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On the Milnor fibres of cyclic quotient singularities

András Némethi and Patrick Popescu-Pampu

Abstract

The oriented link of the cyclic quotient singularity Xp,q is orientation-preserving diffeomorphic
to the lens space L(p, q) and carries the standard contact structure ξst. Lisca classified the Stein
fillings of (L(p, q), ξst) up to diffeomorphisms and conjectured that they correspond bijectively
through an explicit map to the Milnor fibres associated with the irreducible components (all
of them being smoothing components) of the reduced miniversal space of deformations of Xp,q.
We prove this conjecture using the smoothing equations given by Christophersen and Stevens.
Moreover, based on a different description of the Milnor fibres given by de Jong and van Straten,
we also canonically identify these fibres with Lisca’s fillings. Using these and a newly introduced
additional structure (the order) associated with lens spaces, we prove that the above Milnor fibres
are pairwise non-diffeomorphic (by diffeomorphisms which preserve the orientation and order).
This also implies that de Jong and van Straten parametrize in the same way the components of
the reduced miniversal space of deformations as Christophersen and Stevens.

1. Introduction

1.1. Lisca’s conjecture

In [20], Lisca announced a classification of the symplectic fillings of the standard contact
structure on lens spaces up to orientation-preserving diffeomorphisms. Detailed proofs were
given in [21].

We recall briefly his classification. Let L(p, q) be an oriented lens space. Lisca provides first
by surgery diagrams a list of compact oriented 4-manifolds Wp,q(k) with boundary L(p, q).
They are parametrized by a set Kr(p/(p− q)) of sequences of integers k ∈ Nr (for its definition
see (4.1.3)). He showed that each manifold Wp,q(k) admits a structure of Stein surface, filling
the standard contact structure on L(p, q), and that any symplectic filling of this standard
contact structure is orientation-preserving diffeomorphic to a manifold obtained from one of the
Wp,q(k) by a composition of blow-ups (that is, in the language of differential topology, by doing
connected summing with the complex projective plane endowed with the opposite orientation).

Particular cases of his theorem had been proved before by Eliashberg [13] (for S3) and
McDuff [23] (for the spaces L(p, 1) for all p � 2).

In general, the oriented diffeomorphism type of the boundary and the parameter k do not
determine uniquely the (orientation-preserving) diffeomorphism type of the fillings: for some
pairs the corresponding types might coincide (they are also listed by Lisca).

Lisca, following the works of Christophersen [12] and Stevens [35], noted that, Kr(p/(p− q))
parametrizes also the irreducible components of the reduced miniversal base space of deforma-
tions of the cyclic quotient singularity Xp,q. The oriented link of this singularity is precisely
a lens space L(p, q). Each component of the miniversal space is in this case a smoothing
component, that is, the generic local fibre over it is smooth. Its oriented differentiable type is
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independent of the choice of the generic point, and is called the Milnor fibre of that component.
By construction, the Milnor fibre is orientation-preserving diffeomorphic to a Stein filling of
(L(p, q), ξst). Lisca gave the following conjecture.

Conjecture 1.1.1 [21, p.768]. The Milnor fibre of the irreducible component of the
reduced miniversal base space of the cyclic quotient singularity Xp,q, parametrized in [35]
by k ∈ Kr(p/(p− q)), is diffeomorphic to Wp,q(k).

On the other hand, in [16], de Jong and van Straten studied by an approach completely dif-
ferent from Christophersen and Stevens the deformation theory of cyclic quotient singularities
(as a particular case of sandwiched singularities). They also parametrized the Milnor fibres of
Xp,q using the elements of the set Kr(p/(p− q)). Therefore, one can formulate the previous
conjecture for their parametrization as well.

1.2. The main results and their consequences

(1) We introduce an additional structure associated with any (non-necessarily oriented) lens
space: the ‘order’. Its meaning in short is the following: geometrically it is a (total) order of the
two solid tori separated by the (unique) splitting torus of the lens space; in plumbing language,
it is an order of the two ends of the plumbing graph (provided that this graph has at least two
vertices). Then we show that the oriented diffeomorphism type and the order of the boundary,
together with the parameter k determine uniquely the filling.

(2) We endow in a natural way all the boundaries of the spaces involved (Lisca’s fillings
Wp,q(k), Christophersen–Stevens’ Milnor fibres Fp,q(k) and de Jong–van Straten’s Milnor
fibres W (a, k)) with orders; the corresponding spaces with these extra-structure will be
distinguished by ∗. Then we prove that all these spaces are connected by orientation-preserving
diffeomorphisms that preserve the order of their boundaries: Wp,q(k)∗ � Fp,q(k)∗ �W (a, k)∗.
This is an even stronger statement than the result expected by Lisca’s conjecture since it
eliminates the ambiguities present in Lisca’s classification.

(3) In fact, we even provide a fourth description of the Milnor fibres: they are constructed by
a minimal sequence of blow-ups of the projective plane which eliminates the indeterminacies of
a rational function which depends on k; see Corollary 8.4.11 and § 8.6(1). This is in the spirit
of Balke’s work [3].

(4) As a byproduct it follows (see § 10) that both Christophersen–Stevens and de Jong–van
Straten parametrized the components of the miniversal base space in the same way (a fact not
proved before, as far as we know).

(5) Moreover, we obtain that the Milnor fibres corresponding to the various irreducible
components of the miniversal space of deformations of Xp,q are pairwise non-diffeomorphic by
orientation-preserving diffeomorphisms which have restrictions to the boundaries that preserve
the order.

1.3. Symplectic fillings and singularities

Our work may be considered as a continuation of the efforts to find all possible Stein or,
more generally, symplectic fillings of the contact links of normal surface singularities. As a
continuation of [11], in [10] we showed with Caubel that such contact structures are determined
up to contactomorphism by the topology of the link, that is, they depend only on the topological
type of the singularity, and not on its analytical type. Therefore, singularity theory gives the
following Stein fillings up to diffeomorphism: the minimal resolution of good representatives
(which may be made Stein by deformation of the complex structure; see [7]) and the Milnor
fibres of the smoothings of all the analytical realizations of the given topological type.

A natural question is to determine the topological types of normal surface singularities for
which one gets in this way all the Stein fillings of the associated contact manifold, up to
diffeomorphism.
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Ohta and Ono proved that this is the case for simple elliptic singularities (see [27]) and for
simple singularities, that is, rational double points (see [28]). The above positive answer to
Lisca’s conjecture shows that this is also the case for cyclic quotient singularities.

We would like to stress some points regarding the previous classes of singularities. Both
simple and cyclic quotient singularities are taut singularities, that is, their analytical type is
determined by their topological type. Moreover, they are also rational singularities, hence their
minimal resolution is diffeomorphic to the Milnor fibre of one of the smoothing components,
the so-called Artin component (see [6, pp. 33–34]). By contrast, simple elliptic singularities are
neither rational, nor taut, and their minimal resolution is not diffeomorphic to the Milnor fibre
of some smoothing.

1.4. Organization of the paper

In § 2 we recall necessary facts about Hirzebruch–Jung continued fractions and their geometric
interpretation, while § 3 contains some basic properties of cyclic quotient singularities and lens
spaces, expressed in terms of the geometry of continued fractions. This section introduces the
‘order’ of the lens spaces too. Lisca’s classification of the Stein fillings of lens spaces is presented
in § 4. In § 4.4 we reformulate his result using the notion of order. Section 5 contains the results
of Christophersen and Stevens regarding the structure of the reduced base of the miniversal
deformation of cyclic quotient singularities. In § 6 we recall de Jong and van Straten’s theory
of deformations of sandwiched surface singularities using decorated curves, which is specialized
to cyclic quotient singularities in § 7.

In these preliminary six sections we provide several details on the objects manipulated in
order to try to make the paper readable both by singularity theorists and topologists interested
in contact/symplectic topology. A considerable part of the preliminary material is used in
the proofs (and the remaining part is conducive to the proper understanding of the main
ideas/statements). On the other hand, even in these preliminary sections, most of the ‘known’
results are harmonized with the newly introduced notion of order.

The main new results are contained in the last three sections. In § 8 we prove the ‘strong’
version (cf. § 1.2) of Lisca’s conjecture using the equations of Christophersen and Stevens
describing the deformations of cyclic quotient singularities.

The identification of the Milnor fibres provided by the construction of de Jong and van
Straten with the Stein fillings is done in § 10. The proof needs a generalization of Lisca’s
criterion for the recognition of each filling to a more homological criterion, which is in turn
proved in § 9. The two most important consequences are listed in § 11.

1.5. Conventions and notations

All the manifolds we consider are oriented: any letter, sayW , denoting a manifold will denote in
fact an oriented manifold. We denote by W the manifold obtained by changing the orientation
of W , and by ∂W its boundary, canonically oriented by the rule that the outward normal
followed by the orientation of ∂W gives the orientation of W .

We work exclusively with (co)homology groups with integral coefficients.
If W is a 4-manifold, we denote by QW : H2(W ) ×H2(W ) → Z its intersection form and by

∂W : H2(W,∂W ) → H1(W ) the boundary homomorphism. Additionally, if W has a non-empty
boundary, and S1 and S2 are two 2-dimensional compact chains in W with disjoint boundaries
which are contained in ∂W , then their intersection number is also well defined and is denoted
by S1 · S2 or S1 ·W S2.

If a, b ∈ N∗ and A is a commutative ring, we denote by Mata,b(A) the set of matrices with a
rows and b columns with coefficients in A.

If M is an abelian group and K is a field, we write MK := M ⊗Z K.
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2. Generalities on continued fractions and duality of supplementary cones

2.1. Hirzebruch–Jung continued fractions

If x = (x1, . . . , xn) are variables, then the Hirzebruch–Jung continued fraction

[x1, . . . , xn] := x1 −
1

x2 −
1

. . .−
1
xn

(2.1.1)

can also be defined by induction on n through the formulae [x1] = x1 and [x1, . . . , xn] =
x1 − 1/[x2, . . . , xn] for n � 2. One shows that

[x1, . . . , xn] =
Zn(x1, . . . , xn)
Zn−1(x2, . . . , xn)

, (2.1.2)

where the polynomials Zn ∈ Z[x1, . . . , xn] satisfy the inductive formulae

Zn(x1, . . . , xn) = xn · Zn−1(x1, . . . , xn−1) − Zn−2(x1, . . . , xn−2) for all n � 1, (2.1.3)

with Z−1 ≡ 0, Z0 ≡ 1 and Z1(x) = x. In fact, Zn(x) equals the determinant of the matrix
M(x) ∈ Matn,n(Z), which has entries that are Mi,i = xi, Mi,j = −1 if |i− j| = 1 and Mi,j =
0 otherwise. Hence, in addition to (2.1.3), they satisfy many ‘determinantal relations’, for
example,

Zn(x1, . . . , xn) = Zn(xn, . . . , x1). (2.1.4)

The referee has drawn our attention to the fact that continued fractions with negative signs
were known much before the work of Jung and Hirzebruch on surface singularities; for instance,
Cayley called them ‘improper’.

Definition 2.1.5 [29]. We say that x ∈ Nn is admissible if the matrix M(x) is positive
semi-definite of rank at least n− 1. Denote by adm(Nn) the set of admissible n-tuples.

If x is admissible and n > 1, then each xi > 0. Moreover, if [x1, . . . , xn] is admissible then
[xn, . . . , x1] is admissible too.

Each rational number λ > 1 admits a unique Hirzebruch–Jung continued fraction expansion
(in short, an HJ-expansion) of the form

λ = [x1, . . . , xn], where xi ∈ N, xi � 2 for all i ∈ {1, . . . , n}.

2.2. The geometrical interpretation

Next we explain an interpretation of the HJ-expansions using affine geometry; for example, see
[26, 30].

Consider a free abelian group N of rank 2. An oriented cone is a rational strictly convex cone
σ in NR with a choice of an order of its edges. We denote the two primitive elements of N which
generate the edges by e1 and e2, where (e1, e2) is the order of the edges. We denote by σ′ the
same cone with the opposite choice (e2, e1) of order of its edges, and by σ the supplementary
cone generated by (−e1, e2).

Consider the convex hull of the points of N situated in σ \ 0 and denote by Pσ the union
of the compact edges of its boundary. It is a finite polygonal line joining e1 to e2. Denote by
v0, . . . , vs+1 the lattice points situated on it, in the order in which they are encountered when
one travels from v0 := e1 to vs+1 := e2. Then, for some integers bi � 2, we have

vi−1 + vi+1 = bivi for all i ∈ {1, . . . , s}. (2.2.1)
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Figure 1. Two supplementary cones.

Write also e2 = −qv0 + pv1. Then p and q are coprime with p > q > 0 provided that (e1, e2)
is not a basis of N , and p = 1, q = 0 otherwise. From now one we suppose that we are in the
first case.

Lemma 2.2.2. With the previous notation, p/q = [b1, . . . , bs].

Both p/q and the sequence (b1, . . . , bs) are complete invariants of the pair (N,σ), up to
isomorphisms (that is, isomorphisms of free groups that send one cone onto the other and
preserve the order of the edges). We say that p/q is the type and (b1, . . . , bs) the associated
sequence of the oriented cone (N,σ). If one changes the orientation of the cone (that is, σ
into σ′), then the type of (N,σ′) becomes p/q′, where q′ is the unique positive number such
that q′ < p and qq′ ≡ 1 (mod p); the associated sequence becomes (bs, . . . , b1).

Consider now both the HJ-expansions
p

q
= [b1, . . . , bs] and

p

p− q
= [a1, . . . , ar]. (2.2.3)

There is a duality of the sequences a and b. Its geometric interpretation is the following. Start
from an oriented cone σ � σp,q in NR of type p/q (well defined up to unique isomorphism).
Consider its supplementary cone σ, the polygonal line Pσ and the sequence (v0, . . . , vr+1) of
lattice points on it, starting from v0 := −e1 and ending with vr+1 := e2 (see Figure 1).

Lemma 2.2.4. We have σ � σp,p−q, that is, the sequence associated with (N,σ) is
(a1, . . . , ar).

There is an important point we wish to emphasize. In general, in torical presentations, cones
and their dual cones are sitting in different lattices (dual to each other). Here, though the
supplementary cone can canonically be identified with the dual cone (using the area-symplectic
form equal to 1 on a positive basis of the lattice; see [30, p.145]), both σ and σ are represented
in the same lattice N . This will allow us to connect by linear relations vectors from both cones
in the same N (see Theorem 2.2.8). Such a relation interpreted in homology is important in
the proof of the main result from § 10.

There is a canonical way to rewrite the entries of the continued fractions as follows, where
(2)� means the constant sequence with � terms all equal to 2, and nj � 3 for all 1 � j � t:

p

p− q
= [(2)m1−1, n1, (2)m2−1, n2, . . . , nt, (2)mt+1−1]. (2.2.5)
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Geometrically, t ∈ N is the number of ‘interior’ vertices of the polygonal line Pσ, and
(m1, . . . ,mt+1) the sequence of integral lengths of the edges of Pσ (hence mi � 1 for all
1 � i � t+ 1).

From the arithmetical point of view of the HJ-expansions of p/q and p/(p− q), the duality
is reflected by Riemenschneider’s point diagram [31], which basically says that

p

q
= [m1 + 1, (2)n1−3,m2 + 2, (2)n2−3, . . . ,mt + 2, (2)nt−3,mt+1 + 1]. (2.2.6)

In particular,

r = 1 +
∑

1�i�s
(bi − 2) = −1 +

∑
1�i�t+1

mi and s = 1 +
∑

1�j�t
(nj − 2). (2.2.7)

However, there is an even deeper relation at the level of N (see [30, Proposition 5.3]).

Theorem 2.2.8. Set wl := v1+
∑

1�j�l−1(nj−2) for all 1 � l � t+ 1. Then

vi+1 − vi = wl if m1 + . . .+ml−1 � i � m1 + . . .+ml − 1. (2.2.9)

For a detailed discussion of similar relations connecting a cone with its supplementary cone,
and their relationship with continued fractions, see [30].

3. Generalities on cyclic quotient singularities and lens spaces

We recall the definitions of cyclic quotient singularities and lens spaces. Additionally, we
introduce the notion of order associated with a lens space and we discuss its relationship with
the group of automorphisms and dualities. See [4, pp. 99–105] for a classical presentation of
cyclic quotient singularities, [25, 30] for details about plumbings of links of surface singularities
and [8, 30] for the geometry of the splitting torus of lens spaces.

3.1. The definitions

Let p and q be coprime integers such that p > q > 0.

Definition 3.1.1. The cyclic quotient (or Hirzebruch–Jung) singularity (Xp,q, 0) is the
germ of the quotient Xp,q of C2 by the action ξ ∗ (x, y) = (ξx, ξqy) of the cyclic group {ξ ∈
C , ξp = 1} � Z/pZ. Its oriented link is the (oriented) lens space L(p, q).

In particular, L(p, q) is the quotient of S3 by the above action of Z/pZ (this definition does
not include S3 and S2 × S1, which are sometimes also considered to be lens spaces). Bonahon [8]
proved that each lens space contains an embedded 2-dimensional torus — a so-called splitting
torus —, unique up to an isotopy, which bounds on each side a solid torus. The set T of solid
tori bounded by a splitting torus, identified modulo isotopies of the ambient space, is a set of
one or two elements. It has one element exactly when the solid tori can be interchanged by an
isotopy. This happens exactly when q ∈ {1, p− 1}; cf. [8, p.308].

Let us define an additional structure associated with an (unoriented) lens space. It has a
similar nature as the notion of orientation (T is analogous to the set of connected components
of the orientation bundle of a manifold), but it is independent of it.

Definition 3.1.2. An order of an (unoriented) lens space is a total order on the set T .
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Clearly, if q ∈ {1, p− 1}, then this supports no additional information. In all other cases the
order distinguishes the first and the second of the two (non-isotopic) solid tori bounded by any
splitting torus.

The unicity of the splitting torus τ allows one to associate with any (unoriented) lens space
L a free abelian group of rank 2, namely N := H1(τ). In what follows ν∗ : N → H1(L) will
stay for the homological morphism induced by the inclusion ν : τ ↪→ L.

Remark 3.1.3. In fact, N is well defined up to the induced action of the isotopies of the
lens space which move τ into itself. This is non-trivial only if q ∈ {1, p− 1}, but even in those
cases any such induced isomorphism ϕN : N → N satisfies ν∗ ◦ ϕN = ν∗.

3.2. The order and its type

Now we explain a way to extract the numbers {p/q, p/q′} from an oriented lens space
diffeomorphic to L(p, q).

Let L be an oriented lens space. Choose an order of the two solid tori bounded by a splitting
torus τ : denote by L1 the first and by L2 the second one. Orient τ as the boundary of L1.
Therefore, N = H1(τ) gets an induced orientation (dual to the orientation of H1(τ) such that
the cup product of a positive basis is positive on the fundamental class of τ). There is up
to isotopy a unique meridian of L1 (that is, an unoriented simple closed curve on τ which is
non-trivial homotopically on τ but is trivial in L1). Orient it in an arbitrary way and denote by
e1 ∈ N its homology class. Then orient the meridian of L2 such that its homology class e2 ∈ N
forms a positive basis (e1, e2) of N with respect to the orientation defined before. Denote by
σ the oriented strictly convex cone in NR generated by e1 and e2, taken in this order. Let p/q
be the type of the oriented cone (N,σ); cf. (§ 2.2).

Lemma 3.2.1. The 3-manifold L is (orientation-preserving) diffeomorphic to L(p, q).

By choosing the opposite orientation of the meridian of L1, one gets (−e1,−e2) instead of
(e1, e2), and hence −σ instead of σ, which has a type that is also p/q. By changing the order
of the solid tori, one gets as new type p/q′. This also reproves the classical fact that L(p, q) is
orientation-preserving diffeomorphic to L(p, q1) if and only if q1 ∈ {q, q′}.

If #T = 1, then p/q = p/q′. If #T = 2 and we fix an order, then we get without ambiguity
a unique element of {p/q, p/q′}. Hence, an order always provides a well defined element of the
set {p/q, p/q′}, called the type of the order.

If q′ 	= q, then from the type of the order one can recover the order itself. Indeed, the type
contains the information regarding the oriented cone, which has ordered edges that correspond
to an order of the two meridians. This is not the case for q′ = q 	∈ {1, p− 1}, since #T = 2,
but #{p/q, p/q′} = 1 (hence the order is a sharper invariant than its type).

Note that if we change the orientation of the above lens space L(p, q), then in the above
construction (e1, e2) can be replaced by (−e1, e2) (that is, σ by σ of type p/(p− q)), and hence
L(p, q) = L(p, p− q).

Remark 3.2.2. The notation ‘L(p, q)’ is not uniform in the literature: sometimes, what
we call L(p, q) is denoted by L(p, p− q); the ambiguity originates in the orientation choice.

3.3. Self-diffeomorphisms

The previous discussion also provides the group of orientation-preserving self-diffeomorphisms
Diff+(L) of an oriented lens space L; cf. [8]. For any ϕ ∈ Diff+(L) write ϕ∗ for the induced
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Figure 2. The graph G(b).

morphism at the level of H1(L) � Z/pZ. Then the isotopy class of ϕ is uniquely determined by
ϕ∗, and ϕ∗ can only be multiplication by ±1 or ±q, and ±q occurs only if q′ = q (corresponding
to how ϕ changes the orientation of the meridians and/or the solid tori).

If q′ 	= q, then Diff+(L) preserves automatically the order (that is, any of the two possible
orders is left invariant). If q = q′ /∈ {1, p− 1}, then ϕ reverses it exactly when ϕ∗ is the
multiplication by ±q. Hence, once an order o is fixed, the subgroup Diff+,o(L) of Diff+(L)
that preserves o is isomorphic to Z/2Z, and its elements induce ϕ∗ = ±1 on H1(L) � Z/pZ,
with the exception of p = 2, when Diff+,o(L) � {IdZ/2Z}.

3.4. The order and the sequence {v1, . . . , vs}
If both an orientation and an order are fixed on a lens space (say by the choice of the numbering
L1 and L2 of the solid tori bounded by a splitting torus), then the discussion from § 3.2 shows
that the sequence (v1, . . . , vs) is well defined up to a sign and the automorphisms ϕN of N
from Remark 3.1.3.

For such a situation later we use the following (ordered) set of elements of H1(L), well defined
up to a sign (cf. Remark 3.1.3), associated with an oriented and ordered L:

(αL1 , . . . , α
L
s ) := ±(ν∗(v1), . . . , ν∗(vs)) ∈ H1(L)s. (3.4.1)

If in the above construction one changes the orientation of L and one keeps the same order,
then one gets

(αL1 , . . . , α
L
r ) := ±(ν∗(v1), . . . , ν∗(vr)) ∈ H1(L)r, (3.4.2)

where the vi and vi are related as in § 2.2.

3.5. The order and plumbings

Consider again the surface Xp,q. The sequences a and b from (2.2.3) guide two different
geometrical packages: a is related more to the equations and deformations of Xp,q, for example,
see § 5 [12, 16] use even the notation Xp,q = X(a1, . . . , ar)), while b is related to the resolution.

The dual graph G(b) of the minimal resolution is a string; see Figure 2. Let Π(b) be the
oriented compact 4-manifold with boundary obtained by plumbing according to G(b) (it is
diffeomorphic to the minimal resolution of a Milnor representative of (Xp,q, 0)). It contains
oriented 2-spheres {Si}1�i�s which intersect according to the graph G(b) and which are
realized in the minimal resolution by the irreducible exceptional curves. By construction
∂Π(b) = L(p, q) = ∂Π(a).

Note also that the permutation (x, y) 
→ (y, x) of the coordinates of C2 realizes an isomor-
phism Xp,q → Xp,q′ . Hence, a priori there is no preferred order of the coordinate axes or of the
2-spheres {Si}1�i�s if s > 1: the marking {Si}1�i�s can be replaced freely by {Ss−i}1�i�sp;
but the ambiguity disappears (for both plumbing graphs G(a) and G(b)) if #T = 2 and an
order is fixed. We explain this in the following paragraphs.

With any marking {Si}1�i�s of the 2-spheres, associate a collection (Ri)1�i�s of pairwise
disjoint oriented discs properly embedded inside Π(b), with Ri being a normal slice of Si inside
the associated part of the plumbing decomposition of Π(b), and with Ri ·Π(b) Si = +1.

Assume that q 	∈ {1, p− 1}, or equivalently, s 	= 1 	= r, that is, the lengths of both a and
b are greater than one. Let us concentrate now on G(b) (there is a symmetric discussion for
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G(a) too). Any edge of the graph, via the plumbing construction, determines a splitting torus.
Then ∂R1 and ∂Rs sit in two different (non-isotopic) solid tori.

Each edge of G(b) corresponds to a splitting torus of L. Choose an ordering (L1, L2) of the
solid tori bounded by it such that the type of L endowed with the associated order is p/q.
Then we mark the 2-spheres in such a way that ∂R1 ⊂ L1 and ∂Rs ⊂ L2. This defines an order
of 2-spheres. By this convention, not only the type p/q of the order and the ordered sequence
(b1, . . . , bs) of weights of the graph correspond by Lemma 2.2.2, but even if this sequence is
symmetric, we indicate in the plumbed manifold Π(b) which 2-sphere has index 1. In fact, this
specification is equivalent with a choice of an order.

Remark 3.5.1. Regarding Figure 2, note the following. If s > 1, and we replace the
‘symbols’ bi by some integers at least 2, then we get an unordered graph. On the other
hand, with the present decoration we indicate which end-edge is S1, respectively, Ss, and
hence Figure 2 in fact represents an ordered graph providing an order of its plumbed lens
space.

All the constructions of the present paper are guided by plumbing graphs. Using this, we
introduce uniformly an order in all the lens spaces involved.

Assume that s > 1 and r > 1. Fix the graph G(b) and its marking as in Figure 2. It defines
an order (via the rule R1 ⊂ L1) of the plumbed manifold ∂Π(b).

Construct compatible markings on G(a) and G(b) together with a canonical identification of
the plumbing manifolds ∂Π(b) and ∂Π(a) as follows. Fix G(b) with its marking, which provides
an order of Π(b). The orientation change of Π(b) corresponds to the change of each weight
−bi into bi (but keeping the 1, respectively, s marking of the ends). Note that by a plumbing
calculus of the plumbing graphs, we may keep track of the order of the lens space (the order of
the end-vertices of the graph). Hence, when we do a plumbing calculus in order to replace the
graph marked with the b into one which has weights a, there is only one way to order/mark
the sequence a in such a way that the order of the lens space will reflect properly the order of
the sequence a.

Finally, if a plumbing graph contains a subgraph having the information regarding the above
markings of G(a) or G(b), we mark it in a compatible way.

Definition 3.5.2. The order fixed in this way by the marked graphs is called the preferred
order of the lens spaces; L endowed with a preferred order will be denoted by L∗. Similarly,
L(p, q)∗ denotes the ordered lens space of type p/q.

3.6. The order and coordinates

An order of the plumbing/resolution graph can be related with a choice of an order of the
coordinates of C2 in Definition 3.1.1 as follows.

Assume first that b is not symmetric. If we fix p and q and the coordinates (x, y) as in
Definition 3.1.1, and we mark/order the 2-spheres of the resolution in such a way that the
expansion p/q = [b1, . . . , bs] holds, then the strict transform of the image of the x-axis or of
{x = 0} can be isotoped to R1 or Rs, respectively. We take this as a general compatibility
property even if b is symmetric: the (order of the) coordinates (x, y) is compatible with the
ordering of the 2-spheres if the above fact holds.

Finally, we verify another compatibility property. Note that each ∂Ri can be isotoped in
∂Π(b) in a tubular neighbourhood of τ (which has N as its first homology).
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Figure 3. The framed link L(a, k) ⊂ N(k).

Proposition 3.6.1 [30, pp. 176–177]. Let L be an ordered and oriented lens
space. If q 	∈ {1, p− 1}, then ([∂R1], . . . , [∂Rs]) = ±(v1, . . . , vs) in N . In fact, in all cases,
(ν∗[∂R1], . . . , ν∗[∂Rs]) = ±(ν∗(v1), . . . , ν∗(vs)) in H1(L).

4. The Stein fillings of lens spaces, following Lisca

4.1. The set Kr

The next parameter set supports all the three main constructions presented in the body of the
paper.

Definition 4.1.1 (Christophersen [12]). For r � 1 denote by

Kr := {k = (k1, . . . , kr) ∈ adm(Nr) | [k1, . . . , kr] = 0} (4.1.2)

the set of admissible sequences which represent 0. For k = (k1, . . . , kr) ∈ Kr set k′ :=
(kr, . . . , k1) ∈ Kr.

We wish to emphasize that the condition of admissibility (cf. Definition 2.1.5) is really
restrictive. For example, k = (2, 1, 1, 1, 1, 2) /∈ K6 although [k] = 0. By admissibility, if r > 1,
then each ki > 0 and K1 has only one element, namely (0). For any r > 1 the number of
elements of Kr is the Catalan number (1/r)

(
2(r−1)
r−1

)
.

For two coprime integers p and q with p > q > 0, and the HJ-expansion p/(p− q) =
[a1, . . . , ar], set:

Kr(
p

p− q
) = Kr(a) := {k ∈ Kr | k � a} ⊂ Kr. (4.1.3)

(Here, k � a means that ki � ai for all i.)

4.2. Lisca’s construction

The field of complex lines tangent to S3 is left invariant by the cyclic action used in
Definition 3.1.1, and hence it descends to the so-called standard contact structure ξst on L(p, q).

Fix an element k ∈ Kr(a). Let L(k) be the framed link of Figure 3 with r components
and decorations k1, . . . , kr (that is, the thick components are neglected for a moment). Let
N(k) be the closed oriented 3-manifold given by surgery on S3 along L(k). Using the slam-
dunk operation on rationally framed links in S3 (see [14, p.163]), one obtains an orientation-
preserving diffeomorphism as follows:

η : N(k) −→ S1 × S2. (4.2.1)
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Definition 4.2.2 [21, p.766]. Consider the diffeomorphism η from (4.2.1) and denote by
L(a, k) ⊂ N(k) the thick framed link drawn in Figure 3. Define Wp,q(k) to be the smooth
oriented 4-manifold with boundary obtained by attaching 2-handles to S1 × D3 along the
framed link η(L(a, k)) ⊂ S1 × S2.

From the Main Theorem 1.1 of [21], one can extract the following.

Theorem 4.2.3.

(a) All the manifolds Wp,q(k) admit Stein structures that fill (L(p, q), ξst), and any Stein
filling of (L(p, q), ξst) is diffeomorphic to one of the manifolds Wp,q(k).

(b) The manifold Wp,q1(k1) is orientation-preserving diffeomorphic to Wp,q2(k2) if and only
if (q2, k2) = (q1, k1) or (q2, k2) = (q′1, k

′
1).

4.3. Lisca’s criterion to recognize Wp,q(k)

Once Theorem 4.2.3(a) is proved, Theorem 4.2.3(b) follows from a straightforward homological
computation, the essence of which is highlighted by the next criterion. Let W be a Stein
filling of (L(p, q), ξst). Let V be the closed 4-manifold obtained by gluing W and Π(a) via an
orientation-preserving diffeomorphism φ : ∂W → ∂Π(a) of their boundaries. Let μ : Π(a) ↪→ V
be the inclusion morphism.

Proposition 4.3.1 [21, § 7]. Denote by {si}1�i�r the classes of 2-spheres {Si}1�i�r in
H2(Π(a)) (listed in the same order as {ai}1�i�r), and also their images via the monomorphism
μ∗ : H2(Π(a)) → H2(V ). Then there is a k ∈ Kr(a) such that

#{e ∈ H2(V ) | e2 = −1, si · e 	= 0, sj · e = 0 for all j 	= i} = 2(ai − ki) (4.3.2)

for all i ∈ {1, . . . , r}. In this way one gets the pair (a, k), and W is orientation-preserving
diffeomorphic to Wp,q(k).

Note that, as {Si}1�i�r and {Sr−i}1�i�r cannot be distinguished, the algorithm does not
differentiate (a, k) from (a′, k′), and hence Wp,q(k) from Wp,q′(k′).

One verifies that the above criterion is independent of the choice of the diffeomorphism
φ, which has ambiguities that correspond to Diff+(L(p, q)). In fact, Lisca shows that even the
diffeomorphism type of the resulting manifold V is independent of the possible choices of φ. For
this he proves that Wp,q(k) admits an orientation-preserving self-diffeomorphism that induces
multiplication by −1 on H1(L(p, q)) (cf. [21, (7.2)]), and clearly Π(a) has a self-diffeomorphism
that induces multiplication by q on H1(L(p, q)), provided that q′ = q.

4.4. Compatibility with the order

One can eliminate the ambiguity left by Theorem 4.2.3(b) using the order of the boundary.
Note that if r = 1, or even if r > 1 but both sequences a and k are symmetric, then there is
no ambiguity, since (p, q, k) = (p, q′, k′).

Assume that we are in the remaining situations. Recall that all the time a and q are related
by the expansion [a1, . . . , ar] = p/(p− q). The point is that the framed link from Figure 3 is not
symmetric. If we mark the link components of L(k) as in Figure 3, then by the rule described
in § 3.5 (namely, by imposing ∂R1 ⊂ L1), we appoint the preferred order of the boundary
of Wp,q(k); cf. Definition 3.5.2. The filling obtained in this way (the space Wp,q(k) with the
preferred order on its boundary) is denoted by Wp,q(k)∗.
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Note that no orientation-preserving diffeomorphism Wp,q(k)∗ →Wp,q′(k′)∗ (from Theorem
4.2.3(b)) preserves the preferred orders of the boundaries. Hence we have the following theorem.

Theorem 4.4.1. All the spaces Wp,q(k)∗ are different, and hence their boundaries
L(p, q)∗ and k ∈ Kr(a) uniquely determine all the Stein fillings up to orientation-preserving
diffeomorphisms that preserve the order of the boundary.

Proposition 4.3.1 will have the following new form. Let W ∗ be a Stein filling of (L(p, q), ξst)
with an order on its boundary. Consider Π(a)∗ with its preferred order (providing a well
determined order of the si). Construct V as in Proposition 4.3.1, and consider the two pairs
(q, k) and (q′, k′) provided (but undecided) by Proposition 4.3.1.

Proposition 4.4.2. If φ preserves or reverses the orders of the boundary then W ∗ is
orientation and order-preserving diffeomorphic to Wp,q(k)∗ or to Wp,q′(k′)∗, respectively.

Remark 4.4.3. Assume that q = q′. Then the permutation of the coordinates (x, y) 
→
(y, x) of C2 induces an automorphism of Xp,q, and also of the miniversal deformation space.
The permutation on its reduced components corresponds to k 
→ k′ inducing an orientation-
preserving diffeomorphism Wp,q(k) →Wp,q(k′). As it follows from the above discussion, this
diffeomorphism does not preserve the order, provided that k 	= k′.

5. The smoothings of cyclic quotient singularities, following Christophersen and Stevens

In this section we recall some results of Christophersen and Stevens on the structure of the
reduced miniversal base space of cyclic quotients. For more details, see [6, 12, 36].

5.1. Generalities on versal deformations

Definition 5.1.1. Let (X,x) be a germ of a complex analytic space. A deformation of
(X,x) is a germ of flat morphism π : (Y, y) → (S, s) together with an isomorphism between
(X,x) and the special fibre π−1(s). A deformation of (X,x) is versal if any other deformation
is obtainable from it by a base-change. A versal deformation is miniversal if the Zariski tangent
space of its base (S, s) has the smallest possible dimension. A smoothing component is an
irreducible component of the miniversal base space over which the generic fibres are smooth.

If (X,x) is a germ of a reduced complex analytic space with an isolated singularity, then the
following well known facts hold:

(i) (Grauert [15], Schlessinger [33]) The miniversal deformation π exists and is unique up
to (non-unique) isomorphism.

(ii) (Artin [2]) If (X,x) is a rational surface singularity, then all the components of the
reduced miniversal base space are smoothing ones.

(iii) (Looijenga [22]) There exist (Milnor) representatives Yred and Sred of the reduced total
and base spaces of π such that the restriction π : ∂Yred ∩ π−1(Sred) → Sred is a trivial C∞-
fibration.

Hence, for each smoothing component, the oriented diffeomorphism type of the oriented
manifold with boundary (π−1(s) ∩ Yred, π

−1(s) ∩ ∂Yred) does not depend on the choice of the
generic element s: it is called the Milnor fibre of that component. Moreover, its boundary
is canonically identified with the link up to isotopy. In particular, the Milnor fibre over a
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smoothing component is a Stein filling of the link endowed with its standard contact structure
(provided that the representatives are carefully chosen; see [10]).

5.2. The equations of Xp,q
The singularity Xp,q may also be seen as the germ at the 0-dimensional orbit of the
toric variety Zσp,q

= Spec C[σ̌p,q ∩M ], where σp,q ⊂ NR is an oriented cone in N of type
p/q, and M := Hom(N,Z). We identify σ̌p,q and σp,q � σp,p−q; cf. Figure 1. The lattice
points (v0, . . . , vr+1) are the minimal generating set of the semi-group σp,q ∩N � σ̌p,q ∩M .
Therefore, the monomials

zi := χvi for all i ∈ {0, . . . , r + 1}, (5.2.1)

generate the toric algebra C[σ̌p,q ∩M ]. Hence, the toric surface Zσp,q
may be embedded inside

Cr+2 using the regular functions z0, . . . , zr+1. A very elegant way to write the equations of
Xp,q is given by Riemenschneider [32] via a quasi-determinant as follows:∣∣∣∣∣∣

z0 z1 . . . zr−1 zr
z1 z2 . . . zr zr+1

za1−2
1 . . . zar−2

r

∣∣∣∣∣∣ (5.2.2)

The generalized minors of the quasi-determinant∣∣∣∣∣∣
f0 f1 . . . fr−1 fr
g0 g1 . . . gr−1 gr

h0,1 . . . hr−1,r

∣∣∣∣∣∣
are given by

E(i,j) := fi−1gj − gi−1fj ·
j∏
�=i

h�−1,� for 1 � i � j � r. (5.2.3)

The equations of Xp,q are given by the vanishing of the generalized minors of (5.2.2); we refer
to them as E . They include the equations

zi−1zi+1 − zai
i = 0 for all i ∈ {1, . . . , r}. (5.2.4)

Remark 5.2.5. Once the preferred order of the coordinates (x, y) is fixed (cf. Defini-
tion 3.5.2 and § 3.6), they also induce an order/marking of the coordinates zi via the identities
(5.2.1).

5.3. The equations of the reduced miniversal base space

Denote by Sred(p, q) the reduced base space of the miniversal deformation of the cyclic quotient
singularity Xp,q. It was determined via several steps.

In [31] Riemenschneider determined the infinitesimal deformations of Xp,q. Fifteen years
later Arndt in his thesis [1] gave an algorithm to find equations of the base space. Although
the structure of Sred(p, q) is hard to find from its equations, Arndt conjectured (on the basis
of computations for particular cases) that the number of irreducible components should not
exceed the Catalan number 1/r

(
2(r−1)
r−1

)
. This conjecture was proved by Stevens [35], based in

an essential way on the work [18] of Kollár and Shepherd-Barron on P -resolutions. Moreover, at
the same time, Christophersen in [12] and Stevens in [35] provided (conceptual) equations. It
was not at all obvious that the two sets of equations are the same; this was later explicitly proved
in the thesis of Brohme [9]. In fact, Christophersen and Stevens defined for each k ∈ Kr(a) an
explicit system Ek (equivalent to E) of equations which define Xp,q, and an explicit deformation
Ẽk of these equations with smooth parameter space. (For the completeness of the discussion,
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we review Ek and Ẽk in § 5.4.) The result of Stevens [35] mentioned above shows that one gets
in this way all the irreducible components of Sred(p, q). Hence we have the following theorem.

Theorem 5.3.1. The reduced base space Sred(p, q) of the miniversal deformation of Xp,q
has exactly #Kr(a) irreducible components.

As Xp,q is a rational singularity, fact (ii) of § 5.1 shows that all the irreducible components
of Sred(p, q) are smoothing components. We denote by SCS

k the irreducible component that
corresponds to k ∈ Kr(a) through the equations of Christophersen and Stevens.

Through these equations one has in fact an explicit bijection between the set Kr(a) and the
irreducible components of Sred(p, q). This (together with (4.1) and (4.2)) allows to understand
the meaning of Lisca’s conjecture from § 1.

5.4. The system Ek and its deformations

We follow Stevens’ version from [35]. One starts with the identification of Kr with the
triangulations of the (r + 1)-gons.

Consider a convex polygon Pr+1 in the plane with r + 1 vertices marked successively by
A1, . . . , Ar+1. Denote by T (Pr+1) the set of triangulations of Pr+1 with vertices A1, . . . , Ar+1

and edges that are diagonals of Pr+1. With each triangulation θ ∈ T (Pr+1) associate the
sequence (k1, . . . , kr) such that ki is the number of triangles containing the vertex Ai. Then
θ 
→ k realizes a bijection between T (Pr+1) and Kr; cf. [35].

We fix a triangulation θ ∈ T (Pr+1) corresponding to k. We define weights of the vertices Ai
(1 � i � r) and of edges AiAj of the triangles (for some 1 � i < j � r). They are rational
monomials in the variables zi (1 � i � r) and in some ‘new’ variables zi (1 � i � r). By
definition, the weight of Ai is zi. In order to define the weight of AiAj , first one collapses
in θ the vertices A1, . . . , Ai−1, Aj+1, . . . , Ar+1 into one vertex (and the corresponding edges
and triangles too) to get a (j − i+ 2)-gon θ(i,j). Denote its k invariants (associated to
(j − i+ 2)-gon θ(i,j) similarly as in the above Stevens’ correspondence) by (k(i,j)

i , . . . , k
(i,j)
j ).

Let α(i,j)
� (i− 1 � � � j + 1) be defined by the rule as follows:

α
(i,j)
� = 0 for � = i− 1 and � = j + 1,

α
(i,j)
� = 1 for � = i and � = j,

α
(i,j)
�−1 + α

(i,j)
�+1 = k

(i,j)
� α

(i,j)
� for i � � � j

(for a continued fraction interpretation of the integers α(i,j)
� , see [35, (1.1)]). Then the weight

of AiAj (which equals the product wi,jwj,i of [35]) is given by (cf. [35, 6.2.1])

w(AiAj) :=
1

z
α

(i,j)
i+1 −1

i z
α

(i,j)
j−1 −1

j

·
j−1∏
�=i+1

(
z� · z2−k(i,j)

�

�

)α(i,j)
� .

Then the system Ek consists of the equations E(i,j)
k (1 � i � j � r) having the form

zi−1zj+1 = zizj ·
∏

(all weights of vertices and edges on the
shortest path in θ from Ai to Aj),

(5.4.1)

where one substitutes z� = za�−2
� . Note that for i = j one gets the equation (5.2.4).

One can check that the system Ek is equivalent with the system E . Indeed, if E(i,j) is the
generalized minor of (5.2.2) (see formulae (5.2.3)), then E(i,j)

k is obtained from E(i,j) via some
substitutions of equations of type E(i′,j′), with i < i′ � j′ < j.



568 ANDRÁS NÉMETHI AND PATRICK POPESCU-PAMPU

For example, if r = 3 and k = (1, 2, 1), then E
(i,j)
k = E(i,j) for all i and j. However, if

k = (2, 1, 2), then E
(1,3)
k : {z0z4 = z1z

2
2z3z

2
2} is obtained from E(1,3) : {z0z4 = z1z2z3z1z3} with

substitution E(2,2) : {z1z3 = z2z
2
2}; the others coincide (here each E(i,j) is the generalized minor

of (5.2.2) before the substitution, that is, the last row of (5.2.2) consists of z1, . . . , zr).
For more details or different presentations, see [6, p. 8–11, 12, pp. 83–84, 35, pp. 316–317].
Clearly, the space Xp,q is independent of k, but for each k one deforms different sets of

equations of Xp,q, namely Ek. For simplicity, for each k we provide only a subspace of the
deformation associated with k (in the language of [35] it corresponds to the vanishing of
the deformation parameters sε), but it already contains the 1-parameter smoothing needed
in the proof of the main statement. The deformations are obtained from the equations (5.4.1)
via the substitutions

z� = za�−2
� + t�,1 · za�−1

� + . . .+ t�,a�−k�
· zk�−2, (5.4.2)

where the variables t�,m are deformation parameters.
As an example, consider the above case when r = 3 and k = (2, 1, 2). Then z2 = za2−2

2 + . . .+
t/z2. Hence, substituting this in E(1,3), the pole z2 survives, that is, E(1,3) cannot be deformed
by this substitution. On the other hand, substituting in E(2,2), or in E

(1,3)
k , the denominator

disappears. This partly shows the advantage and role of Ek. (The point is that exactly this
very last term in (5.4.2) will be crucial in what follows.)

We wish to emphasize that in our proof in § 8 from the (technical) formulas/definitions of
this subsection we need merely the fact that the deformation component associated with k
contains a 1-parameter deformation which has a set of equations that contains

zi−1zi+1 = zai
i + t · zki

i for all i ∈ {1, . . . , r}. (5.4.3)

6. The smoothings of sandwiched surface singularities, following de Jong and van Straten

Cyclic quotient singularities are particular cases of sandwiched surface singularities. de Jong
and van Straten related in [16] the deformation theory of sandwiched surface singularities to
the deformation theory of so-called decorated plane curve singularities. They show that 1-
parameter deformations of decorated curves provide 1-parameter deformations for sandwiched
singularities, and all of these later ones can be obtained in this way. Moreover, the Milnor
fibres of those that are smoothings can be combinatorially described by the so-called picture
deformations.

In this section we explain the general framework, while in § 7 we specialize it to cyclic quotient
singularities.

6.1. Sandwiched singularities

The normal surface singularity (X, 0) is called sandwiched if it is a germ of an algebraic surface
that admits a birational map X → C2. They were introduced in [34] by Spivakovsky; see also
[16, 19, 24] for different view points.

Sandwiched singularities are rational. They are characterized (like the rational singularities)
by their dual resolution graphs. Hence one may speak about sandwiched graphs.

Proposition 6.1.1. Sandwiched graphs are characterized as follows: by adding new
vertices with weights (self-intersections) −1 (on the ‘right places’) one may obtain a ‘smooth
graph’, that is, the dual tree of a configuration of smooth rational curves which blows down to
a smooth point.
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6.2. Decorated curves and their deformations

Any sandwiched singularity may be obtained from a weighted curve (C, l). Here (C, 0) ⊂ (C2, 0)
denotes a reduced germ of plane curve with branches {Ci}1�i�r and a function {1, . . . , r} 
i 
→ li ∈ N∗.

Consider the minimal resolution of C. The multiplicity sequence associated with Ci is the
sequence of multiplicities on the successive strict transforms of Ci, starting from Ci itself and
not counting the last strict transform. The total multiplicity m(i) of Ci with respect to C is
the sum of multiplicities of Ci already defined.

Definition 6.2.1 [16, (1.3)]. A decorated germ of plane curve is a weighted germ (C, l)
such that li � m(i) for all i ∈ {1, . . . , r}.

The point is that starting from a decorated germ, one can blow up iteratively points infinitely
near 0 on the strict transform of C, such that the number of such points sitting on the strict
transform of Ci is exactly li. If li is sufficient large (in general, larger than m(i)), then the union
of the exceptional components that do not meet the strict transform of C forms a connected
configuration of curves. After its contraction one gets necessarily a sandwiched singularity
X(C, l), determined uniquely by (C, l) (for details see [16]).

The total multiplicity of Ci with respect to C may be encoded also as the unique subscheme
of length m(i) supported on the preimage of 0 on the normalization of Ci. The same thing
is valid for li. This allows to define the total multiplicity scheme m(C) of any reduced curve
contained in a smooth complex surface, as the union of the total multiplicity schemes of all its
germs.

Definition 6.2.2.

(i) Given a smooth complex analytic surface Σ, a pair (C, l) consisting of a reduced curve
C ↪→ Σ and a subscheme l of the normalization C̃ of C is called a decorated curve if m(C) is
a subscheme of l (see [16, (4.1)]).

(ii) A 1-parameter deformation of a decorated curve (C, l) over a germ of smooth curve
(S, 0) consists of the following:

(1) a δ-constant deformation CS → S of C;
(2) a flat deformation lS ⊂ C̃S = C̃ × S of the scheme l, such that
(3) mS ⊂ lS , where the relative total multiplicity scheme mS of C̃S → CS is defined as

the closure
⋃
s∈S\0m(Cs) (see [16, p.476]).

(iii) A 1-parameter deformation (CS , lS) is called a picture deformation if for generic s 	= 0
the divisor ls is reduced.

In [16, (4.4)] the authors prove that all the 1-parameter deformations of X(C, l) are obtained
by 1-parameter deformations of the decorated germ (C, l). Moreover, picture deformations
provide smoothings of X(C, l).

6.3. Picture deformations and their Milnor fibres

Consider a decorated germ (C, l) with all the components {Ci}1�i�r smooth, and one of
its picture deformations (CS , lS). Fix a closed Milnor ball B for the germ (C, 0). For s 	= 0
sufficiently small, Cs will have a representative in B, denoted by D, which meets ∂B
transversally. It is a union of embedded discs {Di}1�i�r canonically oriented by their complex
structures (and which has a set of indices that correspond canonically to those of {Ci}1�i�r).
The singularities of D consist of ordinary m-tuple points, for various m.
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Denote by {Pj}1�j�n the images in B of the points in the support of ls. It is a finite set
of points that contains the singular set of D (because ms ⊂ ls), but it contains some other
‘free’ points as well. There is a priori no preferred choice of their ordering. Hence, the matrix
introduced next is well defined only up to permutation of columns.

Definition 6.3.1 [16, p.483]. The incidence matrix of a picture deformation (CS , lS) is
the matrix I(CS , lS) ∈ Matr,n(Z) which has an entry at the intersection of the ith row and the
jth column equal to 1 if Pj ∈ Di and to 0 if Pj /∈ Di.

Definition 6.2.2(2) implies that

the sum of entries on the ith row of I(CS , lS) is li. (6.3.2)

The Milnor fibre of such a smoothing is recovered as follows. Let

(B̃, D̃)
β−→ (B,D) (6.3.3)

be the simultaneous blow-up of the points Pj of D. Here D̃ :=
⋃

1�i�r D̃i, where D̃i is the
strict transform by the modification β of the disc Di. Let Ti be a sufficiently small open
tubular neighbourhood of D̃i in B̃.

Proposition 6.3.4 [16, (5.1)]. Suppose that all the irreducible components of C are
smooth. The Milnor fibre of the smoothing of X(C, l) corresponding to the picture defor-
mation (CS , lS) is orientation-preserving diffeomorphic to the compact oriented manifold with
boundary W := B̃ \ (

⋃
1�i�r Ti) (which has corners that are smoothed).

7. The smoothings of cyclic quotient singularities following de Jong and van Straten

7.1. How to find (C, l)?

The construction of the decorated germ (C, l) used for cyclic quotients is in a natural way valid
for the more general class of minimal singularities. Hence, it is natural to present it in this
context. Minimal singularities were introduced by Kollár [17] in arbitrary dimension. In the
case of normal surfaces, they are exactly those rational germs which have reduced fundamental
cycle (for example, see [19]). They are special sandwiched singularities, characterized by their
graphs as follows.

Consider the minimal resolution of a rational singularity (X,x). Let Γ be its dual graph, let J
be the set of its vertices, let νj be the valency and let −ej < 0 be the weight (self-intersection)
of the vertex j ∈ J . Then (X,x) is minimal if and only if its minimal resolution satisfies νj � ej
for all j ∈ J .

For any minimal singularity (X,x), there is an easy algorithm that provides a decorated
curve (C, l) defining (X,x), starting from Γ. Its steps are the following.

(I) Construct a new graph Γ′ by connecting the vertex j of Γ to ej − νj new vertices, with
the exception of one vertex j0 satisfying ej0 − νj0 > 0, which must be connected to ej0 − νj0 − 1
new vertices. Each new vertex is endowed with the weight −1.

(II) Construct another graph Γ′′ by endowing each new vertex with one new arrowhead.
Then Γ′ is a smooth graph (hence by Proposition 6.1.1 minimal singularities are sandwiched

indeed), and Γ′′ is the (not necessarily minimal) dual graph of an embedded resolution of a
germ of a plane curve C with all components Ci smooth. They are obtained by blowing-down
‘curvettas’ corresponding to the arrowheads of Γ′′.

The graph Γ′′ also has the following properties.
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Figure 4. The dual graph associated with (C, l), with Xp,q = X(C, l).

Lemma 7.1.1.

(1) The intersection number of the irreducible curves Ci and Cj associated with two distinct
arrowheads is equal to the number of vertices on the intersection of the geodesics from j0 to
the two arrowheads.

(2) The weight li associated with the irreducible curve corresponding to an arrowhead is
equal to the distance from the vertex j0 to that arrowhead.

We apply the previous procedure to Xp,q by choosing as j0 that vertex of Γ = G(b) which
is marked by 1, that is, which has weight −b1 (see Figure 2). We use the notation (2.2.6) for
the sequence b. Hence, Xp,q may be presented as a sandwiched singularity X(C, l), where the
components of C are indicated in the graph Γ′′ shown in Figure 4. By (2.2.7), the number
of curves is exactly r (which explains why we have chosen this notation for the number of
components of C in § 6). By Lemma 7.1.1 one has

Ci · Cj = li − 1 for all 1 � i < j � r; (7.1.2)

li = 2 +
∑

1�j�h−1

(nj − 2) whenever
∑

1�j�h−1

mj � i <
∑

1�j�h
mj . (7.1.3)

By (2.2.5), these last relations (7.1.3) transform into

li = 2 +
∑

1�j�i
(ai − 2) for all i ∈ {1, . . . , r}. (7.1.4)

7.2. From triangulations to the incidence matrix

We describe the incidence matrix using an interpretation by Stevens of the elements of Kr

via triangulations of a polygon [35], and the following notation: If M ∈ Matr,n(Z) then
∫
M ∈

Matr,n(Z) will denote that matrix which has an ith row that is the sum of the first i rows of M .
By our construction, we get the same incidence matrix as in [16], nevertheless, we arrive to it
slightly differently (perhaps, more conceptually). More precisely, [16] starts with a ‘difference
matrix’ (with non-negative entries), considers its

∫
, and the modulo 2 remainders of the entries

of this second matrix constitute the incidence matrix. In our case, we conceptually assign to
each entry of the ‘difference matrix’ a sign such that its

∫
will be exactly the incidence matrix;

cf. Remark 7.2.3.
Assume that r > 1 (since #K1 = 1, in the identifications we wish to get we lose nothing).
Consider a convex polygon Pr+1, its set of triangulations T (Pr+1), and Stevens’ bijection

T (Pr+1) → Kr (θ 
→ k) as in § 5.4. Fix θ ∈ T (Pr+1). To each triangle Δ of θ and vertex A of
Pr+1 we define a ‘sign’ α = α(A,Δ) ∈ {0,−1,+1} as follows. If A is not a vertex of Δ, we take
α = 0. Then we (totally) order the vertices of Δ by restricting to them the order A1, . . . , Ar+1

of the vertices of Pr+1. We set α = +1 for the first and third vertex, while α = −1 for the
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Figure 5. Dual graph associated with (C, l), with X11,4 = X(C, l).

second one. Next, we order the triangles {Δj}r−1
j=1 of θ in an arbitrary way, and we define the

‘sign-incidence matrix’ between the vertices A1, . . . , Ar (corresponding to the rows) and the
triangles Δ1, . . . ,Δr−1 (corresponding to the columns) by di,j := α(Ai,Δj). If θ corresponds
to k, then denote this matrix by D(k) ∈ Matr,r−1(Z) (well defined up to a permutation of
its columns). Moreover, for each � ∈ N, denote by Mr,�(i) ∈ Matr,�(Z) the matrix which has
entries all of which are equal to +1 on the ith row and all of which are equal to 0 elsewhere.

Then, for each k ∈ Kr(a), consider the ‘block-matrix’

D(a; k) := (D(k) |Mr,a1−k1(1) | . . . |Mr,ar−kr
(r)) ∈ Matr,r−1+

∑
(ai−ki)(Z). (7.2.1)

The following theorem, valid for any fixed (C, l) as in § 7.1, follows from [16, Section 6.4].

Theorem 7.2.2 [16, (6.18)]. For every k ∈ Kr(a), the matrix
∫
D(a; k) is (up to a

permutation of columns) the incidence matrix of some picture deformation of (C, l). In
particular, the number n of points {Pi}i is n = r − 1 +

∑r
i=1(ai − ki). Moreover, varying

k ∈ Kr(a), one gets all incidence matrices of picture deformations of (C, l).

Remark 7.2.3. In [16] the authors call the matrices
∫
D(a; k) CQS-matrices, and denote

them by M . Up to the signs of the entries, D(a; k) are their difference matrices ΔM . More
precisely, the entries of ΔM are the absolute values of the entries of D(a; k).

Remark 7.2.4. By Definition 6.3.1 and (6.3.2), an incidence matrix has all its entries equal
to 0 or +1 and the sum of all entries of the ith row is li. Let us verify that this is indeed the
case for

∫
D(a; k). The first property is a consequence of the fact that on each column of D(k),

the non-zero entries are either (+1,−1) or (+1,−1,+1), always in this order, depending on
the fact that Ar+1 is a vertex of the corresponding triangle or not. The second property is
a consequence of (7.1.4) and the following elementary fact regarding the above sign-assigning
procedure: A1 has no sign equal to −1, and Ai has exactly one sign equal to −1 for any i > 1.

Since, via picture deformations, we hit all the components of the reduced miniversal base
space of Xp,q, via the correspondence Theorem 7.2.2 de Jong and van Straten parametrize the
smoothing components by the elements of Kr(a). Denote by SJSk the component parametrized
by k ∈ Kr(a). Denote by W (a, k) the Milnor fibre of the corresponding smoothing, that is, the
manifold constructed in § 6.3, specialized to the present situation.

Example 7.2.5. Here we list all the objects presented in this section, applied for the
singularity X11,4, that is, for a = (2, 3, 2, 2) and b = (3, 4). The dual graph of the minimal
resolution is G(3, 4) (see Figure 2), while the resolution graph of the decorated germ (C, l) is
drawn in Figure 5 (where between parenthesis we inserted the integers {li}4

i=1):



MILNOR FIBRES OF CYCLIC QUOTIENT SINGULARITIES 573

Figure 6. A general member of a picture deformation with k = (1, 2, 2, 1).

Figure 7. A general member of a picture deformation with k = (1, 3, 1, 2).

The associated set of sequences representing zero is given by

K5(2, 3, 2, 2) = {(1, 2, 2, 1), (1, 3, 1, 2)}.

One has the following associated triangulations of a pentagon (with the corresponding signs),
matrices D(a; k) and

∫
D(a; k) (with blocks Mr,ai−ki

separated, those with ai = ki being
empty), and a generic member of a picture deformation with

∫
D(a; k) as the incidence matrix

(see Figures 6 and 7) as follows:
(i) k = (1, 2, 2, 1).

D(2, 3, 2, 2; 1, 2, 2, 1) =

⎛⎜⎜⎝
+1 0 0 +1 0 0
−1 +1 0 0 +1 0
0 −1 +1 0 0 0
0 0 −1 0 0 +1

⎞⎟⎟⎠
∫
D(2, 3, 2, 2; 1, 2, 2, 1) =

⎛⎜⎜⎝
1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 1 1 0
0 0 0 1 1 1

⎞⎟⎟⎠
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(ii) k = (1, 3, 1, 2).

D(2, 3, 2, 2; 1, 3, 1, 2) =

⎛⎜⎜⎝
+1 0 0 +1 0
−1 +1 +1 0 0
0 0 −1 0 +1
0 −1 +1 0 0

⎞⎟⎟⎠
∫
D(2, 3, 2, 2; 1, 3, 1, 2) =

⎛⎜⎜⎝
1 0 0 1 0
0 1 1 1 0
0 1 0 1 1
0 0 1 1 1

⎞⎟⎟⎠

8. ‘From Christophersen and Stevens to Lisca’

8.1. Some inequalities

Before we start our discussion regarding deformations of cyclic quotients, we state a technical
lemma, which will be used several times.

Lemma 8.1.1. Assume that x ∈ Nn is an admissible sequence (cf. Definition 2.1.5). Then
we have the following.

(1) For any x′i � xi (1 � i � n), x′ is admissible too.
(2) Assume that {νi}n+1

i=0 satisfy the inequalities νi+1 � xi νi − νi−1 for all 1 � i � n. Then
for all i one also has

νi+1 � Zi(xi, . . . , x1) ν1 − Zi−1(xi, . . . , x2) ν0. (8.1.2)

(3) Assume that xi � 2 for all i and set μi := Zi−1(x1, . . . , xi−1) − Zi−2(x2, . . . , xi−1) for
1 � i � n. Then

1 = Z0 < Z1(x1) < Z2(x1, x2) < . . . < Zn(x1, . . . , xn) , and

1 = μ1 � μ2 � . . . � μn .

Proof. (1) We have that M(x′) is the sum of M(x) and a diagonal matrix with non-negative
entries. Therefore, if M(x) is positive semi-definite of rank at least (n− 1), then M(x′) will
have the same property.

(2) We prove by decreasing induction on j that, for fixed i and for all 1 � j � i, one has

νi+1 � Zi−j+1(xi, xi−1, . . . , xj) νj − Zi−j(xi, xi−1, . . . xj+1) νj−1. (8.1.3)

For j = i this is clear. The induction runs as follows. Since M(x) is positive semi-definite
Zi−j+1(xi, . . . , xj) � 0, it follows that the right-hand side of (8.1.3) is greater than

Zi−j+1(xi, . . . , xj) (xj−1νj−1 − νj−2) − Zi−j(xi, . . . xj+1) νj−1

= [xj−1Zi−j+1(xi, . . . , xj) − Zi−j(xi, . . . xj+1)] νj−1 − Zi−j+1(xi, . . . , xj) νj−2.

Since in the parenthesis we have exactly Zi−j+2(xi, . . . , xj−1) (cf. equation (2.1.3)), the proof
of (8.1.3) is finished for all j. For j = 1 we get the wished inequality.
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(3) The first part follows by induction: if Zi−1(x1, . . . , xi−1) > Zi−2(x1, . . . , xi−2), then

Zi(x1, . . . , xi) = xiZi−1(x1, . . . , xi−1) − Zi−2(x1, . . . , xi−2) > (xi − 1)Zi−1(x1, . . . , xi−1).

This reinterpreted also shows that μi � 0. Then the identity μi+1 − μi = (xi − 2)μi + (μi −
μi−1) and induction completes the proof.

Since k is admissible and k � a, the above lemma can be applied for both k and a.

8.2. X t
k as the Milnor fibre

In what follows, will follow the notation of § 5. First we concentrate on Xp,q. Using equations
(5.2.4) and induction, one shows that the restriction of each zi to Xp,q is a rational function in
(z0, z1) of the form

zi = z
Zi−1(a1,...,ai−1)
1 · z−Zi−2(a2,...,ai−1)

0 for i ∈ {1, . . . , r + 1}. (8.2.1)

The equations Ek are weighted homogeneous, however, the weights wi := w(zi) are not
unique. With the choice w0 = w1 = 1 one has the following lemma.

Lemma 8.2.2. We have the following:

(a) wi = Zi−1(a1, . . . , ai−1) − Zi−2(a2, . . . , ai−1) for all i � 1;
(b) 1 = w0 = w1 � w2 � . . . � wr+1 = q.

Proof. We see that (a) follows from (8.2.1), wr+1 = q from (2.1.2), and the rest of (b) from
Lemma 8.1.1.

We consider a special 1-parameter deformation Etk of the equations Ek. This deformation is
uniquely determined by the deformed equations of (5.2.4) (cf. [12; 35, (2.2)]). These are (see
(5.4.3)) as follows:

zi−1zi+1 = zai
i + t · zki

i for all i ∈ {1, . . . , r}, (8.2.3)

where t ∈ C. Note that, although (5.2.4) did not depend on k, this is not the case for their
deformations. Let X t

k be the affine space determined by the equations Etk in Cr+2.

Lemma 8.2.4. The deformation t 
→ X t
k has negative weight and is a smoothing belonging

to the component SCS
k . In particular, X t

k is a smooth affine variety for t 	= 0.

Proof. The first statement just means that the weight of the added monomial zki
i is not

larger than the weight of zi−1zi+1 − zai
i , that is, wi > 0 and ki � ai. For the second part one

checks the general form of the equations of SCS
k from [35, (2.2)] or [12], and the fact that the

present deformation does not belong to the discriminant of SCS
k described in [12].

In fact, the smoothness also follows from our direct computation, as a byproduct of
Theorem 8.4.6. Indeed, X t

k as a fibre of the miniversal deformation is normal. In § 8.3 we
construct a resolution of it, which has no exceptional curve by Theorem 8.4.6. Hence X t

k

is smooth.

In particular, the above smoothing has a series of pleasant properties (for example, it induces
a projective deformation that is locally trivial ‘near ∞’). Moreover, by [37, (2.2)] we have that

X t
k is diffeomorphic to the Milnor fibre of SCS

k . (8.2.5)
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In what follows we denote by X̂ t
k the closure of X t

k in Pr+2, and let C∞
k = X̂ t

k \ X t
k be its curve

at infinity (as may be seen by a computation, or by the equisingularity at infinity mentioned
above, C∞

k is topologically independent of k and t).

8.3. X t
k as a rational surface

Similarly as for Xp,q one shows by induction that on X t
k all the restrictions of the coordinates

zi can be expressed as rational functions in (z0, z1)

Lemma 8.3.1. For each i ∈ {1, . . . , r + 1}, on X t
k one has

zi = z
−Zi−2(a2,...,ai−1)
0 Pi (8.3.2)

for some Pi ∈ Z[t, z0, z1]. The polynomials Pi satisfy the inductive relations as follows:

Pi−1 · Pi+1 = P ai
i + tP ki

i · z(ai−ki)·Zi−2(a2,...,ai−1)
0 (8.3.3)

with P1 = z1 and with the convention P0 = 1. Moreover z0 � Pi.

Proof. Define Pi by (8.3.2). By a substitution it is clear that (8.3.3) follows from (8.2.3) and
(8.3.2). By (8.3.3) and induction, Pi is an (a priori rational) function in the variables (t, z0, z1).
Hence, we only have to prove that Pi is a polynomial and z0 � Pi. Let R be an irreducible
polynomial in (t, z0, z1) and let νR : C(t, z0, z1)∗ → Z be the valuation associated with it. We
have to show that νR(zi) � 0 for R 	= z0 and νz0(zi) = −Zi−2(a2, . . . , ai−1).

Set νi := νR(zi), and consider first R = z0. Then analysing (8.2.3), we get that z0 is a pole
of zi for i � 2, and hence νz0(z

ai
i + tzki

i ) � νz0(z
ai
i ). This shows that νi+1 � ai νi − νi−1, and

hence (8.1.2) can be applied. Since ν0 = 1 and ν1 = 0, we get νi � −Zi−2(a2, . . . , ai−1).
If R 	= z0, then ν0 = 0 and ν1 � 0. Assume that νj � 0 for 0 � j � i. Then by (8.2.3) we have

νj+1 � kj νj − νj−1 for all 1 � j � i, and hence (8.1.2) can again be applied (which has ‘Z-
coefficients’ that are non-negative by the admissibility of k). In particular νi+1 � 0 too. Hence
Pi is a polynomial. Finally, (8.3.3) shows that Pi+1Pi−1 ≡ cP ai

i (mod z0) for some non-zero
constant c. Since z0 does not divide P0 and P1, by induction it does not divide Pi either.

In fact, by Lemma 8.1.1(3) and (2.1.2), the different exponents of z0 in (8.3.2) satisfy:

1 = Z0 < Z1(a2) < . . . < Zi−2(a2, . . . , ai−1) < . . . < Zr−1(a2, . . . , ar) = p− q. (8.3.4)

Define now the application π : C2 \ {z0 = 0} −→ X t
k by (z0, z1) 
→ (z0, z1, . . . , zr+1), or

(z0, z1) −→ (z0, z1, z−1
0 P2, . . . , z

−Zi−2(a2,...,ai−1)
0 Pi, . . . , z

−(p−q)
0 Pr+1) ∈ Cr+2, (8.3.5)

and the induced birational map π̂ : P2 ��� X̂ t
k , which sends [z−1 : z0 : z1] into[

1 :
z0
z−1

:
z1
z−1

:
za1
1 + tzk11

za1−1
−1 z0

: . . . :
Pi

zwi
−1z

Zi−2(a2,...,ai−1)
0

: . . . :
Pr+1

zq−1z
p−q
0

]
. (8.3.6)

Let ρ′k : B′P2 → P2 be the minimal sequence of blow-ups such that π̂ ◦ ρ′k extends to a regular
map B′P2 → X̂ t

k. Let L∞ ⊂ P2 be the line at infinity (defined by z−1 = 0) and let L0 be the
closure in P2 of {z0 = 0}. We use the same notation for their strict transforms via blow-ups
of P2.

Lemma 8.3.7. The morphism π̂ ◦ ρ′k sends L0 and the total transform of L∞ in C∞
k .
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Proof. Use (8.3.6) or the fact that the projection pr : X t
k → C2 is regular and the

corresponding restrictions of pr ◦ (π̂ ◦ ρ′k) and ρ′k are equal.

Hence, from the point of view of X t
k, resolving the indeterminacy points of π̂ above L∞

is irrelevant. Let ρk : BP2 → P2 be the minimal sequence of blow-ups which resolve the
indeterminacies of π̂ sitting in C2 (hence ρ′k and ρk over C2 coincide). Denote by Eπ its
exceptional curve and by Cπ the union of those irreducible components of Eπ that are sent to
C∞
k . Summing up the above discussions, one obtains the following corollary.

Corollary 8.3.8. The restriction of π̂ ◦ ρk induces an isomorphism BP2 \ (L∞ ∪ L0 ∪
Cπ) → X t

k. In particular, the Milnor fibre can be realized as the complement of the projective
curve L∞ ∪ L0 ∪ Cπ in BP2.

Proof. Use the fact that X t
k is smooth; cf. Lemma 8.2.4.

For the convenience of the reader, we represent in the following diagram all the maps
introduced in the previous discussion:

BP2

ρk

������������� B′P2�� ��

ρ′k
��

X̂ t
k = X t

k ∪ C∞
k

X t
k

pr

��

� ���

P2 = C2 ∪ L∞

π̂

��������
C2� ���

8.4. The curve-configurations Eπ and Cπ

The equations (8.3.4) and (8.3.5) show that the indeterminacy points of π̂ sitting in C2 are
given by {z0 = Pr+1 = 0}. By equations (8.3.3) and induction, this set equals {z0 = P2 = 0} =
{z0 = za1

1 + tzk11 = 0} sitting in L0. The indeterminacy at the points (0, ξj), where {ξj}j are
the roots of za1−k1

1 + t = 0, can be eliminated by a single blow-up (for example, see below).
The indeterminacy at (0, 0) (which appears exactly when k1 > 0, that is, when r > 1) requires,
in general, more blow-ups. The structure of π̂ at these points will be revealed in the following
paragraphs.

The modification ρk : BP2 → P2 will be constructed in two steps. First, we define a
toric modification of P2 with exceptional curves

⋃r
j=2 Vj , all above [1 : 0 : 0], such that

L0 ∪ (
⋃r
j=2 Vj) form a string. After this modification,

∑
1�i�r(ai − ki) indeterminacy points

survive; they will be eliminated in the second step by blowing up each point once.
Recall that z0 = χv0 and z1 = χv1 . Denote by (u1, ur+1) ∈ N the dual basis of (v0, v1) and

by σ̃ the cone generated by it. Hence, the affine plane C2 of coordinates (z0, z1) is identified
with the toric surface Zσ̃,N . Take also u0 := −(ur+1 + u1) and the complete regular fan F0

which has 1-dimensional cones that are generated by u0, u1 and ur+1. Then ZF0,N = P2.
Next, consider the complete regular fan Fk subdividing F0, which has 1-dimensional cones

that are generated by the primitive elements u0, u1, . . . , ur+1 of N such that (see Figure 8)

u0 + u2 = (k1 − 1)u1,

uj−1 + uj+1 = kjuj for all j ∈ {2, . . . , r},
ur+1 + u1 = −u0.

(8.4.1)

Its existence is ensured by the fact that k is an admissible sequence that represents 0.
Now, Fk being a subdivision of F0, it induces a proper birational toric morphism

ZFk,N
ψk−→ ZF0,N = P2. (8.4.2)
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Figure 8. The complete regular fan Fk.

For any j ∈ {0, . . . , r}, denote by Oj � C∗ the orbit in ZFk,N corresponding to the 1-
dimensional cone generated by uj , and by Vj its closure. Clearly V0 = L∞ and V1 = L0.

In fact, ψk can also be characterized independently of toric geometry: it is the unique
modification with exceptional divisors {Vj}rj=2, all above the point (0, 0), such that L0 ∪ V2 ∪
. . . ∪ Vr form a string with self-intersections 1 − k1, −k2, . . . ,−kr; cf. [26, (1.6)].

For all j ∈ {0, . . . , r} let σj be the cone generated by (uj , uj+1) and let (ξj , ηj) be the dual
basis of (uj , uj+1). Set the corresponding monomials xj := χξj and yj := χηj . Therefore, in
Zσj ,N one has {xj = 0} = Vj and {yj = 0} = Vj+1. Moreover, the restriction

ψj : Zσj ,N −→ Zσ̃,N = C2, (8.4.3)

of ψk to Zσj ,N ⊂ ZFk,N is described by the following monomial changes of variables:

z0 = x
Zj−1(k1,...,kj−1)
j y

Zj(k1,...,kj)
j

z1 = x
Zj−2(k2,...,kj−1)
j y

Zj−1(k2,...,kj)
j

for all j ∈ {1, . . . , r}. (8.4.4)

This is a consequence of the fact that, for all j ∈ {1, . . . , r}, one has

uj = Zj−1(k1, . . . , kj−1)u1 + Zj−2(k2, . . . , kj−1)ur+1. (8.4.5)

The relation (8.4.5) follows by (increasing) induction, (8.4.1) and determinantal relations as
in (2.1.3).

Theorem 8.4.6. Consider the birational map Ψk := ψk ◦ π̂ : ZFk,N ��� X̂ t
k. The indeter-

minacy points of Ψk are contained in
⋃r
j=1Oj . Moreover, each orbit Oj contains precisely

aj − kj indeterminacy points, which are eliminated by blowing up each point once. Let ρk be
the composition of Ψk with these blow-ups and let C be any of the new exceptional curves
obtained by one of these

∑r
j=1(aj − kj) blow-ups. Then ρk(C) is a curve with ρk(C) 	⊂ C∞

k .
Moreover, Ψk and ρk map

⋃r
j=0 Vj and their strict transforms, respectively, to C∞

k .

Proof. Note that, for any j ∈ {1, . . . , r}, in the chart Zσj ,N with affine coordinates (xj , yj)
one has {xj = 0} = Oj ∪ {Vj ∩ Vj+1}, and hence these affine coordinate axes cover all the
exceptional locus and indeterminacy points. Hence, it is enough to analyse in each chart (xj , yj)
the behaviour of Ψk along {xj = 0}. For each i ∈ {1, . . . , r + 1} and j ∈ {1, . . . , r}, define

m
(j)
i :=

{
Zj−i−1(ki+1, . . . , kj−1) if i � j,

−Zi−j−1(aj+1, . . . , ai−1) if i > j.
(8.4.7)
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The next technical lemma will not only guarantee that m(j)
i is the valuative order of zi ◦ ψk

along Vj , but also it gives a rather complete structure of the pull-back zi ◦ ψj as well, where
the maps ψj are defined by (8.4.3).

Lemma 8.4.8. For any fixed j, one has

zi ◦ ψj = x
m

(j)
i

j y
m

(j+1)
i

j Q
(j)
i (8.4.9)

for some Q
(j)
i ∈ Z[t, xj , yj ], which has the following properties too.

(a) We have

Q
(j)
i

∣∣∣
xj=0

=

{
c1 for i � j,

c′1(c2y
aj−kj

j + c3t)Zi−j−1(aj+1,...,ai−1) for i > j

for some non-zero constants c1, c
′
1, c2 and c3, where c2 and c3 are independent of i.

(b) Let yj = ξ be one of the roots of c2y
aj−kj

j + c3t = 0. For each ξ expand Q
(j)
i in Taylor

series in local variables (xj , yj − ξ), and write it as a sum
∑
h�hξ

Q
(j)
i (h) of homogeneous

polynomials Q
(j)
i (h) of degree h in these local variables, such that Q

(j)
i (hξ) 	= 0. Then we have

hξ = Zi−j−1(aj+1, . . . , ai−1).

Hence, by (a) and (b), the variable xj does not divide Q
(j)
i (hξ).

Proof. The proof is straightforward and elementary. It uses, for any fixed j ∈ {1, . . . , r},
induction over i ∈ {1, . . . , r + 1}, the ‘inductive equations’ (8.2.3), the substitution (8.4.4) and
inductive formulas relating Z(x); cf. (2.1.3). For i = 1, we find that z1 ◦ ψj is given by (8.4.4),
which proves Lemma 8.4.8 with Q(j)

1 = 1. The inductive step is given by (8.2.3), namely,(
zi+1 ◦ ψj

)
· xm

(j)
i−1

j y
m

(j+1)
i−1

j Q
(j)
i−1 =

(
x
m

(j)
i

j y
m

(j+1)
i

j Q
(j)
i

)ai + t
(
x
m

(j)
i

j y
m

(j+1)
i

j Q
(j)
i

)ki
. (8.4.10)

Case 1 � i � j. For some i � j − 1, assume that Lemma 8.4.8 is satisfied for both i and
i− 1. We will verify it for i+ 1. First we analyse in (8.4.10) the exponents of xj (the discussion
for yj-exponents is similar). From the right-hand side of (8.4.7) one factors out kim

(j)
i , and

the inductive step for these exponents which we need to verify is m(j)
i+1 = kim

(j)
i −m

(j)
i−1, which

follows from (2.1.3). Next, the inductive formula for Q(j)
i+1 is as follows:

Q
(j)
i+1 ·Q

(j)
i−1 = x

(ai−ki)Zj−i−1(ki+1,...,kj−1)
j y

(ai−ki)Zj−i(ki+1,...,kj)
j (Q(j)

i )ai + t(Q(j)
i )ki .

If ai > ki, then the exponent of xj is positive, and hence Q
(j)
i+1

∣∣
xj=0

= t(Q(j)
i

∣∣
xj=0

)ki ·
(Q(j)

i−1

∣∣
xj=0

)−1 is constant by induction. If ai = ki, then one has a similar expression.

Case i = j + 1. This is the first case when the m(j)
i -expression changes its shape (cf. (8.4.7))

andQ(j)
i

∣∣
xj=0

is not constant. Note thatm(j)
j = 0 andm(j+1)

j = 1, and hence the inductive steps

for the coordinate exponents can easily be verified. Moreover,Q(j)
j+1 ·Q

(j)
j−1 = y

aj−kj

j + t(Q(j)
j )kj ,

and hence Lemma 8.4.8(a) and (b) also follows with hξ = 1.

Case i > j + 1. The exponents of xj and yj can be analysed similarly, while Q(j)
i+1 ·Q

(j)
i−1 =

(Q(j)
i )ai + t(Q(j)

i )ki ·M, where

M := x
(ai−ki)Zi−j−1(aj+1,...,ai−1)
j y

(ai−ki)Zi−j−2(aj+2,...,ai−1)
j .
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Figure 9. Illustration for Corollary 8.4.11.

Note that Zi−j−1(aj+1, . . . , ai+1) is always strictly positive (cf. Lemma 8.1.1(3)). Hence,
M

∣∣
xj=0

= 0 if ai > ki and = 1 otherwise. Hence Lemma 8.4.8(a) and (b) follows again by
(2.1.3).

The function zi ◦ ψj for 1 � i � j is regular, while for i > j it is given by

zi ◦ ψj =
Q

(j)
i

x
Zi−j−1(aj+1,...,ai−1)
j y

Zi−j−2(aj+2,...,ai−1)
j

.

Note that the exponent Zi−j−1(aj+1, . . . , ai−1) is always strictly positive; cf. Lemma 8.1.1(3).
The yj-coordinates of the indeterminacy points on {xj = 0} are given by Q

(j)
i |xj=0, which

corresponds to the roots ξ introduced in the above technical Lemma 8.4.8. In particular, by
this lemma, any of them is eliminated by one blow-up.

All the other statements of Theorem 8.4.6 now follow easily. This ends its proof.

Theorem 8.4.6 shows that Eπ has (r − 1) +
∑r
i=1(ai − ki) irreducible components and that

Cπ =
⋃r
j=2 Vj .

Using the correspondence between the equations relating the ui in (8.4.1) and the self-
intersections of the corresponding curves in the associated toric variety ZFk,N , we get the
following corollary.

Corollary 8.4.11. Consider the lines L∞ and L0 on P2 as above. Blow up r − 1 +∑r
i=1(ai − ki) infinitely near points of L0 in order to get the dual graph in Figure 9

of the configuration of the total transform of L∞ ∪ L0 (this procedure topologically is
unique, and its existence is guaranteed by the fact that k ∈ Kr(a)). Denote the space
obtained by this modification by BP2. Then the Milnor fibre X t

k of SCS
k is diffeomorphic to

BP2 \ (
⋃r
j=0 Vj).

Moreover, let T be an open tubular neighbourhood of
⋃r
j=0 Vj , and set Fp,q(k) = BP2 \ T .

Then Fp,q(k) is a representative of the Milnor fibre of SCS
k .

Furthermore, the marking {Vi}i, as in the Figure 9, defines on the boundary of Fp,q(k) an
order; denote this supplemented space by Fp,q(k)∗. Then its ordered boundary is L(p, q)∗.

8.5. The identification of Lisca’s fillings with Milnor fibres

Let Wp,q(k)∗ be Lisca’s filling endowed with the preferred order on its boundary (cf. (4.4));
and let Fp,q(k)∗ be the Milnor fibre as in Corollary 8.4.11.

Theorem 8.5.1. The ordered manifold Wp,q(k)∗ is orientation-preserving diffeomorphic
to Fp,q(k)∗ by a diffeomorphism that preserves the orders of the boundaries.
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Proof. We see that Fp,q(k)∗ from Corollary 8.4.11 satisfies Proposition 4.4.2. Indeed, BP2,
with V0 anti-blown-down differentiably, will serve as the differentiable closed 4-manifold V .
The homology classes of the spheres Vi are the si (1 � i � r), and the wished homology classes
e with e2 = −1 are the classes of the (−1) exceptional curves from Figure 9, multiplied by ±1.
Moreover, using the intersection form on H2(BP2), we see that these are the only classes e
with e2 = −1 that intersect non-trivially only one component among V1, . . . , Vr. In fact, all the
homological computations in H2(BP2) fit perfectly with Lisca’s computation from [21, § 4].
The compatibility of orders is guaranteed by the compatibilities of the constructions, see also
§§ 3.5 and 3.6.

8.6. Remarks

(1) Let ρk be the modification introduced above (cf. Theorem 8.4.6 or § 8.3) (as the minimal
modification which eliminates the indeterminacy of π̂|C2). Analysing the proof of Lemma 8.4.8
we realize that ρk serves also as the minimal modification which eliminates the indeterminacy
of the last component of π from (8.3.5), namely of the rational function zr+1 = Pr+1/z

p−q
0 . In

particular, we find the following alternative description of the Milnor fibre Fp,q(k).
For each k ∈ Kr(a), define the polynomial Pr+1 via the inductive system (8.3.3). Let ρk :

BP2 → P2 be the minimal modification of P2 which eliminates the indeterminacy points of
Pr+1/z

p−q
0 sitting in C2. Then the dual graph of the total transform of L∞ ∪ L0 has the form

indicated in Figure 9, and Fp,q(k) is orientation-preserving diffeomorphic to BP2 \ (
⋃r
j=0 Vj).

(2) One proves that the irreducible decomposition of Pr+1 has the following form:

Pr+1 =
r∏
j=1

aj−kj∏
�=1

[Pj + ξj,� · zZj−2(a2,...,aj−1)
0 ]Zj−1(k1,...,kj−1), (8.6.1)

where
∏aj−kj

�=1 (λ+ ξj,�) = λaj−kj + t. Moreover, the strict transforms by ρk of these irreducible
components define ‘curvettas’ of the −1 curves from Figure 9.

(3) Sections 8.2 and 8.3 contain some common results with Balke’s paper [3]. In fact, [3]
convinced us that the identification Theorem 8.5.1 should be guided by a rather straightforward
construction.

9. Invariants of 4-manifolds by closing boundaries

In this section we present a procedure that provides invariants for 4-manifolds with boundary
W , by ‘closing’ them with another (fixed) 4-manifold U (a ‘cap’). Our main motivation is
Lisca’s criterion Proposition 4.3.1 and his construction in [21, § 7]. A similar ‘closing’ will
appear naturally for the Milnor fibres of sandwiched singularities as well (§ 10.1).

Then we generalize the results of § 4.3: we will not only replace the plumbing 4-manifold
Π(a) by an arbitrary 4-manifold U (with the same boundary), but also show that the same
criterion works for any such U that satisfies some homological properties.

9.1. The closing procedure

Let us fix a 4-manifold with boundary U , which will be used as a ‘cap’ for other 4-manifolds W .
Assume that, for some 4-manifold with boundary W , we have an (orientation-preserving)

diffeomorphism φ : ∂W → ∂U . Then we construct the closed manifold V = V (W,U, φ) by
gluing W and U along their boundaries using φ. We say that V is obtained by closing the
boundary of W by U . Its diffeomorphism type depends only on the isotopy class of φ. We write
μ : U ↪→ V for the inclusion, and ∂U,φ for the composition φ−1

∗ ◦ ∂U : H2(U, ∂U) → H1(∂U) →
H1(∂W ).
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Our goal is to establish some properties of W read from the homology of V .
In what follows, we suppose that H1(U) = 0 and H2(U) is free with a fixed basis c :=

(c1, . . . , cr). Denote by c∗ := (c∗1, . . . , c
∗
r) the dual basis of H2(U, ∂U) (via the intersection

pairing H2(U) ⊗H2(U, ∂U) → Z, which is a perfect pairing under the above assumptions).
Let M(c) := (QU (ci, cj))i,j ∈ Matr,r(Z) be the intersection matrix of U .

Once we close W by U , we concentrate on the following homological objects: ∂U,φ(c∗) :=
(∂U,φ(c∗1), . . . , ∂U,φ(c

∗
r)) in H1(∂W )r, and the image μ∗(c) ∈ H2(V )r of c.

Proposition 9.1.1. Suppose that ∂W is a rational homology sphere. Then, up to an
isomorphism (of such triplets), (H2(V ), QV ;μ∗(c)) depends only on the manifold W , on
∂U,φ(c∗) ∈ H1(∂W )r and on M(c), but not on the choice of the particular oriented 4-manifold
U (with H1(U) = 0 and H2(U) free) used for the closing.

Proof. The cohomological Mayer–Vietoris exact sequence, the vanishing H1(∂W ) = 0 and
Poincaré–Lefschetz duality provide the exact sequence as follows:

0 −→ H2(V ) −→ H2(W,∂W ) ⊕H2(U, ∂U) Δ→ H1(∂W ).

Hence H2(V ) = ker Δ, where Δ(x⊕ y) = ∂W (x) − ∂U,φ(y). Consider the exact sequence

0 −→ H2(U) i−→ H2(U, ∂U)
∂U,φ−→ H1(∂W ). (9.1.2)

The form QU (given by M(c)) extends to a rational form QU,Q on H2(U)Q, and identifies
H2(U, ∂U) with the sublattice of elements x ∈ H2(U)Q satisfying QU,Q(x, y) ∈ Z for all y ∈
H2(U). Hence, the restriction of QU,Q provides a rational form QU,∂U : H2(U, ∂U)⊗2 → Q. In
this way we recover H2(U, ∂U) with its form QU,∂U and the dual base c∗, and the sublattice
H2(U) in it. These, and the fact that H2(U) injects by y 
→ (0 ⊕ i(y)) into ker Δ, show that
H2(V ) and μ∗(c) ∈ H2(V )r can be recovered from the input data.

Let us consider nowW instead of U . The analogue of sequence (9.1.2) and a similar discussion
as above show that the form QW extends to a rational form QW,∂W : H2(W,∂W )⊗2 → Q. The
point is that the wished QV is exactly the restriction of QW,∂W ⊕QU,∂U to ker Δ (which
automatically takes only integral values).

9.2. The dependence on φ

The following proposition shows that in the presence of an order, in Proposition 9.1.1 the choice
of the gluing diffeomorphism φ is irrelevant.

Proposition 9.2.1. Assume that U is a 4-manifold with boundary such that ∂Ū is
identified with L(p, q)∗, H1(U) = 0 and H2(U) is free with a fixed base c.

Let W be a Stein filling of L(p, q)∗ (that is, on the boundary of W one can identify the
preferred order of the lens space), and let V be obtained from W by closing its boundary with
U using a gluing map that preserves the orientations and the orders of the boundaries. Then
(H2(V ), QV ;μ∗(c)) (constructed in Proposition 9.1.1) is independent of the choice of φ.

Moreover, (H2(V ), QV ;μ∗(−c)) � (H2(V ), QV ;μ∗(c)) too.

Proof. The argument is similar to § 4.3. The ambiguity regarding φ stays in the group
Diff+,o(L(p, q)). If a gluing φ is replaced by ϕ ◦ φ, where ϕ ∈Diff+,o(L(p, q)) induces on
H1(L(p, q)) multiplication by −1, then we can twist W by a self-diffeomorphism which induces
on the boundary ϕ (as in § 4.3), or instead, we can just multiply the homology of W by −1.
The last isomorphism can be realized via multiplication by −1 of H2(V ).
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Figure 10. The 4-manifold with boundary U .

10. ‘From de Jong and van Straten to Lisca’

10.1. Closing the boundary of the Milnor fibre

We keep all the notation of § 6. We consider again a decorated germ (C, l) with smooth
components Ci and a picture deformation (CS , lS).

As the disc configuration D is obtained by deforming C, its boundary ∂D :=⋃
1�i�rDi ↪→ ∂B is isotopic as an oriented link to ∂C ↪→ ∂B. Therefore, we can isotope D

outside a compact ball containing all the points Pj till its boundary coincides with the boundary
of C. Let (B′, C ′) be a second copy of (B,C), and define

(V,Σ) := (B,D)
⋃
id

(B
′
, C

′
).

Here V is the oriented 4-sphere obtained by gluing the boundaries of B and B
′
; and Σ :=⋃r

i=1 Σi, where Σi is obtained by gluing Di (perturbed by the above isotopy) and C
′
i along

their common boundaries. Moreover, one can also glue (B
′
, C

′
) with (B̃, D̃) in such a way that

the morphism β of (6.3.3) may be extended by the identity on B
′
, yielding

(Ṽ , Σ̃)
β−→ (V,Σ).

Here Σ̃ :=
⋃r
i=1 Σ̃i, where Σ̃i denotes the strict transform of the sphere Σi, that is, Σ̃i =

D̃i ∪ C
′
i. Write T :=

⋃
1�i�r Ti and set also (see Figure 10)

U := B
′ ∪ T. (10.1.1)

Since W = B̃ \ T (cf. Proposition 6.3.4), Ṽ is obtained by closing the boundary of W by the
cap U . Our goal is to recognize W by a combination of Lisca’s criterion (Proposition 4.3.1),
of Proposition 9.1.1, and of Proposition 9.2.1 applied for this closing. We start the needed
preparations for this program.

Lemma 10.1.2. The manifold U is independent of the chosen picture deformation (therefore
one may close all the different Milnor fibres using the same U). In fact, each Ti is a 4-dimensional

handle of index 2 glued to B
′
along the knot ∂Ci ↪→ ∂B

′
endowed with the (−li)-framing.

Proof. As H2(V ) = 0 (because V � S4 ), we get Σ2
i = 0. As Σ̃i is obtained from Σi by

blowing up (positively) li points on it and taking its strict transform, we deduce that Σ̃2
i = −li;
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But this self-intersection is also equal to the self-linking number of the attaching circle ∂C
′
i of

the handle Ti with respect to the attaching framing.

Assume now that the decorated curve (C, l) satisfying X(C, l) = Xp,q is chosen as in § 7. In
particular, l is defined by (7.1.3) or (7.1.4). We assume that the components of C are marked as
in Figure 4. We write W (a, k) for W and Ṽ (a, k) = W (a, k) ∪ U(a) for its closing by U = U(a).

Lemma 10.1.3. The intersection numbers of the oriented spheres (Σ̃i)1�i�r inside the
oriented 4-manifold Ṽ (a, k) are the following:

Σ̃2
i = −li for all i ∈ {1, . . . , r},

Σ̃i · Σ̃j = 1 − li for all i < j.

Proof. The first equalities were obtained for arbitrary decorated germs (C, l) with smooth
components Ci during the proof of Lemma 10.1.2. For i < j, the surfaces Σ̃i and Σ̃j meet at the
origin of B

′
. Therefore, Σ̃i ·Ṽ (a,k) Σ̃j = Ci ·B Cj = −Ci ·B Cj = −Ci · Cj . Then apply (7.1.2).

Consider the following homology classes in H2(U(a)):

c1 := [Σ̃1]

ci := [Σ̃i] − [Σ̃i−1] for all i ∈ {2, . . . , r}.
(10.1.4)

A direct consequence of Lemma 10.0.2 and of formula (7.1.4) is the following.

Lemma 10.1.5. One has the following intersection numbers of the homology classes ci:

c2i = −ai for all i ∈ {1, . . . , r},

ci · cj =

{
1 if |i− j| = 1,
0 if |i− j| > 1.

Next, we wish to identify ∂U (c∗).

Proposition 10.1.6. Using the notations (3.4.1), one has a canonical identification
∂U(a) � L(p, q)∗ (that is, which also identifies the preferred order on the boundary). Moreover
(using the notation of § 3.4), in H1(∂U)r the following equality holds:

(∂U (c∗1), . . . , ∂U (c∗r)) = ± (α∂U1 , . . . , α∂Ur ).

Proof. For each i ∈ {1, . . . , r} denote by σi a co-core of the handle Ti (see Figure 10) and
orient it such that its intersection number with Σ̃i is +1. Therefore ([σ1], . . . , [σr]) is the dual
basis of ([Σ̃1], . . . , [Σ̃r]) in H2(U, ∂U). Hence, from equations (10.1.4), we get

∂U [σi] = ∂U (c∗i ) − ∂U (c∗i+1) for all i ∈ {1, . . . , r − 1},
∂U [σr] = ∂U (c∗r).

(10.1.7)

Now look at the oriented 4-manifold U . By relation (10.1.1), we see that U := B′ ∪
(
⋃

1�i�r T i). We use the complex structure of B′ to do blow-ups. Denote by Ũ
π→ U the

composition of blow-ups of points above 0′ ∈ U , such that the dual graph of the preimage
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Figure 11. The plumbed 4-manifold Ũ .

π−1(C ′) is isomorphic to the one from Figure 4. Then Ũ is a 4-manifold obtained by plumbing
according to the graph of Figure 11 (this is equivalent to Lemma 10.1.2).

Note that its boundary can be canonically identified with L(p, q) (via plumbing calculus).
Indeed, first blowing down the (−1)-curves and then by anti-blowing down (in the differential
category) the (+1)-curves arising from the (0)-curves, we get a plumbing graph which without
arrowheads is exactly the graph G(b). Considering in both graphs the preferred order (cf. § 3.5),
we get the proof of the first statement. Note that this also appoints the preferred order to ∂U(a).

In Figure 11, the arrowheads denote again the preimages of the co-cores σi (that is, σi with
opposite orientation; they are analogues of the Ri of § 3.5). Therefore, by Proposition 3.6.1, up
to a simultaneous change of sign, one has

∂U [σi] = ν∗(wl) whenever m1 + . . .+ml−1 � i � m1 + . . .+ml − 1,

where the vectors wl were defined in Theorem 2.2.8. Then from the ‘duality relation’ stated in
Theorem 2.2.8 we have

∂U [σi] = α∂Ui − α∂Ui+1,

where α∂Ur+1 := ν∗(vr+1) = 0. This combined with (10.1.7) ends the proof.

If we sum up the results of this and the previous section, we get the following corollary.

Corollary 10.1.8. Consider s ∈ H2(Π(a))r as in Proposition 4.3.1, and c ∈ H2(U(a))r

defined in (10.1.4). Then the following facts hold.

(I) (i) We have QΠ(a)(si, sj) = QU(a)(ci, cj) for all i, j;
(ii) ∂Π(a)(s∗) = ±∂U(a)(c∗),

(II) Let W be a Stein filling of L(p, q)∗ (that is, on the boundary of W one can identify the
preferred order of the lens space). Close its boundary (using a diffeomorphism which preserves
the orientations and the order of the boundaries) by Π(a) and U(a) obtaining V Π and V U ,
respectively. Then we have(

H2(V Π), QV Π ;μ∗(s)
)

=
(
H2(V U ), QV U ;μ∗(c)

)
.

This says that Lisca’s criterion (in order to recognize W ), expressed originally in(
H2(V Π), QV Π ;μ∗(s)

)
can be reinterpreted in

(
H2(V U ), QV U ;μ∗(c)

)
too. Let us apply this

for the closing Ṽ (a, k) = W (a, k) ∪ U(a), and search for the corresponding (−1) curves. Set:

Ej := β−1(Pj) for all j ∈ {1, . . . , n}, (10.1.9)

where the number n is defined in Theorem 7.2.2.
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Proposition 10.1.10. One has the following equalities of matrices:(
Σ̃i · Ej

)
1�i�r,1�j�n =

∫
D(a; k),(

ci · Ej
)
1�i�r,1�j�n = D(a; k),

where the entries of the left-hand side matrices are intersection numbers in H2(Ṽ (a, k)). In
particular, for any fixed i ∈ {1, . . . , r} we have

#{j ∈ {1, . . . , n} | ci · Ej 	= 0 but ck · Ej = 0 for all k 	= i} = ai − ki.

Proof. By Definition 6.3.1 the matrix (Σ̃i · Ej)i,j is equal to the incidence matrix of the
picture deformation corresponding to k ∈ Kr(a). Theorem 7.2.2 implies the first equality of
matrices. The second one follows from the construction of

∫
D(a; k) and from Definition 10.1.4.

For the last statement we search for columns of D(a; k) with only one non-zero entry. For fixed
i they correspond exactly to the block Mr,ai−ki

(i) of (7.2.1).

Finally we get the searched isomorphism between the Milnor fibres of the cyclic quotient
singularity Xp,q and the Stein fillings of the standard contact structure on L(p, q).

Theorem 10.1.11. Let W (a, k)∗ be the Milnor fibre W (a, k) which has a boundary that
is endowed with the preferred order induced by the graph from Figure 11 (which agrees with
the order of ∂U(a) via the gluing Ṽ (a, k) := W (a, k) ∪ U(a)). Then there is an orientation-
preserving diffeomorphism that preserves the orders of the boundaries

W (a, k)∗ �Wp,q(k)∗.

Proof. The statement follows from Propositions 4.3.1 and 4.4.2 combined with Corol-
lary 10.1.8 once we check that

#{e ∈ H2(Ṽ (a, k)) | e2 = −1, ci · e 	= 0 but ck · e = 0 for all k 	= i} = 2(ai − ki).

For this, first note that Ṽ (a, k) is obtained from S4 by n blow-ups, and hence {[Ei]}ni=1 forms
a basis in its second homology groupH2, and the associated intersection matrix is diagonal with
all entries −1. This shows the equality of the sets {e ∈ H2 : e2 = −1} = {±[E1], . . . ,±[En]}.
Then use Proposition 10.1.10.

11. Final conclusions

11.1. The two most important consequences of the previous sections

Corollary 11.1.1. Once the order of the links (or equivalently, the order of the
coordinates in the two constructions) are choosen in a compatible way, Christophersen and
Stevens on one side and de Jong and van Straten on the other side parametrize in the same
way the components of the miniversal base space of Xp,q by the elements k of Kr(a) as follows:

SCS
k = SJS

k .

Corollary 11.1.2. All the Milnor fibres Fp,q(k)∗ associated with different smoothing
components and endowed with the preferred order on their ordered boundaries are different:
their boundaries L(p, q)∗ and k ∈ Kr(a) determine uniquely all the Milnor fibres up to
orientation-preserving diffeomorphisms which preserve the order of the boundary.
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11.2. Further research problems

The bijection (Corollary 11.1.1) is not realized by a direct correspondence (sitting in the theory
of singularities); it goes through Lisca’s classification. It would be interesting/important to find
a construction inside algebraic geometry that would provide a direct identification.

Also, there exists another subtle open problem (which is not touched in the present
paper), pointed out by the referee. This aims to provide a new description/characterization
of the Milnor fibre of a component in terms of the topology/homology of the corresponding
M -resolution, in the sense of Behnke and Christophersen [5] (for example, see the end of their
Introduction).

Acknowledgements. The second-named author is grateful to Paolo Lisca for having
attracted his attention on his conjecture. We are grateful to Jan Stevens for acquainting us
with the manuscript [3] and to Duco van Straten for several helpful discussions. We thank
the referee for the careful reading of the manuscript and for several historical information
and mathematical suggestions, which definitely contributed to the improvement of the present
paper and might serve as starting points for further research as well (for example, see § 11.2).
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