neighbours vi. By the second part of
Lemma 6.1.1, all three terms of (6.1.5) are 0 (because n > 0) unless every component of
VðGÞr has exactly two outgoing edges. Hence the only remaining case is when every com-
ponent of VðGÞr has exactly two outgoing edges. Therefore

P
w BVðGÞr

ðdw � 2Þ ¼ �2, and

there exists an index i with suppðcÞHVðGiÞ. Hence, the upper case of equation (6.1.5)
should hold.

Let ur be the vertex of the component VðGÞrðvÞ of VðGÞr containing v where its two
outgoing edges start.

We decompose G into subgraphs as shown in the next picture.

G: G 0

v
G

ur
G 00

Gi

VðGÞrðvÞ

We express the terms of (6.1.5) in terms of determinants of subgraphs using (3.4.2),
(3.4.3) and (4.0.7):

Pr; vð1Þ ¼
detðG 0Þ �

�
detðGnvurÞ

�2
detðGWG 00W urÞ

Q
w BVðGÞr

�
1� rð½E �

w�Þ
�

detðG 00nurwÞ

� �dw�2

;

cTsTsðrÞ ¼ Pr;urð1Þ ¼
detðG 0 WGW vÞ

detðG 00Þ
Q

w BVðGÞr

�
1� rð½E �

w�Þ
�

detðG 00nurwÞ

� �dw�2

;

cTsiTsiðriÞ ¼ Pri;urð1Þ ¼
detðGÞ
detðG 00Þ

Q
w BVðGÞr

�
1� rð½E �

w�Þ
�

detðG 00nurwÞ

� �dw�2

:

Note that rðhÞ ¼ riðhiÞ where si ¼ hi � scan; i by Definition 3.6.1, and hence these fac-
tor out of (6.1.5). We can also factor out the

Q
w BVðGÞr

product. Finally, recall that

di ¼ detðGWG 00W urÞ and d ¼ detG. Hence (6.1.5) reduces to 4.0.1(d). r

6.2. Principal part of the Hilbert function. Next, we concentrate on Hs; v. We invite
the reader to recall the notations from 3.7–3.8.

Lemma 6.2.1. For every non-trivial pseudo-character c associated with v,

L1 Pc; vðtÞ ¼
1

di
�
Pci; við1Þ �

�
1� ciðviÞ

�
1� t

if suppcLVðGiÞ and cðviÞ3 1;

0 for all other c3 1:

8><>:ð6:2:2Þ
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Proof. We apply Lemma 6.1.1. By the pseudo-character relations, all components
of VðGÞc have at least two outgoing edges except possibly the component containing v,
which can have only one outgoing edge, which must start at v. Hence the lower degree of
the Laurent expansion of Pc; v at 1 is at least �1 with equality if and only if all the compo-
nents have the minimum number of outgoing edges declared above. In particular, if
L1 Pc; v 3 0 then cðviÞ3 1 for some i and suppðcÞHVðGiÞ. This proves the lower case of
(6.2.2).

To prove the upper case, note that by (4.0.3) for any w A VðGiÞ

Pc; vðtÞ ¼ Pci; viðt
detðGnvnGiÞÞ �

�
1� ciðviÞtavvi

�
�
Q

w BVðGiÞ
ð1� tawvÞdw�2:

Obviously, ci is a non-trivial character of Hi, hence Pci ; vi is regular at 1. Moreover,P
w BVðGiÞ

ðdw � 2Þ ¼ �1. Thus

L1 Pc; vðtÞ ¼
1

1� t
� Pci; við1Þ �

�
1� ciðviÞ

�
�
Q

w BVðGiÞ
adw�2
wv :

For the last product one can use (4.0.8), and this finishes the proof. r

We fix an l 0 A L 0 with s ¼ ½l 0� � scan and �1 < rv ¼ ðl 0;E �
v Þe 0 and si ¼ ½l 0i � � scan; i

for the restriction l 0i of l
0 to Gi. Note that all the poles a of Pr; v are roots of unity.

d �H<0
s; v ðtÞ ¼

P
a

P
r A ĤH

rð½l 0�Þ�1 La Pr; vðtÞ ¼
P
a

P
c A ~HH

defðcÞ¼ad

cðl 0Þ�1adrvðL1 Pc; vÞðatÞ;

where the last equality is obtained via the substitutions cðwÞ :¼ rðwÞa�avw implying
cðxÞ ¼ rð½x�Þadðx;E �

v Þ for all x A L 0. To compute defwðcÞ, we have used the identity
I � I�1 ¼ 1 in the form

bwawv þ
P
i

awvi ¼
�d if w ¼ v;

0 if w3 v:

�
To compute further, we apply Lemma 6.2.1 to index the pseudo-characters c for

which the summand maybe non-zero by characters ci of Hi with ciðviÞ3 1:

d �H<0
s; v ðtÞ ¼

P
ad¼1

adrvðL1 P1; vÞðatÞ

þ
P
a

P
i

1

di

P
ci A bHi

ciðviÞ¼ad31

cið½l 0i �Þ
�1adrvPci; við1Þ

�
1� ciðviÞ

� 1

1� at
:

Using (3.4.3) in the form cTsiTsiðciÞ ¼ cið½l 0i �Þ
�1
Pci; við1Þ, and summing in the variable a by

(3.8.2) (recall that �d < drv e 0):

coef 01 H
<0
s; v ðtÞ ¼ coef 01

�
1

d

P
ad¼1

adrvðL1 P1; vÞðatÞ
�
þ
P
i

1

di

P
ci A bHi

ciðviÞ31

cTsiTsiðciÞ:ð6:2:3Þ
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6.3. Additivity formula for torsion. Now, we are ready to establish an additivity for-
mula for the torsion. By 6.1.4 and (3.4.4)

TsðSÞ ¼ coef 01 Hs; vðtÞ �
1

d
coef 01 P1; vðtÞ þ

P
i

1

di

P
ci A bHin1
ciðviÞ¼1

cTsiTsiðciÞ:

Then, using Hs; v ¼ Hpol
s; v þH<0

s; v and (6.2.3) we get the next identity. We highlight it, since
it shows the more conceptual source of the correction constant in (5.0.5):

TsðSÞ �
P
i

TsiðSiÞ ¼ Hpol
s; v ð1Þ þ

1

d
coef 01

� P
ad¼1

adrvðL1 P1; vÞðatÞ � P1; vðtÞ
�
:ð6:3:1Þ

The last two terms depend only on the coe‰cients of terms with non-positive degree
of the Laurent expansion of P1; v at 1. These terms can be computed elementarily:

P1; vðtÞ ¼
Q
w

ð1� tavwÞdw�2

¼ 1

avv

1

ðt� 1Þ2
þ 1þ av=2

t� 1
þ ðav þ 1Þ2

8
þ bv � 1

24
þOðt� 1Þ

 !
:

Hence 3.8.1 and a simple computation provides (5.0.5).

7. Proof of Theorem 2.2.1 and Corollary 2.2.4

In this section we combine our surgery formula with the main result of Okuma from
[27] to derive the results of §2.

Okuma’s article [27] uses a constant invariant of the Taylor expansion at the origin of
R in place of our Rpolð1Þ. This constant invariant was later called the periodic constant,
which terminology we adopt.

In the first paragraphs we prove that they are equal. After the proof appeared in a
public preprint of this article, the result (Lemma 7.0.2) was also incorporated into Okuma’s
article as Proposition 4.8.

Definition 7.0.1 (Periodic constant [21], 3.9, [27], just before Proposition 4.8). Let
FðtÞ ¼

P
if0

ait
i be a formal power series. Suppose that for some positive integer p, the

expression
Ppn�1

i¼0

ai is a polynomial PpðnÞ in the variable n. Then the constant term of PpðnÞ is

independent of p. We call this constant term the periodic constant of F and denote it by
pcF .

For rational functions, one has the following equivalent description of the peri-
odic constant. Here, we identify the rational function R with its Taylor expansion at the
origin.
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Lemma 7.0.2. Let R be a rational function having poles only at infinity and roots of

unity. Then R has a periodic constant and pcR ¼ Rpolð1Þ, where Rpol is the polynomial part

of R as in 3.8(1).

Proof. Write

RðtÞ ¼ RpolðtÞ þ
P
kf0

0ej<p

akj
t j

ð1� tpÞkþ1
ðakj A CÞ;

where the sum is finite. Note that if two formal power series F1 and F2 have periodic con-
stants then pcðF1 þ F2Þ ¼ pcF1 þ pcF2. Also, every polynomial A has a periodic constant,

namely, pcA ¼ Að1Þ. Hence it is enough to prove that t jð1� tpÞ�ðkþ1Þ ¼
P
lf0

k þ l

k

� �
tlpþj

admits a periodic constant, which is 0. Indeed, the constant term of

Pn�1

l¼0

k þ l

k

� �
¼ k þ n

k þ 1

� �

is 0 as a polynomial in n. r

Proof of Theorem 2.2.1. We prove the statement by induction on the number of ver-
tices in the dual resolution graph of the singularity ðX ; oÞ.

First, let us suppose that the class satisfies the Seiberg–Witten invariant conjecture
2.1.1. Then expressing the Seiberg–Witten invariants from (2.1.2) and substituting the
result into (1.0.3), we obtain (2.2.2) (for all singularity ðX ; oÞ in the class and all splitting
vertex v).

To prove the converse, let us assume that the class satisfies (2.2.2). We prove the
Seiberg–Witten invariant conjecture 2.1.1 for every member of the family by induction on
the number of vertices of the dual resolution graph. For rational singularities, 2.1.1 is true
by [11], Theorem 6.2. This starts the induction.

For a non-rational ðX ; oÞ in the class, let us choose a vertex v of the dual resolution
graph satisfying (2.2.2). Let l 0 A R. Then Riðl 0Þ A RðGiÞ þ LðGiÞe by (3.6.3), since the first
term rvE

�
vi; i

of its right-hand side is a non-negative rational cycle, and its second term is
contained in RðGiÞ. So, by the induction hypothesis and Remark 2.2.3, equation (2.1.2)
applies to ðXi; oÞ and Riðl 0Þ. Combining these with (1.0.3) and (2.2.2) for ðX ; oÞ and v, we
obtain (2.1.2) for ðX ; oÞ. r

Proof of Corollary 2.2.4. The corollary follows from Theorem 2.2.1 by Okuma’s
results from [27], which show that the class of splice-quotient singularities satisfy all the
necessary conditions.

Specifically, for every splice-quotient singularity ðX ; oÞ and vertex v of the dual reso-
lution graph, the singularities ðXi; oÞ are also splice-quotient by [27], 2.16.

Moreover, the additivity formula (2.2.2) for all l 0 A R and v with degree at least 3 is a
combination of [27], Theorem 4.5 and Lemma 4.2(3), and Lemma 7.0.2. r
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8. Examples

8.1. SFS3
Cd (K ). Let KHS3 be an algebraic knot, i.e. the link of an analytic irre-

ducible plane curve singularity f : ðC2; 0Þ ! ðC; 0Þ. Let m and DðtÞ be its Milnor number
and Alexander polynomial, respectively. Let S :¼ S3

�dðKÞ be obtained by ð�dÞ-surgery
ðd A NþÞ along KHS3. The Heegaard Floer homology of S was computed in [15] in terms
of D (see also [31], Theorem 4.1). Here we recover the formula [15], 4.3, for sw�ðSÞ from
our results.

Let the (minimal) good resolution of
�
C2; f �1ð0Þ

�
be given by the schematic diagram

G1
v1

K

Write mf for the vanishing order of the lifting of f along the exceptional divisor Ev1 .
Then (see [15]), a possible plumbing graph of S is

G: G1
v1 v

�d �mf

Let v be the ‘new’ vertex. Then Gnv has only one component, namely G1, which can
be blown down completely, hence S1 ¼ S3. One can verify that H ¼ Zd and it is generated
by ½E �

v �. Hence ĤH consists of the maps r given by rð½kE �
v �Þ ¼ xk for all dth roots of unity x.

Moreover, the Spinc structures of S are ½qE �
v � � scan for 0e q < d. Then, using e.g. the for-

mula [5], 11.3, for D, one has

H½qE �
v ��scan; vðtÞ ¼

1

d

P
xd¼1

x�q DðxtÞ
ð1� xtÞ2

:

One can write DðtÞ ¼ 1þ ðt� 1Þm=2þ ðt� 1Þ2
P
l

alt
l . Hence

H
pol
½qE �

v ��scan; v
ðtÞ ¼ 1

d

P
x

x�qP
l

alx
l t l ¼

P
l

aqþld t
qþld :

Note that avv ¼ 1, hence ðqE �
v ;E

�
v Þ ¼ �q=d A ð�1; 0� and so rv ¼ �q=d. Recall e.g. from

[5], 11.1, that m� 2 ¼ av. Thus, using (5.0.3), we recover [15], 4.3, as promised:

sw½qE �
v ��scan

�
S3
�dðKÞ

�
¼ �

P
l

aqþld þ
ðm� 2þ d � 2qÞ2

8d
� 1

8
:

Similarly (with slightly more computations) one can recover the Seiberg–Witten invariant
of S3

�p=qðKÞ, too (here p=q A Q, p=q > 0); for a possible formula see [12], 4.5.

8.2. Seifert manifolds. Let S be a Seifert manifold. Recall that either S or �S can be
realized as a negative definite plumbing (and swð�SÞ ¼ �swðSÞ), hence we may assume
without loss of generality that S ¼ SðGÞ for a (minimal) negative definite graph G. We
will assume that G is not a string (i.e. S is not a lens space). Then G is star-shaped; let v be
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its central vertex. There exists an a‰ne complex surface singularity X whose link at the
origin is S, and which admits a good C� action. In particular, its a‰ne coordinate ring A

is graded.

First we show how Hs; vðtÞ and its periodic constant can be expressed from the Seifert
invariants of S.

Let ðai;oiÞri¼1 denote the normalized Seifert invariants of S (for more details, see
[19]). Set a ¼ lcmðai : i ¼ 1; . . . ; rÞ and o ¼ a � jHj=

Q
i

ai. We denote the end-vertices

(i.e. vertices of degree 1) by fwigi. Then ½E �
v � and f½E �

wi
�gi generate H, hence l 0 A L 0 can be

written as l 0 ¼ aE �
v þ

P
i

aiE
�
wi
modulo L. Set ~aa :¼ a

�
aþ

P
i

ai=ai

�
. Then, by [19], Theorem

(3.1), for s ¼ ½l 0� � scan one has

Hs; vðtÞ ¼
P

lf�~aa=o

max

�
0; 1þ a� lbv þ

Pr
i¼1

�loi þ ai

ai

� ��
tolþ~aa:ð8:2:1Þ

In the case s ¼ scan, one has a ¼ ai ¼ ~aa ¼ 0. Moreover, we claim that

pcHcan; v ¼
P
lf0

max

�
0;�1þ lbv �

Pr
i¼1

�loi

ai

� ��
:ð8:2:2Þ

The idea of the proof is the following: let us define the polynomial

PðtÞ :¼
P
lf0

max

�
0;�1þ lbv �

Pr
i¼1

�loi

ai

� ��
tol :

By the identity maxð0; xÞ �maxð0;�xÞ ¼ x we get that

Hcan; vðtÞ � PðtÞ ¼
P
lf0

�
1� lbv þ

Pr
i¼1

�loi

ai

� ��
tol :

Then a computation shows that the periodic constant of the last expression is zero. Hence
pcHcan; v ¼ Pð1Þ, which is exactly (8.2.2).

Note that by [27], [32] the right hand side of (8.2.1) is the Hilbert (Poincaré) series of a
graded A-module. If s ¼ scan then this module is exactly A. On the other hand, by [32], [4],
the expression from the right-hand side of (8.2.2) is exactly the geometric genus pg of ðX ; oÞ.
In particular, we have also proved that the periodic constant of the Poincaré series of the
graded algebra A is exactly the geometric genus of the singularity.

Now, let us apply 1.0.1 for s ¼ scan. Since all the components of Gnv are strings, they
support rational singularities. Therefore, by [11], 4.1.1,

swcanðSiÞ þ
c1ð gscan; iscan; iÞ2 þ jVðGiÞj

8
¼ 0:

Hence 1.0.1 reads as swcanðSÞ þ
�
c1ðgscanscanÞ2 þ jVðGÞj

�
=8 ¼ �pg.
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Notice that this is exactly the claim of the Seiberg–Witten invariant conjecture 2.1.1
for weighted homogeneous singularities and for the canonical Spinc structure. Its original
proof from [19] is based on completely di¤erent combinatorial identities.

We would like to emphasize that, in general, pcH can be a rather complicated arith-
metical expression. E.g., when S is the Seifert 3-manifold Sða; b; cÞ (the link of xa þ yb þ zc

with a, b, c pairwise relative prime numbers), then pcHcan; v is the number of interior lattice
points in the tetrahedron with vertices ð0; 0; 0Þ, ða; 0; 0Þ, ð0; b; 0Þ, ð0; 0; cÞ. (This can be ex-
pressed by Dedekind sums by a result of Mordell.)

References

[1] Olivier Collin, Equivariant Casson invariant for knots and the Neumann-Wahl formula, Osaka J. Math. 37

(2000), no. 1, 57–71.

[2] Olivier Collin and Nikolai Saveliev, A geometric proof of the Fintushel-Stern formula, Adv. Math. 147

(1999), no. 2, 304–314.

[3] Olivier Collin and Nikolai Saveliev, Equivariant Casson invariants via gauge theory, J. reine angew. Math.

541 (2001), 143–169.

[4] I. V. Dolgachev, Automorphic forms and weighted homogeneous singularities, Funkt. Anal. Jego. Prilozh. 9

(1975), 67–68; English translation: Funct. Anal. Appl. 9 (1975), 149–151.

[5] David Eisenbud and Walter Neumann, Three-dimensional link theory and invariants of plane curve singular-

ities, Ann. Math. Stud. 110, Princeton University Press, Princeton, NJ, 1985.

[6] Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc.

London Math. Soc. (3) 61 (1990), no. 1, 109–137.

[7] Shinji Fukuhara, Yukio Matsumoto, and Koichi Sakamoto, Casson’s invariant of Seifert homology 3-spheres,

Math. Ann. 287 (1990), no. 2, 275–285.

[8] Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math. 20, American

Mathematical Society, Providence, RI, 1999.

[9] Christine Lescop, Global surgery formula for the Casson-Walker invariant, Ann. Math. Stud. 140, Princeton

University Press, Princeton, NJ, 1996.

[10] I. Luengo-Velasco, A. Melle-Hernández, and A. Némethi, Links and analytic invariants of superisolated sin-

gularities, J. Alg. Geom. 14 (2005), no. 3, 543–565.

[11] András Némethi, Line bundles associated with normal surface singularities, part of [17].

[12] András Némethi, On the Heegaard Floer homology of S3
�p=qðKÞ, arXiv:math.GT/0410570.

[13] András Némethi, ‘‘Weakly’’ elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999), no. 1,

145–167.

[14] András Némethi, Invariants of normal surface singularities, Real and complex singularities, Contemp. Math.

354, Amer. Math. Soc., Providence, RI (2004), 161–208.

[15] András Némethi, On the Heegaard Floer homology of S3
�dðKÞ and unicuspidal rational plane curves,

Geometry and topology of manifolds, Fields Inst. Commun. 47, Amer. Math. Soc., Providence, RI (2005),

219–234.
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