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Abstract
We investigate three technically equivalent subjects. (i) Algebras whose

elernents are relatiotts of higher ranks (e.g. binary, ternary, rl-ary etc.),
and whose operations are the natural counterparts of logical connectives
like e.g. quantification or substitution. (ii) Fine tuning first order logic via
its rnoclel theory to achieve desirable properties ranging fronr cleciclability
to well-behaved finite rnodel theory, or 'tractable' Beth clefinability and
Craig interpolatiott properties. (iii) A proof theoretic approach to (ii).
The extra-Boolean operations on our algebras of relations corresponcl to
quantification, substitution of individual variables, and the logical con-
stant equality.

Elsewhere this work is applied to multi-dirnensional rnoclal logics, ar-
row logics, and to a new generation of generalized quantifiers.
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1 Introduction
We will investigate sorne properties of first orcler logic both fronr a rnoclel theo-
retic ancl frorn a proof theoretic perspective. Sorne of the results will be relevant
to the connections between rnoclzrl logic ancl first orcler logic ancl also to the the-
ory of generalizecl quantifiers, cf. e.g. [27]. There will be results relevant to the
theory of schemata of first orcler formulas cf. e.g. Rybakov [21], 119].

Our rnetltocls will yield results about algebraic logic, too. We will prove for
various classes of algebras of relations (of higher rank) that tlieir equational the-
ories are decidzr,ble. E.g. we will prove that the class of relativized representable
cylinclric algebra,s has a clecicla.ble equational theory. We will look at various
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nice and useful subclasses of this class and will prove that their eqtrational the-
ories are also decidable. We will look at other properties of agebras as well as

to other kinds of algebras.
Let us turn to the ";rurely logical" aspects of this paper. They are related

to the relatively recent trend in logic known as arrow logic (cf. e.g. van Ben-
them [25], [26], [13], [12]), but familiarity with arrow logic is not necessary for
understanding the present paper.

The recent pa,per van Benthern [25] asks the following question (see Appendix
2D therein): "What would have to be weakened in standard predicate logic to
get an arrow-basecl clecidable version?" Ilere we show that it is the permut,abilit,y
of quantifiers which is responsible for the uncleciclability of first order logic.
More precisely: van Benthem's qtrestion can be unclerstoocl in at least two
different ways, depending on whether one has the Arnsterclarn or the Budapest
"rnanifestation" of arrow logic in mincl. Roughly spea,king the difference is
whether one choses a syntactic (or proof-theoretic) or a sernantic (or model-
theoretic) alrproaclil .

1. First we give a solution of the proof-theoretic (or Arrsterclarn way) version
of the problern. Below we shall work with tlie restrictecl version of first orcler
logic, which is well-krlown to be equivalent with the orclinary forrntrlation, see

[8] 4.3. IIere restrictecl means that rela,tional atomic forrurlas all have tlie forrr

ft(to, vlr . . ., vrr-t)

where n is tlie arity of the relation symbol rtl. We also assurne that there are
no constant or function symbols in our languages (that this again is not a real
restricton is well known, see e.g. the textbook [7]).

Consicler the following inference system for restricted first order logic. The
axiorns are

((1)) 9, where <p is a (propositional) tautology
((2)) Vv; (p --. ,/,) - (Vu;p --- Yv;rl,)
((3)) Vv; e -+ e
((qt)) Vv;Vvi p -YvjYvff
((4b)) Vv *e -- VvrVvr p
((a.)) 1v*p--* Vvrfvrp
((4,1)) n(t) --* VvrR(t) proviclecl uu 4 Rngr= and R(r) is an a,tornic forrnula,
((5)) vd _ vd

((6)) 3v6(v; = vj)
((i)) v, _ vj * (tn = vk -+ vj - vk)
((8)) vi = vj -lp --* Vv,(tu = vj -.P)] if i + i
((9)) lvtg e+ 'r!Y;-r<P

and the inference rules are Moclus Ponens

lFor clefinitions ancl notation we refer the reacler to the strbse<1uent sections (esp. sect.ion
2) of this paper.



(MP) if ts 9,p - Ib, then F /
and Generalization
(G) if I g, then l- Yv;p.
This inference system is sound and complete for restricted first order logic (see

[8] 4.3.23). Our first answer to van Benthem's question is the following theorem:

THEOREM 1.l- The set of formulas derivable from ((1)) . .((3)), ((4b)) . .((4d)),
((5))...((e)) by (MP) and (G) is decidabte.

Proof: See Corollary 3.1 in section 3. I
Thus while in arrow logic the way to get rid of uncleciclability is to leave

out (or at least weaken) associativity, here we have to leave out ((4a)) (i.".
commutativity of quantifiers). We note that it is well known that associativity
in relation algebras corresponcls to commutativity of cylinclrifications in cylinclric
algebras.

2. Let us turn to the moclel-theoretic (or Buclal>est) approach now. Ilere we
give two moclificzrtions of orclinary first orcler semantics both of which rrrake
the set of valid forrnulas cleciclable, thus giving two answers for van Benthern's
question.

Theorem l.2(i) below says that the strength of first orcler logic disappears
if we wea,ken the notion of valiclity by permitting certain "nonstanclard" rnocl-
els. Theorern 1.2(ii) is connected with usual investigations in logic: we clefine
(syntactically) a cleciclable set of formulas ancl prove that the usual valiclity is
deciclable for the elements of this set.

In the sequel t : R ------+ (t is a relational type (so it cloes not contain function
syrnbols) ancl F6 is the set of usual first order (not just restricted) formulas of
type t. We use the set V - {v; : i € c^u} of variable symbols. Mocl6 denotes
the cla,ss of rnoclels of type t2. For M € Mocls M - (M,RYlo6R, that is, M
clenotes the trniverse of M and RYgt(R)M is the relation corresponding to .R

in M.

DEFINITION L.1- (i) Let /( e Xulodt. We say tlia,t /i is a generalized Kripke-
rnoclel or a partia.l rnoclel, ancl write I( E Kr, if

(vM,Iv e K)M I @ n//) - 1/ I @ nltr),

thzrt is, if /( is a class of "cornlr:rtible" moclels.
of usua.l first orcler forrnulas in rnernbers of Ks:

Let /i € ,(t. Then Val(/i) I U{'no :

valuations of the variable syrnbols in /(. Let

We clefine the notion of valiclity

M € /i) is the set of possible
h € Val(/i), It e .R., t,(l?) - Tt,

2Th.,", using the notatiou of section 2, F1 = Fnrlf,'t), ancl Mocll - Mocl(t).



i1 ...in,i, j € c.r ancl g,t! €. Fs. Then

k

r F /?(t,,,...,v;,)[/r] €9 17,1;,),...h(i,)) € RLfor some Me x
k

/( i vi = vr t/,1 €E hg) - h(j)
k ,^ k

1{ F 1v;elll €5 n I elh(i/u)l for some u such that h(i/u) e Val(I{)
k ," k k

1{ F @ n rl')thl €+ U{ 
= 

elhl ancl K F,l'Lh))
k .^ k

1(F--eltl€5nVelt,l
clef k

1( F p ++ (Vft € Val(I{))Ir ts eUrl
k ," k

F e €5 (v/( € K,)ri i e.

(ii) Models with a prescribed set of valuations. Let

MrY {(M,Vl : M € Modl ancl V g. M}.

Let A - (M,VI e Mt, k € I/ and R, it...in,i, j,g,r/ as in (i). Then

a p n1" ir,...,'o^)tal e+ (e(r,) ,...k(iu)) e nar
/ f ', - v3 [&] f$ r1;y - k(j)
a f :.,,,p|&l +S (r")t4F e[k(;lu)] a,rct

A ts @^ /)tl,l €9 (a E etrl ancl 4 F
A[--elfr] +5 aV eLn)

aLe€9 1vr e v)Af etrl

E r €$ (v4 e M,)A?,

k(ilu) e v)

dtkl)

(iii) p is an atomic forrnula if it is of the forrn l?(r;o ,...)vi*_,) where .R € R,
n = t(E) and i €nu.

p € Ft is said to be relativized if there is an atonric forrrula p such that
tp is of the forrn p --- r, where l/ is built up from atorrric forrnulzrs using -, A
and "3v;(p n...)", ancl all variable syrnbols occurring in ry' occur in p. More
precisely:

Let Re R,n - t(,R),ir,...,in €c.r and p= R(vt,,...,v;.). Then RL(p) q
Fs is the smallest set satisfying

(i) I e RL(p) if 4 is an atomic formula such that all variable syrnbols occur-
ring in ?/ are among vr'r r . . . , vro

(ii) {-,,1,,1A(,3v;o(pnrl)} e RL(p) if rl,€e RL(p) and 1 {ktn.



RFt g 
{p -. Lt : p € F1 is atomic

We say that tp is relativized if p € RFr.
Finally, <p is an ordinary relativized formula,

elements of {p A q : rl is atomic} using A, p A
symbols occurring in tp occur in p. I

and r! e nr1p11.

(p € SRFr , rf g is built up from
- and p A1v;, and all variable

We note that
k

then (Vrp)lx ts e
m

(vp)lW,vl ? e

km
I and p are generalizations of F.

<+ /{ ? el, and if (M,VI e Mt is

aM?el.

If 1i € Kt is a singleton,

such that V ='M t,hen

-'g| is decidable, that is, validi-
and satisfiability is decidable for

THEOREM 1.2 (i) {p e Ft :F p} is deciclaltle, that is, for every formula
it is clecidaltle whether it is valid in generalizecl Kripke-moclels. Similarly,

ln

{p e Ft :F p} is clecidable.

(ii) {p e RP' :l p} and {e € SRFt :ft
ty is deciclable for relativized formulas
ordinary rclativized formulas.

Proof: See Corollary 4.1 in section 4. t

REMARK 1.1 (i) (Fr,rc,,1) ancl (F1 ,Mr,f; .." the logics corresponding ro
the classes of algebras G- and Crs, (to be clefined later), respectively, in the
sense of [5] or [8] 5.6.
(ii) Validity for members of SRFI is also decidable in the obvious way: if rp €
SRFr then <p is not valicl since it is of the forrn pAl, where p is atornic. Decicling
the satisfiability of rnerrrbers of SRFr is far from being trivial. r

2 Definitions, notation
Ilere we define only those notions and notations which are not universally adopt-
ed in the literature.

2.L Set-theoretic notions
Throughout, we use the von Neumann ordinals. The smallest infinite ordinal
(the set of na,tural nurnbers) is clenotecl by c..'.

o Sb,4 is the powerset (set of subsets) of ,4

oACBCg@gn ancl A+B)



. AcuB €+ @ g B ancl lAl < r)

. (n, t,) * well as (o,bl denote the pair of c and ll.

Let ,R, S e A x B be relations and ,[1 a set. Then

o Dom.R I {o e. A :3b(c, b) € E}, the domain of l?

. RngE I {a e B :Ja(a,b) e rt}, the range of l?

. Il*Hg {be A: (3c € H)(o,D) € E}, rhe,R-irnage of H

. RlH J {(o,t,) €R:aeH},therestriction of RtoII

. R 1.9 
g 

{(o,t,) :lcl(a,c) e R and (",b) € S]}, the cornposftion of ,R

ancl S

o fi-t 9 {(a,c) :(a,b) e ri}, the inverse of .R.

Id g 
{@, H) : H is a set} denotes the iclentity class, and if 1/ is a set

then Icls €t {(", n) : u e H} is the iclentity relation on 11.
Now we list notations usecl in connection with functions.

. f : A -------+ U St / is a function mapping A into B

. f : A,- B +g / is one-one

. f : A -* B +g / is onto

. f : / >>-+t B +g / is one-one ancl onto

. AB I {f : f : A --..- B}

o ker/ €j {(n,6) e Dom/ x Dom f , f(")- /(t)}, rhe kernel of /
- def. Ios= slf

o f(rlu)Y t:, 9 tr \ {(,, f(,))}) u { (,,u}.
/ is a se(lllence if / is a fitnction with clornain rv for sorne orclina,l cv. We clo not
distingtrish 2-sequences (i.e. ftrnctions with domain 2) from pairs.



2.2 Algebraic notions
t/ is a (mixed) similarity type (or simply type) if t' - (t, F), where t : R --' c., \ I
for some E, and F g R. If .R € ,?\ F' then r? is a relation symbol of arity t(ft); if
R e F then r? is a function symbol of arity ,(r?) - l. Zero-ary function symbols
are called constant symbols.

Lettt= (t,f') be atype, t: R 
-c.r\1. 

,4 isastructure of type t/ if
A - (-4, ['), where IF is a function with DomlF = Dom=. pt E: IF(IR) is a
relation of arity ,(n) if R e R\ ,P and r? is a ,(R) - l-place function otherwise.

/ is a relational (resp. algebraic) (similarity) type if t' = (t,0) (resp. t' :
(t, Domt)) is a mixed similarity type; and ,4 is a model (resp. algebra) of type t
if ,4 is a structure of type l/. Mod(f) (resp. Alg(t)) denotes the class of models
(resp. algebras) of type t.

Let H be a set ancl let A,B € Mod(l') for some ty;re l'. Then

A I H I @fr H, RLnt(n)F/)neo

is tlre restriction of ,4 to H. Note that ,4 | f/ is not necessarily a structure of
type l/ but it is always a rnoclel of type l.

. AgBeg A-BlA(Aisasubmodelof B)

o f : A -------+ R €g f t A-----+ B ancl {/o":s € R4} g l?A(/is a
Itomonrorphism from A to B)

. f :A,--B€g f :A-------+B ancl f :A,--B

o f :A--*Bgt f :A-------+B ancl f ,A--+tB

. f :A>-*Bet f ,A-*B ancl f ,A*--,8.
From now on let I be an algebraic type, A, R e Alg(t) ancl 1{ e Alg(t).

. Sg4H €t n{V e A: A lY is an algebra, and H gy}

. QILH 
dS a I S*AH

o IIi, HI(, S/( ancl PI( clenotes the class of isornorphic copies, homomor-
phic irnages, subalgebras ancl clirect products of elements of 1( respectively

o Tmx(f) denotes the set of terms of type f built up trsing elernents of X
(as varriable syrrbols)

o Tm;g(t) denotes the natural t-type algebra with universe Tm76(t)

. ,Llk) denotes the valueof the term r in the algebra,4 uncler the valuation
k

. FxK gr Tm; (t)lCry.I(, where Crxli I n{n: Trrr;s (,)lR€ rsl{}.



2.3 First order languages

A is a language if A - (o,r), where a is an orclinal and I is a relational type.
Throughout, v is a unique class-function with domain the class of all orclinals. In
all our languages we shall use the v;'s as variable synrbols. For easier reaclability

we clefine " 
I .ro , y E: v1 and ,9 ur. We assurne that the usual clisjointness

conclitions are satisfied (e.g. Rngv O Domf - 0).
Let A = (a,t) be a language and let R - Doml. Then Frn^, the set of strict

(or restricted) formulas of the language A is the smallest set F such that
(i) {n(vs,v1,. ..,yt1-r) : .R € r?} U {t; = vj : i,j eo} U {T,F} g F
(ii) {3v;<p,-pt@nrlt),(pv rlt)} g F if i € o and p,r, € F.

F-}, the set of weak (or redundant) formulas is the smallest set satisfying
(iii) {R(vio,yi,,...,vj,n-,)' ft e R,j e 1(R)a} g f'

besides (i), (ii) above. By fornnrla we rnean restricted forrnula unless explicitly
stated otherwise. tuth of a formula (or set of formulas) in a (class of) models
is unclerstoocl as usual. In particula,r,

M ?,p €9 (Ve € "M)M ! rp[e] ancl

E ? p€9 (v,,ra)lM ?E + u ? d.
Fvar(<p) clenotes the set of variables occurring free in p. For // e o let

Frr,A'n Y {r€ Fm^ : Fvar(rp) e {r; : i e H}}.
We often write F-* and Frn|'rr insteacl of FrnA and FmA'Ir . lf p € FrnA,H and
ke IIM then

M=.ptkl €E(lge "M)lkgg ancl Mtsekill.
lf H gcv ancl g € FrrA'II then

p(tt,rrl) €t {r €Ir M : M 
=,plkl}.REMARK 2.L If A - (*, r) ancl c ( Rngl then for all g € Fnrf there is a

r/ € Frn^ with p p * {.In t}ris paper this conclition usually holcls - in those
rare cases where it cloes not, we sliall investigate weak formulas separately (for
example in the proof of Corollary 4.1). r

2.4 Pro of systems

Let A = (cr,l) be a first orcler language. The inference systern Fn (or simply Fr)
is the one clefinecl in the Introcltrction except that: in place of (( a)) .((4d))
we use the (equivalent)

((4)) e - Yv;P if v; ( Fvar(g),
ancl formulas g, { are in FrnA ancl f, j,k e a.

If Ar e F-n then :|,9:r,9 {(e,rlr) € 2Frn^ ; Ax lt g.- /} and
r clef clef

-tl 
_

We note that the proof system Fn is complete in case a )_ u or Rngl e 2.

8



2.5 Cylindric algebras

Let a be aset. The algebraic type cylo has constant symbols 0, 1,cl;i Q, j ea),
unary ftrnction symbols -,ci (i € o) and binary ftrnction symbols +,.. CTAo
denotes the class of algebras of type cylo.

Let A e CTA,, I{ g CTA, and B ! o. Then

BiB A I (a, *L, .L, -L, gL, rL, ,!, dqLl ; ,i e o

RclBl( yi 
lmBA: A e1{} and BtAY n,ao.q (the Boolean recluct of

A)
A{o) I {t € a : 

"!@) * "} if a € A.
LetX beaset,6:X 

-Sbaandl( 
gCTA". Then

Crf)x I nt R: F 4:Jt-,. (cyl)lR€ rsl( ancl (Vc € X)A4(r; g
5"j

r\l rc Er Trrrx (cyl*)/Cr|' x .

Derivecl operations in CTAo's:
The usual Boolean ones, ancl

slr9c;(cl;i.r).
The variety CA" I CTA* of a-dirnensional cylinclric algebras is clefined by the
following ecprations (cf. [8] 1.1.1):

C6 eeuations defining Boolean algebras
Cr ciO = 0

Czr{c;r
Cs ci(, ' ,;y) = cir 'ciU
C+ ctcjn = cjcitc
Cs d,;t - L

Ca d;j - cr(d;r . dri) if k e {i, j}
Cz ct(,l,i ' t).ct(,lri . -r) = 0 if i + j.

Moreprecisely, Cf g {.,0-0:ie cu},etc. BA
algebras.

2.6 Special cylindric algebras

Algebras of forntttlas. Let A = (rr, t) be a language, R I Domf. Then F^L €
CTA" is clefinecl (see [8] 4.3) as

Fmh I 1Frnn, V,A,-,F, T,3v;, vi = ujl;,je..,

where V:2FrnA --* FmA is clefinecl by V(p, 4,)4e: gv{ for all g,d e Fm^, ancl
similirrly for the other opera,tions. Sometimes we write Fnt! insteacl of Fntt.
It is easy to see that

Fnr,L = Tua(cyl,) = f ECTA*.
The first of these isomor;rhisrns is clefinecl by

E: C,qo is the class of Boolean



r1r(R(vs,..., vt;-t)) I n if .R € ft

r1t(v;: vj) aer d;j, rp(F) Er 0, rp(T) I t

rtt(p v /) g rp(p) v r1t(!), rp(p A /) g rtt(p) A r1\tp), rp(--e) Y
-r p(p)

r 1\1v;9) I ., r p(p).

Then rp, : Fnt^ H-) Trn&(cVlr). It is not harcl to check that Fmn I =ore
CAo if Ax e F-^. Moreover (see [8] 4.3.25) Fnr^f = = f$)Ce*. This
means that there is a close connection between the class CAo and the proof
system Fo: the collection of CAo-axioms is an algebraic version of the proof
system Fo. One corollary (see [B] 4.3.28(i)) is that

CAo = I{Fnr^ l=o,: A - (o,r) is a language, Ar eFrn^}

for a < c..,. This is a kind of representation theorern for CAo.

Atom-structures, contplex algebras. For o an arbitrary set, cat., is the relational
type with binary relations 4 and unary relations E;7 for all f,7 € c\, Let
B - @,7:-, n#);,i€a be a moclel of type cato. Then CmB e CTA., the
complex algebra of B is

CmR €r 1sua, U, o, \,0, B, TP* , Eff),,iro.

If K q l\tlocl(cat.,) then

Crn/( {CmA: A e I{}.

Let Ato e Mod(cato) be the class of those rnoclels B - (B,T;,Erjlt,jeo
which satisfy (i) . (v) below for all i, j,k e a:

(i) 4 is an ecluivalence rela,tion on B

(ii) 4 lTi =Ti lro
(iii) E;; _ B

(iu) E;j r{ @ou n E*i) if k e {i, i}
(u) qnzEii grdif i+ j.

We note that (iv) can be replaced with

qg

(iv') E;1
k4 - Eir,

{i, i}.
En o E*i e E;j, Etj - Tf E;i and Eti g Tf @or n Ekj) if

10



Elements of Ato are called (cylindric) atomstructures. In [8] 2.7.43(ii),2.7.40it
is shown that

C A" - IS CrnAto .

This is a.gain a kincl of re;rresentation theorem for CAo's (which, in the a = 0
case, coincides with the representation theorem of BA's).

Cylindric set algebras. Let o be an arbitrary set and let V C o[I for some set
[/.Fori,jeolet

nlXtg{s€v:s(f) =s(r)}
-[Y] €ri : {(s, t)e2V:s l("\{i})= zl(d\{i})}
clulx &: T[v]* x - {s(ilu) e v : s e x,u e u}.
At(v) I (u, T['),Dto!,)1,,,r*

,SbV g CnrAt(V) - (Sb% U,o, \, y, CIul ,DtY)|,,,r^
crso I s {sbv:(tu)v g*u}.

l\tfernbers of Crso are called cylinclric relativizecl set algebras. For V C o[/ we
let

base(Iz) 
-ee [J{nrss : s eV}

and if -4 € Crso then

base(, ) I base(ta;.

The class of cylinclric set algebras is clefined by

cso €r s{sb'u : u is a set}

and the cla,ss of representable cylinclric algebras is

RCAo €j HsPC"..

RCA" - IGso - SPCso

Gso
qer S{{U(U{*U;:ieI}):I is aset, and

(U; : i e I) is system of pairwise disjoint sets).

2.7 Recursion-theoretic notions
In this paper the notion of cleciclability will be extencled from subsets of c...' and
sets of terrns to other sets (e.g. to sets of finite algebras of finite types) in the
inttritively natural way. Sirnilarly for recursive functions. The expressions "cle-
ciclable", "recursive" and "computable" will be used interchangeably. Related

We note that if o ) 2 then

where

l1



terms will sometimes be used inaccurately within proofs, thus we write "1/(r)
is computable" insteacl of "the function .A/ is comptrtable", or "it is decidable
whether there exists a r-tree" instead of "there is a recursive function which
decides whether there exists a r-tree, for each r".

Let K be a class of structtrres. (Thus .I{ may be a class of algebras.)

(i) /( is said to be strongly decidable if its similarity type is finite and there
is a recursive ftrnction / : u) -----+ c.u such that

(u) (Vae K)(VXC,A)(lBet{)lA lX= Blx and lBl S/(lxl)l
and

(ii) F/i

(b) {A e I{ : A € ,} is clecidable.

{AeI{:lAl <r}.
(iii) The set of ecluatiotrs valicl in 1( is denoted by Eq/( ancl the set of quasi-

ecluations valicl in 1( is clenotecl by QeqIi.

REMARK 2.2 Let I{ be a class of algebras.
(i) If 1( is strongly cleciclable, then it is ea,sy to see that not only Bq/(, but
the set of universal formulas valicl in Ii is cleciclable. In particular, QeqI{ is
decidable ancl thtrs the word-problem of 1{ is solvable. Besides, Eq/{ = EqFl{,
moreover 1{ and FI( cannot be distinguished even by universal formulas.
(ii) Connections between Eql{ - EqF/( ancl the decidablity of trq/(: It was
observed in Taylor [23], p.26 that if /{ is finitely based (or more generally:
recursively based) and Eq/( - EqF/{, then EqI{ is decidable. (Indeed, it is not
harcl to see: Eq/{ is entrmerable since /{ is finitely based, ancl the equations
that are not valid in /{ are also enurnerable since Bq/{ = EqFl( and 1{ is
finitely based.) We cannot weaken the condition "K is recursively based" to
"EqI( is enurnerzrble": Let l/ e ar be enumerable but trnclecicla,ble ancl let
E g {gf"0= f"0:n € 1/} (thus / ancl g are unary function-symbols ancl 0 is
a constant-syrnbol) ancl let 1( be the variety clefinecl by E. Then it is easy to
see that Bq/( is eurttnerable but uncleciclable ancl Eq/{ - EqFl(. This example
also shows that condition (b) cannot be removed frorn (i) of the clefinition of
strong deciclability (without aflecting the truth of the irnplica.tion "l{ is strongly
deciclable + Eq1{ is deciclable"). Conversely, it is qtrite easy to construct a class
of algebras .I( such that EqI( is finitely based ancl cleciclable but Eq/( I EqF/{.
For exarnple, let E - {gf, = r,g0 = 0} and let /( be the variety clefined
by E. Then it is not hard to see that EqI( is cleciclable, FI{ F 0 = /0 but
I{ v 0 = "f0.
(iii) Ilenkin lrrovecl the strong decidability of CAz, ancl even t,hat of R,CA2,see
[8] 2.5.4, 4.2.8. r

qer
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3 The decidability of the equational theory of
non-commutative cylindric algebras

N C Ao, the class of "non-commutative C Ao's" was first clefinecl ancl investigated
by R. J. Thompson.

DEFINITION 3.1 Let cr be an arbitrary set. NCA' is t,he cla,ss of those
A e CTAo which satisfy the iclentities defining CAo with the exception of Cq.
That is,

NCAo-g {a e CTA* : A ? Cot) Cf u Ct u Ct u Ct u C& u Ci}.

I

Below, we shall prove the clecidability of the equational theory of NC,Ao ancl
that there is no eclua,tion valid in all finite NCAo but not in all lr.iCA",if a < u.
Nevertheless, NC,A* is not strongly decidable, since there is a quasi-equation
valicl in all finite NCAo btrt not in all NCA".

THEOREM 3.1 Let a be an arbitrary set.

(i) EqlfCAo is clecidable (provitlecl a is deciclable).

(ii) Eqlf C Ao = EqFt/C Ao, if a 1 u .

(iii) QeqNCA* * QrqFNCAo, if lal > 3. Tlus I{CAo is nof strongly decid-
ableifo)3.

Proof: First we introduce some notation. We will have to work a lot with
terms in the constructions below. Thtrs we fincl it convenient to introcluce the
following conventions. Let X be a set :rnd fix r e X. We write Trn insteacl of
Tnr; (cil^). The elements of Trn shoulcl be thought of as being built up from
X by the operations , ., ci, (l;j (i,, j < a) (thus 0, I ancl * are regarcled as

derived operations).
Define the algebraic type lo as follows:

,* g 
{(tn,, 1) : f e a,n€ a UT-},

so that all function-symbols in f* are unary. We will sirnply write Tm(t")
in place of Trn1r1(f"). If I is a set of terrns, Subterm(f) clenotes the set of
subterms of the elernents of f ; we write Subterrn(o) insteacl of Subterm({a}).
Subterrn(o)' g 

{6, -d : 6 € Subterrn(a)}.
If o € TrnUTrn;s(t"), the len,gt,h of o is clenot,ecl bV ll"ll ancl is clefined by

the following clauses:

llyll It r, rf y € X
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llt;,,tull 
g 

lltull + 1, if t;nw € Tmy6(t,)

ll,l;ill9r

ll- "ltH 1.;oll I ll"ll* t

l16."llg llall+ lloll, if o,6 eTm and i, j e a.

Eqrel(I/) clenotes the set of equivalence relations of H . If e € Eqrel(ll) and

G g H, then el GgJ'Gn". We note that if e € Eqrel(I/) ancl h € H, then
e* {t} is the e-ecluivalence class of /r,. Let e € Eqrel(I/) and g e H. Then

"@ lh) I [' P (H \ {g})] u '({s} U e* {h}),

that is, 
"(glh) 

is the equivalence relation on .F/ obtained from e by moving g
into the equivalence class of h if h e H and putting g into a separate equivalence
class otherwise. (W" note that e* {l} = 0 if h e H.) f is said to be singttlar in
e if e* {i} = {i}. In the secluel a will be assumed to consist of orclinals. Then
a is well-orclerecl bV e , ancl for f C a, min(f) denotes the minirnal element of
f with respect to this ordering.

DEFINITION 3.2 Let e € Eqrel(o) and r € Trr.
(i) E" : Tm(fo) --' Ecpel(a) is definecl by the following recursion:

E" (r) def: e, a,ncl

tr"(t;,,tu) 
-4s" 

E" (u)(iln) if t;nru € Trn(t.).

(ii) Let i e a, n € c'UTm ancl u., € Trn(fo). tu is saicl to start with i if u = t,ntul
for some I antrl u'.

tf,, : Trn(t.,) .* Tm(l*) is clefinecl as follows: Let

if rr € rr,
if n S a.

Then

deftintu -

(iii) P is sa,id to be a r-tree if

1. P e Trn(fo) x Tm, and if (tu, o) e P, then ll,rll < llrll, (Vf, rt)[t;n occurs
in tu * n € Subterm(r)'Uo], a,ncl o € Subterm(r)'U{cl;i, -cl;i : i, j e a}.

,.. 4:r I rnin(E"(,r)* {r,}),
L ,,,

( ,u, if (f , rr) € E'(to); otherwise

) ,oo*, if u does not start with f
) t;su,, if (31)tr; = titrut ancl (f , k) ( E'(u')
[ ,', if (3/)u -- t;rw' and (i, k) e E'(-').
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2.

(o) (r,r) e P
(a) r €J 

11,, j) , (r d;i) € p) € Eqrel(a)
(.) for all to e Tm(f o), i, j e a and a,5 € Tm, we have

("1) (*,o) € P + {(r, d;i) , U, j) € B'(u)} U {(tr, -d;.i) '
U, j) e E'(tr)) e P

("2) (*,o. 6) e P + {(.,o), (u,6)} e P
(tu,-(o. 6)) e P + [(u.,, -a) € P or (ur, -6) e P]
(*,-(-o))eP*(.,o)eP
(w,-c;o) e P + {(ti^*,-o):n €a or terntu € DornP} g P
(w,c;o) e P + (3n € a U Subterm(r)')(tlnu,o) e P

(r3) (*,o)eP+(w,-o)(P

I

The intuitive rneaning of r-trees will be explained in Rernark 3.4(ii) below.

PROPOSITION 3.1 Let r € Tm.

(i) NCA,V, -Q<+ thereisar-tree.

(ii) There is a recursive funct,ion.|y' : Trr -------- a suc.h t,hat, INCA' I , -
0 e {A e NCA*: l,4l < lr(r)} ?, - 01, if a 1u.

Proof: To prove the proposition we need the definition of atomstructures of
NCA"'s first.

DEFINITION 3.3 Let B - (B,Ti, E;jl;,j6o be such
B for all i,j € a.

(u) B is said to be a partial N-atomstructure, B
conclitionr (i). . .(iu) below for all i,j,k e a.

(i) 4 € Eqrel(B)

(ii) Eii - B, E;j = Eit, E;*n E*i e EU

(iii) E,j - T{ E;1 if k e {i, j}
(iu) cn2Eij grdif i+ j.

(b) B is saicl to be an N-atomstructure, B € N Ato, if besicles (i). . .(iu)
above, B satisfies conditio" (u) below for all i,j,k e a.

(u) E;i e r{ @,0 n Er,).

that T; g'B and E;i e

€ pl''l Ato, if B satisfies
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(c) Let B e pNAtd. Then B - (B,TP,O#li,iEo, that is, its universe is

denoted by B and its relations are distinguished by the superscript B, unless
explicitly statecl otherwise. The conventions governing the use of other uncler-
lined letters are similar.

(d) Let B € pNAto, b eB and i,j ea. Then

EL(b) o9 
{(,, j) ero : b e Eft} and

,#v: {(o,b) €28:arfuandb eE#}ffi+ j;t#9raa.
T

PROPOSITION 3.2 NCAo = ISCtnNAto.

Proof: The statement follows from [8] 2.7.5, 2.7.14 and 2.7.34. The proof is
patterned after that of [8] 2.7.43 (ii) and is rotrtine. I
REMARI( 3.1 The following facts are easy to check so we omit the proofs.
Itern (3) will not be usecl itr the sequel, it is included here only in order to help
the reacler's intuition grasp why things are defined the way they are.

(l) N At. is an extension of the class Ato clefitrecl in section 2, that is, we
have ornitted frorn the clefinition of Ato the condition "T; lTi =Ti | 4 for all
i,j e a". Furthermore, we have pNAto - {A IX : A e I,{Ato,X C,4} (here
"J" is easily verifiecl and "C" follows e.g. frorn Lemrna 3.3 below). Another
example for a pN Ato is the structure At(V) clefinecl in section 2: lf V g oU 

,

tlien it is easy to check Lhat At,(V) e p|lfo and lAt(V) €. Mto.ae (!s 6
V)(Vi,re o)s(i/ti)€V). Let A9: At,(V),s€ Vand i,j e a. Thenitis
easy to verify that E4(s) = kers and rf,(s) = s(f/si). We note however, that
the class {At() : (IU)V g "U} I pl{ At, satisfies rnuch - in fact, infinitely -
more regularity than pNAto, c.f. Theorem 4.1(iii) below.

(2) Let R epNAf.,. Then it is not hard to check that for all i,i € a and o,
beBweliave

B 
-+ 

Eqrel(rv),

a unary parti:rl function from B to B, ancl

l!i,i e Qtff is total (that is, Dorntfr- B)l e B e NAto,

sz1tff\ - EL(b)(ilj); and

if arfb, a + b,then [84(l)) r (o\{t}) = np-@) r (cr\{;}) ancl trLQ) -gL(a) + i is singular in EL(b)1.

(3) Let r'. 9t {(toi,1) :f, i e al be an algebraic type. Define a quasi-variety
of type t'" by the following forrrulas:

For all i,,j,k,l e u

EL:
.E]t; rs
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(A) ,ri tn r - t;in, if i + j

(B) t;;x = r, tijti;r = ti;x, ti*t;jtr jr = t;jtrc jx
(C) tpl;1x - t;jx +-+ tur - t, if i ( {k,l}.

Let A - (A,t;i);,ieo € 7o and nL@) I {(;,i) € 2a:t;ia= a}if a € A.
Then identities (B) and (A),(C) express gL(o) € Eqrel(a) un4 BL(t;ia) =
EA(a)(ilj), respectively. Let R,rt(tto)R g lA,tftlt,iea if B e NAto. Then it
can be shown that V, - {fu!(t'")B : B € N Ato} and V" + HVo, thus 7o is
not a variety. Moreover, N Ato and Vo are definitionally equivalent for o 2 2

in the sense of [8], Part I p.56.: The first order (quantifier-free) definitions are
as follows.

Let i, j e a.

tUr ye(rT;yAE;i(y)) if i+ j,andt;;x -y <+ x=!J,

xTiyetijr -tijg (where j ea \{i} is fixed), Eri@)<+tijx= r.

Let o ( ar (for simplicity) throughout the remaining part of this remark. By
Lernrna 3.3 (to be provecl later) both N Ato and I/. are strongly decidable, thus
for exarnple, the worcl-problern for Vo is solvable. But CurN,Alo is not strongly
deciclable by Theorerr 3.1(iii) (a.ncl the proof shows that CruTo is not strongly
deciclable either). Indeecl, there is a simple clecision proceclure ba,secl on a kincl
of norrnal form for EqT. that we shall now clescribe.

On the delinition of tlie function lf,, : Trn(t.,) 
- 

Trn(fo): One easily checks
tlratif AeVo,ae A, gL(") = e and t;,,u€Trn(t'*), tlien A?q,w=tinwlal.
Moreover, lf' was clefinecl so that the ecluations valid in Vo coulcl be described
with the help of the notion of normal-form yielcled by it: Let e € Eqrel(a), and
define the function rr" : Tm16(t'") 

-'Trn76(t'") 
* follows:

n"(v) def
- At g€X,and

n"(t;1tr) I f;,n"u if i,

Then rr' is a computable (i.e.
allu,,,zeTrn;(l/.)

j € o ancl tu e Tm;6(l/*).

recursive) function and it can be shown that for

(* *. *) V. 
= 

u) - z +> (Ve € Eqrel(o))n"(u) - n"(z).

This gives a sirnple clecision-proceclure for the equations valicl in Vo. The proof
of (* * *) can be reconstructecl from certain parts of the proof of Theorem 3.1
below. It woulcl be interesting to know whether the decidability of EqNC,4o
can be derived frorn that of Ec1Vo, that is, if there is a recursive function lr
on the class of ecluations of type cilo to the equations of type t/o such that
NCA, F q <+ V" ts tr(q), for all eqtrations g. t
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*2

*3

We return to the proof of Proposition 3.1.
(I) Proof of "NCAoV, = 0 -+ there is a r-tree":

Assume NCA" V, - 0. Then, by Proposition 3.2 there is an A e NAt.'
and k : X 

- 
Sb.4 such that C I CrrA V, = 0[&], that ir, "Q[k] + 0.

Let a e "qlkl ancl e Et nl@).We define P,n and /r,,, by recursion so that
they will satisfy conclition (*) below: Let D,-49: DomP- ancl R- I RngP- \
({,1,i,-d;j:i,j €a}u{r, -r:r € X}), where &9P6, ancl P,-g P-\P--r
ifnr)0.

Let (*) be the conjunction of *1. . . *7 below:

*1 D,"g{* e Tm(f.):lltull ( nr+ l}i D* - Subterm(D*);t;,u e D^ +
n€Subterrn(r)'Ua

ll"ll _< llrll- m if o € R,^i R^ e Subterrn(r)'

h^;D^' ,A

*4 h^w e "qlkl if (u, o) e P^

*U BL(lt^u) - E" (u) if w € D^

*6 h^(t;ou) e "glkl if t,;otu € D* ancl a € Tm

*7 hrrruTfh,rr(t;,rw) if i € a,ne aUTm andt;,rru € D,,r.

Let P6 
o9 

{(r,")}u{(r,cl;i) tU,j) € e}u{(r,-cl;i),(i, j) €ro\e}, h6 €r
{(",o)}. Then Po, hs satisfies (*). Suppose that P,,, h* satisfies (*). Let

H*y {(u,i,o) : (ru,c;o) e P,n, (Yn € aUTrn)lti,tu € D* } lt,n(ti,u) ( "(llkll}.
Let b I H,n + A be strch that for all (tu, i,a),(tu',i,o) e H,-

(h,.u)Tfb(w, i, o), b(ru, i, o) esQ[&] ancl

b(u,i,o) = b(u',i,o) if (h^w)TfQr^u').

There is such a function b. Define f : H^ -----* Tm(/.) by

Let

f (,u,i,") s { iiii;, li f"Jltl;r,ili,Io,}0,=,7\l y} \ {i})

11 qg
Ltrn = {(u,i): (3a € Tm)(tu,-c;o) 6 P^}

w E: {f Ur,i,o) : (u,i,o) e H^} u {ti,,ro : (u,i) € G,n,n e a}

hm+r g h*l) {(f(.,i,a),b(ru,i,o)) : (ru, i,o) €. H^}
u{(tf^u, tL^h^u) : (w, i) € G^, n e a}
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Prn*1 {(tu, d;i) : tn € W,(i, i) e E"(u)}
u{(r,-d;i) : w €W,(i, j) e'o \ E"(r)}
U{(ti,w,o): (w,c;o) € P^,tlnw € D*,h^(tfnu) e oey41
u{(/(r, i,a),o): (u,i,o) € H^}
U{(tirw,-o) : (w,-c;o) e Prn,n e a or t";nw € D^ UW}
u{(r, o) : (w," .6) € P^} u {(r,6) : (u, " 

.6) 6 P^}
U{(r, -o) : (r, -(o . 6)) e P,n, h^u e (-a)e [t]1
u{(r,-d), (.,-(o.6)) € P^,h^ru € (-d)q[k]]
u{(r, o) : (w,-(-")) € P^} v P^.

Now we show that P-11 and h*+r satisfy (*). It is clear from the definitions
that *,1 and *2 are satisfiecl. Next we show that h-11 is a function. To this end
let us first prove propositions (1) .(5) below. (In the proof we simply write h
instead of hrn.)

(1) h(t;eu)) - tfttru if t;1,w € D,,, ancl A € c.
Indeed, if t;6w e Drn, then u e D,n by *1 (ancl tlius A is defined on u), and i7
and *5 gives h@)rfh(t;1,u) € d*4, that is, /r(f;1u) - tfthu (since A e N At,)
iti+ k. Oneshowsbyincluctionthat t;rw(D*if i-lc. r(1)
(2) tfinw=tf;/tu" if tirtu =tkttt", w e D,n ancl f, n€a.
Indeed, let u e Dn , i, rt. € a and tlnw - tktu". If (i, n) € E"(tu), then tfnw -
u € D,n ancl *5 gives tfihu - hu,so we have tf;,hu = hu - h(tre-ltu") = t*lrru"
bV (1). Suppose that (i,rt) e E"(tu), ancl let k - nrin tr"(u)*{n}. Suppose
that tf,rru - t;rur", wltere either ri)" = ?u or (l/ € cv U Tm)u.' = titwtt. In both
cases utt' E Drr, (by *l since u € D^) ancl lmuTftnu" lry *7, thus we have

tfttnu - tftlmo - tftlnu" since (rr, &) €. E"(u,) - gL(hu). By the clefinition
of tf^ the only case not coverecl so far is tlru = rr/, where (3/)to = ttut ancl

(i,k) e E"(.').Then w' € D^ and (f, n) e E"(-'), truTftru', so tfnhw - ltw'.
If wt = tk-ltD", then (1) gives hu' = tft\ru". r(2)
(3) h(ti^w) - e^lnu if w,tfnu e D,,,.

Indeed, if t:rw = tkrw" for some k, l, w", then w € D*, and (2), (1) gives

tfthw =t*hu" - h(tr,rr,,")- h(ti,w). lf t'i^rD= tt theneither w= r or
(3/)tu :tun.If ru - n,then (i,n) e E"(,r) - gL(hto),soh(tl,,r)- hr -tfihr.
If tr.,- t;1r, then (i,n) e E"(r)\lcl ancl thus hr = tftttQ,i1n) (since h(t,;1x)'f!hx).
r(3)

(4) f (ru,i,o) = ttoru", utt e Dr' ancl huTflnu", or

f (ru,i,o) = t,;16rutt, n/' 6 D- ancl b(tu,i,o) = tftlmu"
ancl

(5) f (u , i, o) e D,..

Irrcleecl, let (tu, i,o) e H,,, ancl / g f(*,i,o), b.'!gt a1tll, i,o).Now / e {ti^tu:
n € cruTm), thus f € Du, implies hf e "qlkl by the definition of Hn. Suppose

def
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tlrat EL(l)*{i} - {i}. Then f - terow. It is easily seen from the definition of
tlou that tlow - tfow" , where either u)" = tl or (3/)tu = tnru" . In both cases we

have utt e D* and, truTfhu't by *7. Moreover, f = tiow" 4 D^ by *6. Now

suppose that Ea(!)*{i} + {i}. Then f = tlrw, where & = min EL(D* {i}\{i}
That is, k I i ancl he aft. Then b: t*tr. since hwf!!. Thus f - tinw (
D-, since tlrw € D* would imply h(tinw) = tfttru = 0 e "aftl by (3)
This, together with & = rnin BL(hw)* {k} (since EL(b) - gL(hw)(i/k)) implies
ti*w - t;kw" by *5, where either rD" = ur or (31)w =tirwt', so in both cases we

have ?utt e D^ and, hwTflnu", that is, b - tfthu". r(4),(5).
Now we are reacly to prove that h^11 is a function. We have to show that

(*,f),(*,g) e h**t irnply f = g.Suppose that (u, f), (*,1) €h^*t.
Case 1. (*, f), (*,g) e h. Then f - g by *3.

Case 9. (*,f) e lt., (u,g) 4 h.Then w e D,n, thus (-,g) - (t:,w',t!^lrw')
for some n. € a and (tu', i) e G* bV (5). Since tlnut = u e D,n, (3) gives

f = ltw - h(tfnw') - tfttna' = g.

Case 3. (., f) ( lr, (rr,g) ( h. lt will suffice to show

f (.,i,o) - f (.',i',o) 1b(w,i,o) - b(*',i',o)

f (-,i,o) = t"inru' 1b(1r1,i,o) - tLrhw'

tf,u - t] nu' + tfflnu - tLrhu'

for all (u,i,o), (ru',i',o') e H,n, (*', j), (*,i) e G", ancl /, n € a. Suppose

that / 911,r, i,o) - f(rr',i',o'). BV (+), either f =t;on", i = i',6 - o'ancl
hwTfhu"Tfhu', ancl in this case we have b(u,i,o) = b(u',i,o) - b(tu',i',o')
beczruse of the choice of the function b; or f = t*tu" ancl then b(tu,i,o) -
tftlnu" - b(ru',i',o').Suppose that /(tu,i,o) = tintu' = t;rru/'. Then tlnu' (
Drn by (5), and tlius, since u' €. D- ancl n, e a, the defnition of tfnw' shows

that & € cv. Then b(tu,i,o) = tfthu" - tkhu'by (a) ancl (2). Suppose that
tfp -- t"inru'- /. If f € D,n, then (3) gives tfthu - tfnhu'. lt [_e D,-, then /
is of the forrn tpkrutt, ancl then tfthru - tf,nhuil : tLrhu' bV (2).
With this we have shown that /r*11 is a function.

Now we show that /r*1r satisfies *5. Let tt € Drn+1. lf w € D* then
we a,re finished since lt,n C h^+t, ancl /r- satisfies *5. So su1'rpose that tu €
W\D"r. Thento = tikru" forsomei € (y,k € cuUTm anclw" € D*i
ancl ,O"(u) - E"(u")(ilk) = gL(lmu")(ilk). Suppose that u -- f(ot,i,o) for

sorne (ru',i,o) € H,n. Let 6I b(u',i,o).ff k e a, then k - o by (4) ancl

EL(b) - B4-(tru")(il4 since bTftru,, an.i EL(b)*{i} = {i}. It k € cv, rhen

EL(b) - EA(\ru")(ilk) sinc.e b - t*lnu". Suppose that tr = tinru'for some
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n e d and (u,',j) eG-. The" I 
g h^+rw - t,L^lrlt)' = tfthw" bv (2), whence

EL(D - gA-(\ru")(ilk). Thus we have shown that h--1-1 satisfies *5.
Prn+1. satisfies *4 since *5 is satisfiecl ancl P^ sat,isfies *4. As an illustration

we consicler two ca,ses. Let (tu,d;i) € Prn+r) u e W, (i,j) e E"(tu). Then
(i,j) e EL(hu,a1r) by *5, so hn+tw e rlft. Let (tlnu,-o) e Prn+r, where
(u,-c;o) € Prn and n € o. Then h^w € (-.,4q[k], ancl since, as is easily
checked, h,nwTfh*+r(tlntr.,), we get 4,,,11 (ti;u) e (-a)e[t]. The remaining
cases are cornpletely analogous, so we omit the cletails.

To slrow that hrn:r1 satisfies *6 suppose that t;ow € Drn*r \ Drr. Then
t;ow = f (.',f, a) for some (r',i,o) e H^ (see the proof of ( ) and (5)), and
then b(tul ,i,o) e "A[k].To show that h^q1 satisfies *7 suppose that

f (.' , i, o), then /r,r,1 r(t;^u)T!,htu by (4). If t;,,ru
bv (2).

With this we have estabilished (*) for P-11 ancl /r-11.
Let P I ,{"', : nt I lltll}. We show that P is a r-tree. In what follows, we

refer to conclitions l, 2(u)...2(c3) of the definition of r-trees. (l) is satisfied by
*1 ancl *2, and 2(a) is satisfied since (r,r) e Po e P. One proves by induction
that all P,"s ancl thus P satisfies 2(c1). Let h gr l){h,-: nr l llrll}. Then
/r, : DomP 

--+ 
Aancl htu e o[lklif (tu, o) e P,by *3 and *4, so 2(c3) and 2(b)

is satisfied (since 2(c1) is satisfiecl). Conclition 2(c2) is satisfied because of *2
(ancl the clefinition of P*11). Thus we have shown that P is a r-tree. For the
intuitive meaning of this part of the proof, see Remark 3.4(ii) below.
(II)Proof of "thereisar-tree 

-{A€. 
lVCAo 

'1,41 
<//(r)}V, =0" (where

N(r) will only be definecl later, at the end of the proof).
Let e € Eqrel(a). Bv incluction, clefine

r\/6 g {r},
Nk+t g {ti,ru : u e N:n,i Q a,n€ a U Trn},

N" g u{rr;, : nr €u}.

Forf,/€alet

Eoj9e: {to € I,{" : (i, j) € E,(r)},

fr g 
{(tr.,,u.,) :u ( tf"}U {(tu,t;nu)

'(lr") : n e cv U Trr) U {(tu,, ru,t,;,,,ut)

(N" ,Tt, Et j)t.,j e.".

LEMMA 3.L N" e NAt..

t;nw e Drn+t \ D- . If t;nru -
= t"iotu', tlren hrt+r(t;ru)Tfhw

€'(l/") : z € aUTml U{(t;nru,u.,) e
€ '(nf") : n,nt € rv U Trn).

l,/t tlgf
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Proof: Fix e € Eqrel(o). Let n e u ancl N' dS U{,rf,i : nr 1n}. We claim that

(1) N" = Subter-(N").

(2) If t;*u e .|y'" and k e a then (i). . . (iii) below hold.

(i) (i,k) ( E"(.)
(ii) e - min(E"(trl)*{k})
(iii) tr does not start with i.

Indeed, (1) and (2) are easily proved by induction using the definition of tlnw.
Suppose that (1) holds for ly'- and (2) holds for all ut e I,,l^. Let u € N^,
i e a, ancl n € aUTrn. Let k I min(E'(,r)*{n}) if n Q a, ancl k g n
if n ( a. Then it is irnrrrecliate from the definition of t"rnu that (l) holds for
/y'*+r. Supl,rose tliat n e a. If tirw € {w,u'} g ly'-, then we are done.
Strppose lhat t";nru = t,ikru. Then frorn (i,n) e E"(tu) and (r,k) e E"(u) we
conclucle that (f, k) e E"(tr.') and & - rrin( E"(u)* {k}), rnoreover, to cloes not
start with i. Suppose that tf,rut = tiktut. Then tu' cloes not start with f, since
ru : titu' e N'n, furthermore, (f, k) 4 E"(r') and (f , n) e E"@), (n, k) €
E"(u) gives (1, k) e E"(.u'), thus .O'(tr)*{"} - E"(u)* {fr} = E"(u')* {&}, so
/c - min( E"(-')* {fr}). This proves (1) and (2).

Now we return to the proof of N" e NAto. Let i, j, k e a. 4 is obvi-
ously reflexive ancl syrnrnetric, and its transitivity is a consequence of (2xiii).
Moreover, Eii = I'{", E;j - Ej; and E;p n Eri e E;i, since E"(*) € Eqrel(a)
for all u) e I{e. Suppose that k ( {i,i}, and let uTpz. It is clear frorn the
clefinition of Ty that.O"(u) P ("\{f}) = E'(r)l ("\{t}), thus u e E;j implies
z e E;i. Suppose that i # j. W" show Lhat T; nzE;i g Id. Let uT;2, w e E;i,
w * z. If z - t;nu and n Q a,then (f, n) ( E"(.) bV (2)(i), and (i,n) € E"(z),
thus (f, j) 4 E"(r) (since (i, j) e E"(*)); if n ( cv, then i is singular in E"(z),
so (i, j) ( E"(z); thus in both cases, we have z # Eti. lf u - tnz for sorne
n € a UTrn, then n € cv, since i is not singular in E"(.), and (i,n) ( E"(r)
Uy (Z)(i), (i,n) e E"(ru), so (i, j) e E"Q). Suppose that to - t,nLD', z =ti,nu)t,
for sorne n, nt € cv U Tm. Then n Q a, since f is not singtrlar in .B"(tu). If
nr ( a, tlien f is singular in E'(z), thus z f E;i, ancl we are finished. Sup-
pose that nt, € a. Then n = min(8"(-')* {n}) and m = min(,O"(.')*{"r})
by (Z)(ii). Since u f z, we have n, f nt., ancl thtrs (n,nt) e E"(u,'). Then
(i,j) e E"(u')(iln) gives (i,j) e E"(u')(ilnt) - E"(r),,so z # Eii. We have
thtrs slrown that Tt f\2 E;1 9ld.

So far we have provecl .Ay'" € pN Ato. Though this is all we need in the
secluel, we prove N" € N Ato for cornpleteness' sake. We ha.ve to show that
E;i e ff @;nEr). Let u € E;i.If k € {i,7}, then we are finishecl. Suppose

tlrat k e {i,j}. Let ,Y tioru. T}ren z € E;i.rE*; - E;t nE*i, ancl uT1,t",,;u, as

can be seen frorn the definition of tfrt-. This completes the proof of N" e Mto.
r(Lernrna 3.1)
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REMARK 3.2 (i) The name ..Ne)' refers to "normal-form". This is because if
we define the function n" : Tm;(tr) ---r Tm76(tr) as in Remark 3.1, then Nt =
{, € Tm(t*) : n'(u) - u,} = Rng(rr,"), that is, N" is the set of expressions in
norrnal form.

(ii) Let .A/ gr N" I Tm(f '.). Then N is the free N Ato with cle{ining relation
E(r) = e "generated" by one element, in the following sense: LeL A €. Mto,
a € A and EL(a) - ". 

Then there is aftrnction & : ly' 
- 

.4 suc.h that k(r) - a,
and for all B e NAto, b e B, EZ(b)= €r and if /r : B + A, h(b)= a, then
there is afunction /:N ._ B with f(r)= b and k=h,of. (Thesecond part
of the statement says that k is the "smallest".) More generally, the following
istrue: Let e € Eqrel(o), Ae NAto,ae ,4 and gL(a) - e. Then there is a
function k : N" + A such that k(r) - a. I

Let P be a r-tree. Let, e €t {(;,j) € 2a : (r,cl,;i) e P}, ancl let P' -€{(u,o) € P : u e 1/"}. Then it is easy to check that P/ is a r-tree, and

obviously DomP/ q N". Let R(P) I N" IDornP'. For all f € cv, let /ir g
{tu € DomP' : (3o)(to, -cio) e P'}.

LEMMA 3.2 Let P be a r-tree, ancl B
def
= R(P). Then

(i) R € pt{Ato, and lBl < Py (ll'll).(l"l .(l"l* lSubterm(r)'l))ll'll

(ii) ff u e Ii;, then (Vj e a)(ffu exists).

NAt.,, ancl (Vi € a)(Vtr e I{i)QP. {.} = f!. {ru}), then
0.

Prcrof: (i) followsfrorn Lernrna3.l ancl from l{ur € Trn(l/j): llull< llrll}l< P,
wlrere t'l = {U,,",I) : i Q a,n € cv U Subterm(r)'}. (ii) follows from P' being

a r-tree, since (Vru 6 N")tlSu = tH"rr. To prove (iii), suppose that A ) B

satisfies the premiss of (iii). For all y e X,let e(y) 91,, € B: (rr,y) e P'j.
Tlren k:X -*Sb,4. LetCEj CrrA. Weprove (u,o)€P')u e oe[k] by
incluction on dr. Let (*) be the following statement:

(*) (Vu' € B)l@,o) e P' * w e oql[l

If a € X, then (*) holds by the clefinition of k. If (u,cl,;i) e P/, then (i, j) e
E"(u), thus u e clft. Suppose that (*) holcls for all elements of Subterm(a.5)'.
This irrplies tliat if (ru,o.6) e P', tlien (u,o), (tu,6) € P', a,ncl thus tu €

"q[k]ndq[&] =(o.6)e[f]. Supposerhar(tr;,-o) € P'. tf o = ye X,
then (tu, -y) e P' irnplies (u.,, il e P', thus u ( k(y), that is, to € (-y)q[k]
If o - cl;i, tlien (tu,-d;i) e P'gives (i,j) ( E"(tu), thus u, € (-clij)Q. If
o = o' . 6, then it follows frorn (u,-(o'.6)) g P/ that either (tu,-o') € P', ancl

(iii)ffBeAe
CntAtr, -
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then tr e (-ot)a[k] q -(o' .qqk], or (ur, -d) e P', and then tu € -(o' .6)q[k]
by the same argument.If o = -c', then (-,-(-o')) e P'implies (tr.,, o') € P',
and tlrtrs to € (4qlkl = (-(-"'))9'lkl. If o = ciot, then it follows from

(u,-c;o') e P'that u., €. I{i, ancl (r,-o') € Pt for all , e Tf* {tu}, thus

z ( @t)a[k], but rP. {.} - Tf* {r} bv assumption, so u e (-crot)qlkl. tf
(w,c;o) € P/, then (tl^w,o) € P' for sorne z, ancl Lhen tlnu 6 s9[k] and

.Tf,,:,tu, thus u e (c;o)q\l. r(Lemrna 3.2)

REMARK 3.3 (i) Lemma3.2 (iii) may suggest that if a e rq[k], where O -
CmA, A e NAfo and k : X 

- 
Sb,4, then there is a finite neighbourhood

of o in ,4 (its size being dependent on r) which influences a g rQlkl and such
that "things outside it" have no effect on o, and the r-tree is really nothing
but this neighbourhood in an abstract form. Yet this holcls only for "free"
N" € Mto's ancl not generally: There is a r € Tm ancl ,4 €. N Ato such that
CntAF, - 0 but (VB g, A)\C^(A lB) F r - 0l while (VX g." A)(18 g.
A)lX G B and A I B e NAt"). An example for such a r and .4 is the r given
in Rernark 3.4 (ii) and fhe At(V) e Mt, constructecl frorr the Crso-unit V
given irrrnecliately after it.
(ii) It is fairly easy to construct a B(P) g A e Mto satisfying the condition
of Lemrna3.2 (iii): B(P) can be extendecl essentially "freely" to an I,{Ato. Btrt
this extension will be infinite. Next we show that there is a finite extension
proviclecl a 1u. I

LEMMA 3.3 Let B €. pN Ato be arbitrary. Then there is an A € N Ato
satisfying (i) (iii) below.

(i) R e A.

(ii) l.4l < q.lEll, where ry9 2l"l'lEqrer(cr)12 . lEqrel(a)1.

(iii) ff be B,ae A\B arrd bTfa,ilten(1j e cu)ttft does notexist).

Proof: First we introcluce sorne notations. Let B_e pNAtn, €, e' € Eqrel(rr)
andi€cY. Then

(r) tr(r) 9t 1,, e B : sL(ut) - e\.

(2) We say that elie', if (le e a)et - e(ilk); ancl e J-* e' means (e)ie' ancl

e')ie). elie' is sa,icl to be sonrl in B if R(e) x R(e')nTf : B@) --.--* B(e');
ancl e ,J--- e'is good, in R if R(e) x B(e')nTP: B@) H-) R("').

(3) Let H dg 
{(","',i): elie',,e * e'}, G g {(","',i): e l-- 

"r,e * "'}.
(4) A 2 B is saicl to be a good edensictn of B if it satisfies the c.onclition

forrrulatecl in Lemrna 3.3 (iii).
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Clairrr 3.1 Let B € pN Ato arrd suppose that elie' is good in B, for all (", r', f ) e
H.ThenBeNAt".

Proof: Let B: (B,T;,E;i)r,i.o e pNAto be as in the statement. We have to
check E;i e ff, @4 n Er) for all i, j, k e a. Let l,, E;i. Then b e B(e),

where e = EL(b), and (i, j) e e. Let e'9 e@/i). We may suppose that e * r'.
Then e)ke' is good in B. Thus there is an a e R(et) with b\a. Since (i, j) e e,
we lrave (i, lt), (j,k) € e', that is, a ( E;yf\Epi. r(Claim 3.1)

Claim 3.1 makes it possible to extencl a B € pl{Ato to an A e lllAlo by
"repairing" the e\ie"s step by step.

An N € pN Ato is saicl to be regular , if

1. ,Ar/ - W x Eqrel(a) for sorne set Irtrl, and

2. N(e) - W x {r} for all e € Eqrel(a).

Clairrr 3.2 Supp ose tltat N e pN Ato is regnlar, and e J- e' is rrof good in
N, where (",r',i) €G. Tlten there is a regular M €pNAt,o such t,hat

(1) ne M,lMl=2.lNl

(2) , .\ 
"r 

is goorl in M

(3) ifes *!- e1 is gooclin .l/, tlten es -\ e1 is goocl in M, for all (eo,et, i) e G.

(4) M is a good extension of N.

Proof: SupposethatN -W x Eqrel(a). LetWtosJ W U(1 x I4z) and Mg
W' x Eqrel(rr) (cf. Fig. 1).

Let
of E: {(r,e) € M : (i, j) e E}

for all i, j e rv. Then M(") -W'x {e} for all a € Eqrel(cv).

Since e.!- e/ is not goocl in l/, either elie' or e'lie is not goocl in.A/. We
may suppose that the forrner case applies. Let

D ef {tu € 1/(t) : (-12 € N(e'))tu7fz}, ancl let g be such that

s : It[(e) H--) M("'),

l, e g, where n I I'r1e) x N(e') o f, and

s* D g (1 x W) * {e/}. (See Fig. 1.)

There is such a ftrnction g, since both /l and h-l are functions because of
N e pNAfo ancl (r,"',i) € G. For all j e a,let
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E

=

]''
D

!, 1
I

i
trvt 

I

e4eo Nl(e) T[1(e't

1

Figure 1.

- defAy'gl)g-r,

/ii I {((., eo), (tu, rr)) 
' 
u e IxW,(es,et, j) e G,es J- 

",. 
is good in N}U

Idlr x w;,

Li E rf ur! if j t' i, ancl

t C4 ..'NLi = L-U R;U g,

,f *: "the transitive closure of Li" ,

M Y (M,T:y,Efflr,,re*.

We will show that M has the desired properties. To this end, let us first describe
the relati ons Tf Jit more explicitly.

(1) Let i e a ancl pTfq. Then one of the following cases holcls:

(i) p, qeN,unrlpTf,l

(ii) p€ff, qeIV, j=f,ancl pT:fagb?;qforsome a,b€M

(iii) e e IV,q € N, j =i, ancl pR;agbTfq for sorne a, b e M
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(iu) p e N, q f N, j = i, and pRlq

(u) p ( N, q f N, j = i, and pR;aib&;qfor some a, b eM \nf.
Proof of (1): It will suffice to show that if TrffALir, and p, q satisfies one of
(i). (v), then p, r satisfies one of (i)...(u). (lt p - g, then clearly (i) or (iv)
holds.) The nontrivial cases are as follows (we note that .Ri is transitive, and
e f e'):

(u) pTf asb R;qi r

We claim that in this case we have r = n, and thus (i) holcls. bR,;.a gives

b - (w,es) and Q = (w,e1) for some u, €o and e1, where either eo.J* e1 is
good in N, or b: Q.We have {ro,"t} g {r,e'} by agb, qgr, and thus, since

e *!--- e' is not goocl in N, we get €o = e1, whence b - q. But then agb, bgr
gives a = r.

(b) pR;aubT!(tsr and, r e N

We show that r = c, and thtrs (iv) holcls for p,r. It follows from agb and qgr
that b = (w,e6) and Q = (2,e1) for some u, z and {eo,er} ! {r,r'}. Then
e e N, b e N, (t€ N,, e N, bT{,l,ancl e6 - er by the clefinition of g. But
then bT;q gives b = Q, since i is not singular in e or e/. This, together with ctgb,

bgr,implieso=r.
(.) pR;asbR;qsr

As in tlre previous cases, aibR;qir gives b = Q, ancl thus e, - rt so case (iv)
holds for p,r. r(1)

Now we are ready to prove that M has the desired properties. First we show
that M e pN Ato. Clause (i) in Definition 3.3 is satisfied since the relations
Li are reflexive ancl syrnrnetric; and (ii) is obviously satisfiecl. Let k ( {n,,m},
k,n,nt € d, p € ErMr* ancl pT{r1. Then (l e E#r, since /,6 is easily seen to
"preserve n#^". Let n, f ntr, tr),q e E#, ancl pf,Ya. We prove p - q by
examining cases (i) .(v) of (1).

If (i) holcls, then p - q, since lV € pI,{ At,. Note that EMp = ELq, so
p= (u,E), q= (t,e) for some u),2,E, tlius we have p - q in case (iv), too. Now
we slrow that there are no more possibilities. Suppose that pTfallbR;Q, n - i.
Tlren c € N,b f N,so {E4L(n),ElL(b)} = {e,e'}. Suppose that gy(") - e (the

otlrer case, ny@) - e', is cornpletely similar). Then bR;Q, se 6/ *J-* e is good
in .A/ (this is true even if b - ,l and thus e' = E, since i is not singular in e'),

tlrus tlrere is an r e EL(e') such that pT{r, and then ofr, w}rence o € N \ D,
contraclicting agb, b e N. Thus case (ii) cannot hold for p, Q, ancl it can be
slrown similarly, that neither can (iii) or (v). This shows that M € pN Ato.

Clearly, M is regular, and lMl - 2.lN l. Now we show that N g M.
Obviorrsly, E# - 1/ n E# for all k, I €. n. Let j €. a, p,q € ltr ancl pTfr1.
Tlrerr pTfq bV (1). With this we have shown N g M. It is immeciiate from
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the construction of M, that e. l.- 
"t 

is good \n M, and if ,o A e1 is good in
N, ("o,et, j) e G, then es J* ", is good in M. To prove that M is a good

extensionof N,suppose thatp€N, qeM \N, j€o,and pT'fq Thenit
follows from (1) that j = i ancl there are o, b such thaf pT{ngbR;q. Then lfa
does not exists, where k + i, and either e' = e(ilk) or e = e'(ilk). Since pTfo,
we conclucle that lffp does not exist either. r(Claim 3.2)

Clairrr 3.3 Let N e pNAto be regular ancl suppose that for all (e6,e1,i) €G,
i

€s +-+ e1 is good in N. Then there is a regular M e Mto such t,hat

(1) i/gM,lMl=2.1//1,
(2) M is a good extersiorr ctf N.

Proof: The proof is similar to that of Clairn 3.2. Let W,M,Effi ancl M(")
be the same as in the proof of Claim 3.2, that is, N - W x Eqrel(a), M -
lWu(l x W)l x Eqrel(a),8# = {(r, e) e M:(k,l) € e} ancl M(r) - {(u.,,e) €
M:E= e),if k,lea,e € Eqrel(a). Wemaysupposethata 2 2since
pNAt.-- NAt.- foro( 1. Let i€rr anddefin"T:lLasfollows: Let jea\{t}
be fixecl. If i is singular in e € Eqrel(cv), then let 9(e) : M(e)------- M("(;lj))be
such that

tt,9 sG), where n 
oS 

4{n [/V(e) x N(e(ilj\),

kt!)\/,)*MgM\N,
{((u,, e),(u,"(iljDl: tu € 1 x W} e gk), and

2Lr n ker(g(e)) = zAr(e) n 4lL (see the picture).

There fs such a function .g(e) since /r is a function. Let

U{.q(t) : e Q Eqrel(o), f is singular in e},

gtug,it,

nn I {((,r, e),(*,e')):w €I XW,,e P (cv\{i}) =e'l (.\ {i})},

4Ei rf u sru R,;,

-L 4t! ,,,tr i uhe transitive closure of tr;",

M dg (M,7.!!-, Eff) ;,i e..
We want to show that M has the clesirecl prolrerties. Again, first we will have a

closer look at the relati ons Tf .

(l) Let i e a anrl y,TlLg. Then one of the following cases holcls:

def
=

.l-gf

9t

i;
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e e(41i)

I'q{

l

r/

4x h/

$) prfq.

(ii) p4{ng;bL;r1for some a,b € M.

(iii) pR;n irbTf,r for some a,b e M.

(iv) pR;q.

Tlre proof of (1) proceeds as in the previous claim. We show that if pTfqL;r,
and one of (i) . . .(iu) holds for p, q, then one of (i) . (iv) holds for p, r. The
nontrivial cases are as follows.

(u) pT{ag;bR;Qs;r, r€1/.

Let e 
-44 

E'{(o), r'9 EIL(b). Then f is singular in e ancl e' - e(ifj) (where
j e o\ {i} is the inclex "chosen" for f) since ag;b and a € N, b 4 Ir{. By the
same token f is singular in nL(g) and E{(q) - EN(r)(ilj). Now bR;s gives
nv!) P ("\ {i}) = e'I (a \ {i}), so EIL(r) - " ancl E{(Q) = e'. Then bR,;r1

gives b = g, whence ag;bg;r; and o, r e N, b e N gives (n,r) € kerg;, thus
aTfr, so pTfr. But this means that case (i) holds for p,r.

(b) pR;ai;bTfqs;r, reN.
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Let e - EAL(b) and e' - e(i1fl. Reasoning as above, we get, ny@) = e. Then

ag;b, o 4 N,b e N gives bg(e)a, and sirnilarly qg(e)r, so bffq gives a = r, and

we conclude that case (iv) obtains for p,r. r(1)
Now we are ready to prove that M has the desired properties. The proof of

M e pN Ato is as in the previous claim, so we only give details for the (hardest)

starement "T:yn'E# q Id if i + i".
Srrppose that pT{q and p,Q € nff. men e" 9 gv@) - nW(il. Now one

of (i)...(iu) (in (1) above) holds for p,q. If it is (i) or (iv) then we are done.

Suppose that pf a1;b%iq. Let e . EL("),, e' = EL(b). Then f is singular in

e brrt not in e' a,ncl e", thrts e" ,\ 
"r 

. Since 
"rr 

.J+ e' is goocl in N, there is

an r € PY("') such that pTfr, that is, oT{r, contraclicling o'g;b,b e N. Thus
(ii) cannot hold for p, q. A similar argument shows that (iii) cannot hold either.

With this we have provecl Me pNAto.
Let (e, et,i) e H. lf (",r',i) e G, then e)iet is good in M since it was good

in N ancl the construction preserves goodness. If (e, "',i) e G then i is singular
in e, and then the constmction shows that e)ie' is good in M. Thus M e NAt"
by Clairn 3.1. The proof of the other properties are as in the previous claim.
r(Claim 3.3)

Now we begin the proof of Lemma 3.3. Let R e pN Ato. Let l,r €r g x
Eqrel(cv) and let h : B -' N be such that h*B(r) q Bx {e} for all e € Eqrel(o).
For all i, j e cY clefine

E#"9 {(0,') € i/ :(r,r) e e} ancl

4lL 
g 

{(/,o, hb) : (a,D e rf} u Id | //,

N g (N,+, nffl;,ie,.

It is easy to check that /r, ; R ,- N e pNAto, N is regular, lNl - lBl 'lEqrel(a)l
and .l/ is a goocl extension of li B. By repeated applications of Claim 3.2 and

tlren trsing Claim 3.3 we get an M e NAto with lMl < Zlat.l.nf l which is a
goocl extension of N. Frorn this structure M we obviously obtain an A 2 B
with the clesirecl properties via isomorphisnt. r(Lernrna 3.3)

Let us return to the proof of "(ll) There is a r-tree * {A e NCAo 
'1.41 

<
/f(")\ V , = 0". Recall that just before Lernma 3.2 we have constructed a

partial zrtornstructure R e pN Ato from a given r-tree P. Let N(r) Ej 2n'g ,

where 17 ancl B areas in Lernrnas 3.3 ancl 3.2, respectively. Let A e N At" be an

extension of B(P) given by Lemma3.3. Then l,4l < q'B anclC g CntAV , - 0

by Lemrna3.2. Clearly lcl < N(t). Thus {A e I{CAo, l,4l S ,lr(t)} V , - 0.

If a < c.,r, then N(r) € c.r and in this case the function N is obviously computable.
l(Proposition 3.1)

Thus we have provecl (i) and (ii) of Theorem 3.1 for (v <e: (i) followsfrom
both Proposition 3.1(i) and Proposition 3.1(ii), since the existence of a r-tree
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is easily seen to be cleciclable (if d < u) ancl all equa,tions can be (recursively)
transformed into an equivalent equation of the form r = 0; and Theorem 3.1(ii)
is an immediate corollary of Proposition 3.1(ii).

Next we turn to the proof of the decidability of EqNCA" for o 2 w. The
proof proceeds by reducing this case to that of a 1 u uia Lernrna 3.4 below.
Let ind(r) be the set of inclices occurring in r, i.e. ind(r) is the smallest I e a
such that r € Tmx(.ylr). Note that ind(r) is cornputable.

LEMMA 3.4 Let incl(r) C p C s. Then

NCAoFT- 0<+ NCAB F"=0.
Proof: We rnay suppose that cr ancl B are orclinals. Suppose that A e IVCAo,
AVr - 0. Then fulBAW, - 0and R,dpAe. NCAB, thus (NCA**
r - 0 + I'{CAB V r = 0). Note thata isaparameterof theconcept
of a r-tree. Let us make this explicit ancl say that "P is a r, o-tree" if P
satisfies the conclitions in Definition 3.2(iii). Suplrose tha| I,{CAB V, - 0.

Then tlrere is a z, B-tree P by Proposition 3.1(i). Let Pt9 1(a,o) e P :

(Vf,n)lrin occurs in tu + ie ind(r)]]. Itisnotharcl toseetha,t then P'isar,B-
tree, too. Let k € B\incl(r) be arbitrary, e 

o9 
{(;, j) e 'P:(r,cl;;) e P'} and

let e be the ecltrivalence relation (on o) generated by the relation eU{k} *("\0).
Let

P" g P' r-t {(u,,I;"i) ' U, i) e Ee(u),?D € DomP'}
U{(ur, -d;i) , U, j) ( Ee(u),u) € DornP/, i, j e a}.

We show that Ptt is a r, cv-tree. Let D €r DomP " -- DomP' . It is not harcl
to show by incluction that E"(*) - Ee(w) P B and tlnu - ternu for all tu € D,
i e P ancl n. (This is where we use that cv and B are orclinals.) Frorn this it
follows that conclition (c3) in Definition 3.2(iii) is satisfied. The only remaining
conclition which is not trivially satisfied is

(tu, -c;o) e P" =3 (!71 € o \ P)(ti"to,-o) e P".

Sirrce k fr ind(r), for no / cloes 111 or 1,,1 occur in tu, whence (k,n) € Ee(w)
since (k,rt) e E. Tlius td;nru -- tfnu and (u,-c;o) e Ptt * (r.u, -cia) € Pt +
(tlou,-r) € P'+ (tfuu,-r) € P" + (tlnu,-o) € P// (since t,l1,u - tin* -
tl^u). With this we liave shown that P" is a r,rr-tree. Frorn Proposition 3.1(i)
it follows that NCA" W r = 0. This completes the proof of (lVCAp V r -
0 =:+ NCAo V, - 0). r(Lemrna 3.4)

Using Lernrna 3.4 ancl Proposition 3.1 it is easy to constrtrct an algorithm
clecicling EclNCA.-. (Note that the recursive function N(r), the existence of
which was proved in Proposition 3.1(ii), has a as a parameter, moreover in strch
a way that the two-place function I,{(r,a) is still computable.) Now we turn to
the proof of Theorern 3.1(iii).
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Proof of Theorem 3.1(iii): We may suppose 3 ! o without loss of generality.
Define

(1rEJ d;i .c;r, where i, j € a

(this may be conceived of as a kind of dual of s'rx - ci(clij . r)). Let

qY r@.dor -drz) < x - r(r.dor - drz) = r.dor - drz.

We claim that FNCA* 
=q 

but NCA, F q. Suppose that C e NCAo, C V q.

We slrow that C is infinite. This will proveENCA. F q. We may suppose
that C Q CnrA for sorne A e NAt". Then C V q means that there is an

H gE#\ErAr,H €Csuch LbaLrQH cH. Since AeNAto, w€have

tL* t nft\ E# H-+, gL*f nL*

tfi : nL*\ E+, H-> a'# t nfi, ancl

tfi, nfi\ E# H-, nhf nL*.

Let f 9,* otfrotfi. rnerr f : Efi\ E+, H-, s# t nLu. ret G g E#\ E'fr,
G e C be arbitrary. Then ttoqC = .lq* n clc - f** G, and similarly for the
other indices, so rQG - f*G . Since / is a bijection, we have f*G C G +
f* f*G C f* G, thus rH C H implies // f rH ) rrH I ..., that is, H
generates infinitely rnany clifferent elements in C. This proves FI,{CA* | q.

In order to show NCA" V rt *" present a specific C e NCA. and H e C
with rQH ( H but /1 <dfi - dQr, (see Fig. 2).

LetZclenote theset of integers, and let e6 Itaf '{0,f}u(o\2). Let E
denote those ecluivalence-relations over a in which exactly two different elements
are equivalent, i.e.

E' gr 
{e e Eqrel(o) : le \ Icl I = 2},

E' Y Eqrel(o) \ (E u {Id,}),

/'lei ExzuBx{F},
Eij : {(e,rr) e A:(i,j)ee}.,

TnY {((e, n) ,(e,nr)l e2A: e P (c\{i}) = a r (o\{f }), [r I E and {",e} g
El+ n = nt,fe - Eand i € Dom(e\Id)] * ?r = nr), if i + l,

TrEJ {((e, n) ,(E,nt)l e2A: e P (o\{t}) = a r (o\{i}), [r I E anct {",,e}
E\ {ro}] + n = nt,le - Eancl 1 € Dom(e \I,l)] } n, - Tn,€, = "o # E

E + n = nr.+ 1,e - eo * e € E * m= n* 1),

,rEi tltf t!, ancl

g
€
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/ 
-qg 

(A,r;, E;jl;,je.,.

It is easy to check that,4 e NAto. Let H g 
{(ro, n):n e Z,x >y}. Then it

is easy to see that 11 g Eh\Eh and rQH C H , where C 
-qg 

CmA. r(Theorem
5)

REMARK 3.4 (i) It is not possible to omit the condition a ( cr from Theo-
rem 3.1(ii), since E<1NCA, I EqFNCAo if a 2 u: Let a ) u, i,j e cr, i + j.
Then NCA, V d;i = 1, while FNC,A, F d;i - 1 by the proof of [8] L.3.I2.
Moreover, in Lemma 3.4 the condition ind(r) C I cannot be omitted, since it
was shown in [18] that there is an equation distinguishing,n[C.A., and NCAB
if 2 < 01r, B <a (that is, we have NCAB I HSPILiBNCA, in this case).
Tlre same applies to the classes CAo, see [8] 2.6.14(i).

In Theorern 3.1 we haveseen that NCA" is not strongly cleciclable if a > 3.
We do not know whetlier the word-problern for NCA, is solvable for a ) 3.
Below we show that for n < 2, NC.A* is strongly deciclable. Furthermore,
ignoring the trivial cases, if rr < cu, then omitting any nontrivial axiom-scheme
beside Ca gives a strongly deciclable variety. (Ilere Cr, Cs and Co are called
trivial, because no variable-symbols occur in them.) For f ( 8, let

NCA;i I {e e CTA.' (Vr e 8 \ {4, i})A ts Cf}.

Below we will show that if 0 < i < 8, then

NCA;i is strongly cleciclable e i e {2,3, 7}.

It is plausible that NCA;0 is also strongly cleciclable. Insteacl of cletailecl proofs,
we only give the constructions and the corresllonding propositions, which can
be easily checkecl. (We shotrlcl perha.ps note that it is usually ea,sier to check
CL, C'.! ancl C'.!' then C3.)

Let A e. CTA,, {d,;i : i,j €o} g X gY g A, a 1 u, and let B e. CTA,
be srrch tlrat ,B - Sg&Y , RIB g BtA, and dfr = ,ff; if i, j e o.
(I) Suppose that Y - XU {sfc,sfr : c € X} and

,!r-llt, e.B:x1y=rfyj, forallf €aancl r€8.

Then A e NCA;' + @_ e NCA;7 and A I X g B), and if o ( 2, then
A e lttCAo * B e I'{CA.. This proves the strong cleciclability of I{CAo for
a 1 2, ancl that of I,{C A;7 for a < u.
(II) Let At 49.' AtB ancl suppose that Y - X (where AtB clenotes the set of
atorns of B).

1. Suppose that ,f, - D{o eAt:a1.r!r},for all iec- and e € B. Then
A e NCA;t + (R e NCA;3 ancl .4 IX g B).
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2. Suppose that RtA is a Boolean set algebra over U . Let" A( d9: At{y € B :

A-cfyj. Let r:A| +Lr besuchthatVa eAt)r(a)eA(asystemof
representatives). Suppose that cflc = D{o e Att : r(o) € c} for all f € o,
r € B. Then A € NCA;' +(ae NCA;z ancl .4 I X g 4.

The above cases prove the strong decidability of NCA;i for i € {2,3,7}.
Now let ie { 1,5,6}, and q'9: ACf - L where q is the quasi-equation of

Theorem 3.1(iii). Then g'is easily seen to be equivalent to a quasi-equation,
and (by Theorem 3.1(iii)) FNCA;i I q/ while NCA;i V q'.Thus NCA;i is
not strongly decidable.
(ii) r-trees were intentionaly called "trees": the present method is essentially
the method of tree-proof widely used in logic for giving complete calculi (for
insta,nce the so callecl sequence-ca.lculi are based on it). Below we present some
simple examples in orcler to shecl some light on the essence of the tree-proof
method usecl in the proof of Theorern 3.1. At the sante time we will show why
the methocl in its present forrn cannot be usecl to clecicle EqCrs.r.

Let r - .o(y- ctz), ancl suppose we want to clecicle whether IVCAo F r - 0.
LetAeNAtd anclo €rglklforsome k:X -----*Sb,4,where C -CmA. Then
o has a O-neighbour s (that is, o?o s) strch that " € (y - c1z)a[\. Strppose

that Ea(o) = Icl f 3 (i.e. o € -dfi -dfir-airl. Then c rnay havefour types

of O-rreighbours in ,4: tL*a - n, t#,a, t{ra (these are the ones that rnusl be
present), ancl an arbitrary number of 0-neighbours s with EA(s) - Id |.3. This
is illustrated in the picture below:

toLr" €clor-cloz-clrz

Tlrrrs we have four cases to examine. Suppose that lt € (y - c1z)aflcl, where b

is an "optional" neighbour of c, that is, EA(b) - Icl [ 3. Then b e k(y) and
b 4 @tz)g[k]. The latter mea,ns that no l-neighbour of lr is in k(r).Now b has

three clifferent "obliga,tory" l-neighbotrrs: tfoU, tfib - b unrl tLub. Of these, tA,ob

ancl lfio rnay coincicle in principle but it will be useful to sul,r1,rose that they do
not. In picttrre:
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cO (y - cLz)

tot a

' trcb
.'i

toza

4'

I

-2, -CLZTY,V - CLZ
I

"rr'rb

The picture "ended" with no "contracliction" (that is, there is no tr.' such that
both ru ancl -u are stipulated for some element). Thtrs our proceclure gives
IVCA3 V, - 0. Executing the above proceclure for o - c6(A - rry) in any
possible way gives a contracliction, in accorclance witlt NCAs F o - 0.

Now we illustrate the above proceclure (explainecl in terrns of picttrres) in a
real "tree-proof" form. We clo not comment on this clrawing since we hope it
speaks for itself.

iQlY _crz)' 
a € dor -doz -drz

toooC A-crz t61of A-crz ts2a{_ y-c1z frlg A-crz

tora e U, tpt6ra ( z

We note that the r-tree in Definition 3.2 corresponds to a "successful branch"
of this "real tree", that is, it corresponds to a ";rroof".

It is natural to ask whether the tree-method in the proof of Theorem 3.1 can
be used, with obvious modifications (using At(V)'s instead of atomstructures),
to decide Crso. For example we want to clecide whether Crss F .o (y - c1z):
Below we write abc for (o,b,c), etc.

tsTa e.

trctora (

tsra ( c1z

tsra ( z,

I

U,

I

z)
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oDc.€-c6Gp,,

bbce#,,h
l{o, b, c}l = 3

A-ctZ, l{o,b,c}l=

dbc ( c1z

dbc(z

dbc

dbc

U,

a,

€

I

€

I

€

In the final step we macle use of the fact
tlre only "obligatory" 1-neighbour of dbc
V - {abc,dbc}, e(y) = {dbc} and ,t(z)
abc € r$!v [,t]. So Cr4 W , _ A. 

c
b

a
d

that we are working in Crss, whence
is itself. Incleed, let l{o, b,c,d}l = 4,

- 0. Then .567 V , - 0[t], since

bctc
a,

d

e

This may seem to be a good procedure, but as the following example shows,
it does not always terminate after a finite number of steps.

Let o gy-dor.c6(do,.cr(drz-v)) and rE -do,.diz- a-co-cLc.

abb € T, -clor, dl2, -!/, -c6-c1r,
I

adb € !/, -dor, co(do1 cr(dr z - V))

i
ddb € cr(drz-y)

I

dbb € -A, cto

I

deb q U, -dor, co(dor .ct(drz - y))
I

.l
It is easy to constru.t t C"rr-unit V in which this "backwarcl search" goes on

indefinitely. For example, let l/ oS 
U{t{0,r}Ut{rr,n* l}u{(r,,n*1,0)} :n €

cu). Then SbV Vr = 0, but SbW F, -0 for all finite W 97. This r cannot,
however, be used to distinguish Crso's with finite and infinite units: There is a
finite Crso-unit Ir7 with SbW V , - 0, for example the one given below:
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W - {abb, aub, dbb, ddb, adb, dab}
k(y) - {dab,adb}.

Indeed, the above method can be modified so as to yield this "solution", by
trying as neighbotrrs all the elements already occurring in the tree, insteacl of
always introducing new elements:

dbb e

b

q

d

dab

dab

aab

abb

A'

€

J

I

€

t
€

-dor, co(dot .cr(drz - y))

c1(cl1 z - y)

-v

We do not know whether this tree-methocl is suitable for clecicling the validity
of eqtrations in Crso. If it were, then Crs"V, - 0 would imply the existence
of a finite Crso-unit 7 with ,SbV f r - 0. But we do not even know whether
EqCrs3 - EqFCrse.

Thus we will use a clifferent method for decicling3 EqCrso. (The new method
can, however, be conceived of as constructing the model from the infinite tree.
But then we have to be able to decide on the basis of a finite amount of informa-
tion, whether there will eventually be a contracliction.) W. note that alrnost all
known clecision-proceclures are based on the construction of some finite model.
I

Before turning to our second main theorem (decidability of EqCrso), let us
prove a logical corollary of Theorem 3.1 (Corollary 3.1 below, cf. Theorem 1.1
in the Introcluction). Roughly speaking, it says that it is the permtrtability
of cluantifiers that gives first-orcler logic its power, ancl so permutability is an
essential feature of first orcler logic. More exactly: It is not hard to show that
replacing ((4)) with fotrr of its particular cases, viz.

((au)) Vv;Vvi I ---+ Vv jVv;(p

((4b)) Yv*p--* VvrVvrp

((q.)) )vrg --- Vvr)v*P
3It is quite surprising that E<1Crs., is cleciclable at all - just the opposite was expectecl in

light of other theoreurs on Crso.
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((4,1)) ,?(t) + Vvi R(E) provided vk e Rng- and R(r) is an atornic formula,

leaves the proof-system (i.e. the set of formulas provable in) Fo unchanged.

[((a.)) is a special case since it comes from Vv;Vv1<p --' VvrVv;Yvrp by u
straightforward application of ((3a)), ((2)), and this is an instance of ((4)).] It
will be shown below that leaving (( a)) out of Fo yielcls a substantially weaker
proof-system.

COROLLARY 3.1, The proof-system obtained by replacing rcD with ((<b))
. . . ((4d)) is substarft,ially weaker than I o. I'{amely, the set of formulas derivable
from ((1)). . .((3)), ((4b)). . .((4d)), ((5)). . .((e)) by (MP) anrt (G) is decidabte.

Proof: Let lt denote the weakened proof-system (i.e. t-' is 1-o without ((a"))).
Let A = (a,t) be afirst-orcler language, where t: R--+(t. Let:'9 {@,r/) e
2FmA :F' p ,* ,bj ancl let r g FmLf :t. First we show that F is the
free Ir{CAo climension-restrictecl by il, that is, F *- f*)XCA., ancl then we
show that by "adjusting" the concept of a r-tree to ,, we obtain a decision
proceclure for the congluence Cr$)NCAo (as a set of pairs). In order to prove

F = L$) N C An, we have t,o show that,

(o) F € I,{CA,

(b) In 7pNCe., ((1)). ((9))\((q.)) are in the sarne class as Trtte

(see the proof of [8] 4.3.25 for details).
On the proof of (a): Ilere one has to repeat the proof of [8] 4.3.22 in a slightly
different setting (that is, we cannot use (( )), and don't have to prove Cn). ((a))
is usecl four tirres in the proof of [8] 4.3.22 (not counting its uses in proving Ca).
For the first three uses (or p.158rs, in (e) on p.158, ancl in (h) on p.159 in Part
II) one can substitute ((4b)), ((4.)) and (( d)), respectively. As for the last one
on p.159rs, note that

c1c, (c11,, . d,., )
= clcr(c11, 'clrr)
- c.r(crcl.rp .crdrp)
_1
- rr

t v ((z)) (and ((1)),((5)))
by (h),Ca
by ((6)),(h)

where (h) is the staterrent frorn the proof of [8] 4.3.22.
On the proof of (b): This is proved (without using Ca) in [8] 4.3.25 for ((l)),((2))
and ((8)). The other clairns are clirect consequences of axioms of NCAo.

Let r € Tmn(cyl.). We may suppose a {u. P is saicl to be a f ,r-treeif
(i) P is a r-tree, a,ncl

(ii) for all r? € R, i € a\ tIt, n e aUTrn ancl tu € Tm(t.), if {ut,t;,-u} C
DornP, then [(to, n) e P *- (t,inr.t), n) € P].
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A slight modification of the proof of Theorem 3.1 shows that

(r,0) e Cr$)lr CAo e there is no l, r-tree,

and this yielcls a clecision proceclure for Cr(])wCA,. Summing up, the cle-

cision procedure for the proof-system F' is the following: Let g € FrnA and
Iet rp(p) be the term in Tmn(cyl.) corresponding to g. Then [1-' g <+
there is a f ,rp(g)-tree], and the latter is cleciclable. r(Corollary 3.1)

4 Deciding the equational theory of cylindric-
relativized set algebras

We begin the investigation of the class Crso and the model-theoretic significance
of the permutability of quantifiers. Let

wcA, gt
{A e wCA;6 , Ats drr .drj . d,r - dir - crdjd
if i, j,k € a,k # {i, j}}.

That is,WCAo is the c.lass of those algebras frorn CTAo whic.h satisfy a weak-
enecl version of C6 a,ncl all CAo axiorrrsexcept Ci ancl Ca. Then Crso gWCA,
and WC,A' is clecidable btrt not strongly (this can be seen from the proof of
Tlreorem 3.1, since WCA" = fSCurpNAt"). Crso coulcl be called the repre-
sentable part of WCAo. If a S 2, then ICrso-WCA* bV [8] 5.5.5 (this is a
theorem of Ilenkin ancl Resek). BV Theorem 4.1 below, for cv 23,ICrso is ax-
iomatizable by iclentities, but not by finitely rnany ones (or not by finitely many
sclrernes when a ) w), so ICrs " C W C Ao, since the latter is clefined by finitely
rlany schernes. We clo not clefine the concept of a scherne (or rather, a scheme
of ecluation) since we do not need it later. We note however, that the concept
of ascherne is a quite natural one, e.g. "c;cl;i - I if i, j e cv" is ascheme. For
a infinite, schemes are rnore important than the equations thernselves, since in
this case, the similarity type being infinite, harclly anything can be defined by
finitely many equations, while usually one can define quite a lot of things by
finitely rnany schernes. The clefinition of a scherne can be founcl for exarnple in
[8] 4.1.4; for rnore on this notion ancl its irnportance, see [2], [3].

We cite Theorem 4.l below (without proof) as a source of ntotivation. The
proof of (i) and (iii) was publishecl in [15], and that of (ii) and (iii) in [16]. All
these proofs are citecl in the rnonograph [8], see 5.5.10,5.5.12,5.5.13 and 5.5.16.

THEOREM 4.L Let a be an arbitrary set.

ICrso is a variety, i.e. it is axiontatizable with iclentities.

ICrsn js rof finitely axiomatizable.

(i)

(ii)
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(iii) ICrs o is not axiomat,izable by finit,ely nTany schentes, but, it, is axiomat,i-
zaltle with countably n)any sc/renres.

I

Our main concern in this section is showing that EqCrso is decidable for all
(decidable) a.

Before beginning the proof
going to prove the theorern for

we clefine two subc.lasses of Crso, since we are
these clzrsses, too.

DEFINITION 4.L Let a be an arbitrary set.

D, g {A e Crso: (Vs € lA)(Vi,r € rv)s(f ls1) e lL},

G. gt 
{A e Cr.s,": (Vs € t/)"(Rng.s) q t4}.

Let /( C Crsn. Then 7 is a /(-unit if SbV e I{. 7 is straightenable if 7 is a
Do-unit. r

Obviously Gs., ! G" I D" g Crso. The classes IGso,IGo,IDo and lCrso
are all varieties, ancl they are clifferent if cv ) 2: lL is well-known that IGso is a
variety (see [8] 3.1.108); a rroclific.ation of the proof of [9] 1.7.27 (p.114) shows
that IGo is a valiety if cv is finite. For infinite o we do not know whether Go is
a variety. ICrso is a variet,y by Theorern 4.1. It follows that fDo is a variety,
too, since it is ea,sy to see that D., - {Ae Crsn : A ts ciclt.j - I for all i, j €
o) : {A e Cr'.sn A 

= 
()6} ancl t,hus CrsoncAn - {A € Dn : A I C4.

We will see later thtrt fol e < e, EqD,, is decidable, while Eq(Or.so nCA")
is known to be unclecidable. Thus ornit,ting Ca yields cleciclability again. We
note that G" g CAo, thzrt is, G., V Cn So the identity Ca distinguishes Gso
ancl Go, while the identity Co distinguishes .Do and Crso. (In the proof of
Theorern 4.3 we will give an equzrtion clistinguishing Go ancl Dr.) Let I/ be a
G.'-unit. Then it is not ha,rcl to see that y = U{"Ut: i € 1} for some family
of sets (U; : i e /). Since the clefinition of a (]s.,-unit is the same but for one
adclitional constraint, viz. that the [/;'s rrust be pairwise disjoint, the elements
of G.' will sometirnes be callecl "non-clisjoint Gs.r's" , ancl I,r will be callecl a "non-
disjoint Gs.-unit". Below we prove the cleciclaltility of EqGo, while EqGso is
known to be unclec.iclable. Thus the apparently innocent clisjointness condition
in tlre clefinit,ion of Gs.-unit t,urns out t,o be essential. We note that G" g Do g
NCAn.

THEORE}rI 4.2 ,1. trqG., and Eq?rsd are <lecidable for all a 1u

2. EqD., is deciclaltle, provitlecl cu <u.

3. Let cu I u ancl suppc)se t,hat I{ e Crsn satisfie.s t,he following conclitiorrs;
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(a) The uniorr of l{-unifs is a K-unit, i.e. (VV €
,Sl,(U W) e I{.

(b) The restriction of a l{-unit is a /{-urtit, i.e. SbV
'H) € I{.

W),S\V € I{ +

et{+Sb(Vn

(") The "base-isomorphic" image of a I{-unit is a I{.-unit, i.e.

SbVe I{ and /:base(V)-U +Slr{/os:seV} €/{.

(d) A e /i =+ SbILe K.

Then Eq/( is cleciclaltle.

Proof: We use some of the notations (like Tm, Subterrn, incl) introclucecl in the
proof of Theorenr 3.1. First we prove (iii).

Let u ( cu ancl suppose that /( e Crso satisfies conclitionr (") . .(,1) of the
theorern. It suffices to give a clecision proceclure for the set {r € Trn : I{ | r -
1), since

/{F6=o<+/(F-(6Oa)-1,
where O denotes Boolean symrnetric clifferencea. We may suppose that /( -S/(, for Eql( - EqSli and if /( satisfies conditions (o)...(d) then so does S1(;
we nray ftrrther assurne a 2 2, since cv ( 1, /( = S1( ancl (o)...(d) imply
I{ - Crso = Gs.,, ancl Gso is cleciclable for a ( 1, see [8] $4.2.

DEFINITION 4.2 (i) Let E be a Crsn-unit. Then 5(E) clenotes the smallest
Do-unit containing E. (There is such a Do-unit since the intersection of Do-
units is a Do-unit.)

(ii) Let r € Tm. Then (8, P) is said to be a r, /i-mosaic. on U (or simply a
mosaic) if conditions 1, 2 below hold:

I. E is a /(-unit, ancl t/ - base(E),

2. P : Subterrn(t) -* Sb6(E') such that

(u) P(.lu;) = D[.iu] - {re E:s(i) -r0)} if cldj €subterm(r),
(b) P(".5) = P(o) n P(6) n B if o.6 € Subterm(r),

(.) P(-") - ,E \ P(o) if -o € Subterm(r),

(,1) P(")n E g P(c.;o) = Q[d(E)lp(.,o) if c;o € Subterryr(r).

r
aln this proof it is not importanrt, but convenient, that

r : 7. If we wantecl to decicle r = o clirectly, then we would
Subtenn(z) USubtenn(o) in subse<lrent definitions, and write
P(o)n E" instead of "(E,P)F " = 1 (* P(r) n E = 8".

we use identities of the fornr.
have to replace Subten.- r(r) by
"(E,P)tsr=o+P(r)nE=
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REMARK 4.L (i) We show that a mosaic is nothing but a finite piece "cut
out" from an algebra-valuation pair. Let (8, P) be an algebra-valuation pair
satisfying the stronger condition (in items (i) and (ii) of this Remark we always
assume 6(E) - E for simplicity's sake)

(d') P(c;a) - C[u1P(") if c1o € Subterm(r).

Then it is easy to see that P(o) = o&E [P I X] for all a € Subterm(r). Con-
versely, if Ae 1(, ancl k: X + A, then (IL,(6LLh]:o € Subterm(r))) is a
mosaic satisfying the stronger conclition (d'). Thus there is a one to one corre-
sponclence between mosaics satisfying the stronger condition (d') and algebra-
valtration pairs. If (8, P) is a rnosaic satisfying the stronger conclition (d') then
we say that (.B, P) is a r, /(-algebra-valuation pair, briefly r, I(-Avp. Now let
(E,P) be a r, I{-Avp and let E'g E be arbitrary (D,-unit). Then it is not
hard to see that

(E',(f@)nn' : o e Subterm(r))) is ar,I{-rnosaic.

So far the situation is analogotrs to the one encountered when we were con-
siderirrg NAto \pN,Al*. But here the analogy breaks down since pNAto is a
complete description of {,4 I W : A e NAt } (that is, all pl'{Ato can be ob-
tained frorn an NAto by "cutting out"), while there are mosaic.s which cannot
be obtained by "cutting otrt" front a r,1i-Avp, for exarnllle the mosaic (8, P)
shown below:

I
0

Here6 =2,8='2,,7=
x,0),(", {(0, 1)})}. But t}rere
to light at a later stage, as in

(r
€ c6(c161 .r)

co(dor .e) and P =
a,re mosaics where the
the following:

{(', o), (dor, of"il), (do, .

"clisc.repancy" only comes

W€ 
csclcsclcs(r - con)

Thus in the present proof not mosaics, but good sets of mosaics will play
a crucial role: it will be true for the notion of cornplete set of mosaics, to be
defined below, that every complete set of mosaics is the set of all "cut out"
mosaics coming from a r,I{.-Avp. We note that t}re r-tree in t}re previous proof
is also part of sorne algebra-valuation pair.

h.
-, 

\-ttu
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(ii) If (8, P) is a mosaic, then the only way P may fall short of being a "real
meaning-function" is to have the "shortcoming"

s e P(c;o) and (Yu)s(ilu) S P(o).

These "defects" will be repaired step by step (by adjoining a new sequence s(i/u)
to E, which will recluired to be in P("), cf. the definition of M-continuable be-
low). The advantage of mosaics over algebra-valuation pairs is their "smallness" :

while there are mosaics on U e a, there may be no algebra-valuation pairs on
any finite U.
(iii) In Rernark 4.2we will cliscuss the reason why shoulcl one "take into account
tlre valuation" on 6(E), too (in the Crso case). I

DEFINITION 4.3 Let (E,P) ancl (E',P') be r,/{-rnosaics on U and U',
respectively.

(i) Let W g U. Then

(E,P)lw def: (E n *W, (P(o) n *W : o € Subterm(r))).

(E',P') is saicl to be an extension of (E,P) (or (.o, P) < (E',P')), if
(E,P)-(E"P')lU.

(ii) Isomorphisrn of r,/{-rrosaics is clefined in the usual way: / is an iso-
morphism between (E,P) and (E',P') (or f , (tr,P) --" (Et,Pt)),if
f :U H--) U', E'- {f os:s e E}, ancl P'= ({/"s: s € P(a)}:
o € Subterrr(r)) . If M is a set of rnosaics, then IyV clenotes the class of
rnosaics isornorphic to elernents of M.

I

DEFINITION 4.4 Let M be a set of mosaics and let (8, P) be a mosaic on
U.

(i) (E, P) is ,tV-like if (Vs € E)(8, P) I n € IM, for sorne // f Rngs.

(ii) (E, P) is M-contin uable if for all i e d, cic € Subterm(r) and s € P(c;o)fl
E, tlrere is an M-like extension (E',P') of (E,P), in which (1u)s(ilu) e
P'(") n Et .

(iii) M is complete if all its elements are M-cor.ftinuable.

(iv) M F'+E UM €M)M !r,wtrere(E,p)F"eg p?)) E.

(u) II(r,/() (or sirnply II) clenotes the set of those mosaics (E,P) for which
E 9"a.

I
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(ii) Let M be a set of mosaics. Then U M
(E' , P') € Mj, ancl P(") = U{P'(")
Subterrn(r).

Clairrr 4.1 I{ tsr =Ie[Mlr for all complete M e II(r,/{)].

Clairrr 4.2 lt is decidable whether "M I r for all complete M C II " fto/ds.

Before giving the proofs of these claims, we collect the basic properties of
mosaics in a Lemrna.

DEFINITION 4.5 (i) Let M = (8, P) and M' = (E' , P') be mosaics on
[/ and [/', respectively. Then M and Mt are said to be compatible if
M I (U nU') = M' | (U nU').

E (r, P), where E' I l){g' ,

: (E',P') € M\ for all a €

I

LEMMA 4.1 Let M Lte a set of mosaics and (E, P) a mctsaic on U ,

(i) tet W gU, f :IJ >-+--->U', E' 9 tf os:s € E] ancl P' - ({/os:
s € P(a)\ , o € Strbterrn(r)) . Then both (Et,P') and (E,P) | W are
ntosaics, ancl both are M-like (M-continuable) provi<lecl (8, P) is M-like
(M- continuable).

(ii) Ler P lte a set of pairwise contpatible ntosaic.s. Tlen l)P is a mosaic, and
(E' , P') <UP for all (E' , P') €P. Moreover,l)P is M-like provicled all
element,s ctf P are M-like.

(iii) ff M is cctmplete, then l@,P) is M-like + (E,P) is M-contin uab/e].

Proof: It is routine to check (i). As for the proof of (ii): Let UP = (E,P).
Then .O, being a union of /(-units, is a 1(-unit, and 5E - U{6 E' , (E' , P') e P} ,

since the union of Do-units is a D*-unit. Thus P : Subterm(r) 
- 

Sb6(E').
To show that lJ P is a mosaic, first we check conclition (2d). Let i € a and
c;a € Subterrr(r). Let s € P(o)n E. Then there are M' - (P',8') e P
and M" - (P", E") e ? with s e P'(o) and s € Ett. Now s € P'(o) gives
s € 6Et ancl t,lius s € obase(.E') since base(E') - base(68l). M' and M"
are compatible, so s € E'follows from s € 8". Thus s € P'(o)nEt g
P'(c;a) I P(c;o). With tliis we have shown P(") ng g P(c;o). It remains

to prove g[d(r)] P@;o) g P(c.;o). Let , e C[d(E)1^e1.,o1. Then s € 6E' for

sorne Atlt - (E',P') e P, ancl z E .s(lu) € P"(c;a) for sorne u ancl M" -(8",P") e P. Let j € rv\{f} (recall that we have assurnecl a >2), ancl let

,9 sQ/s1). Then u - z(ifz3), thus w e 6E't, ancl so u, € P"(c;o) since
z € P't(c;o). But then u e P'(c;o), since Rngru e RngzORngs, ancl M" and
M' are compatible. Thus s € P/(c;o) g P(;o) since s e 6Et. We have thus
shown that [JP satisfies condition (2d). The other conclitions in (2) are easier
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tocheck: P(d;1) = U{P'(.lri) :(E',P') eP} = UtDIf'f :(E',P') eP} =Dtil.
Lets e P(o.6). Then (3(E',P') eP)s e P'(o.6) = P'(o)nP'(6) nE'g P(o\n
P(6)o,O. Suppose that s € P(o)nP(6)flE'. Then there are M' - (E', P') eP,
M" =(8",P") €P and Mttt - (8"',P"')eP with se P'(o), s € P"(d) and
s e E'tt. Since M', M" and M"'are compatible, we have s e Et, s € P'(6),
and thtrs s € P'(o) nP'(6) n E' e P'(o.0) q P@.6). We have thus shown
P(".6) - P(o)nP(6)O.8. Now suppose that s e P(-o), say s e P"(-o) g 8,,
forsome M" = (8",P")e P. Let M'=(E',P') e Pbe arbitrary. If s e6(E'),
then s e P'(-o) since Mtt and M' are compatible, so s ( P'(o). If s 4 6(E'),
then clearlys 4 P'("). So s (l){P'(o) t(E',P') €P} = P(").Suppose
that s € E\ P("). Then s e Et and s 4 P'(") for some (E',P') €P, whence
s e Et \ P'(") = P'(-o) - P(-o). That is, P(-o) - E'\ P("). With this we
have checkecl that [JP is a mosaic.

Let Mt - (E', P') be arbitrary. We show tlta| Mt <UP. LetW = base(E')
ancl o € Strbterm(r). Then E' g Eno W ancl P'(o) e P(") now as can be seen
frornthedefinition. Lets€En.W. Then se Ett forsorne M" =(8",P")e P.
We have (s € E" * s € ,O'), since Mt and M" are compatible. So E' = En"W.
Tlre proof of Pt(o) - P(o) now proceecls similarly: Let s e P(o) n'w . Then
s € P"(o) for some M" - (8", P") € P, ancl then s e P'(o), since M" ancl M'
are compatible. We have thus provecl M' <UP.

Suppose that all elements of P are M-like, and let e € E. Then s € E/ for
sorne M'= (E',P') €?. Then U" lRngs = M'Ill.ng.s e TM, since Mtis
M-like. This finishes the proof of (ii).

To prove (iii), suppose that M = (E,P) is M-like. Let f € cy, cto €
Srrbterrn(r), s € P(c;o)fr E, a,ncl I4l'9t Rng". Then M I W e fM, since
M is M-lll<e, whence M I W is M-continuable bv (i), since M is complete.
Let Mt - (E',P') be an,rV-like extension of M I Irl such that (3u) s(ilu) e
P'(c;o)nEt. We can assurne base(E) Obase(E') = W bV (i). But then M
and Mt are cornpatible, ancl thus M" = M U M' is a rnosaic, ancl M < M".
Let Mtt - (8",P"). Then obviously (lu)s(i/u) e P"(c;o)t Ett. Moreover,
M" is M-like, since both M attd Mt are M-like. Thus M is M-continuable.
I(Lernrna 4.1)

REMARK 4.2 (i) The rea,son to require P(c;o) - 6la@))f @;o1 in Defini-
tion 4.2(ii)(2cl) insteacl of just P(c;o) - CIU) P(;o) in the Crso-case is that
in this way the "contracliction" will show up on the intersection of the mosaic-
s one attempts to rna,tc.h, cf. the proof of Lemma a.l(ii). For example, let
a - 2, r = c1x:, E - {(1,2)},P = {(c,0),(..to,{(1,2)})}, E' = {(1,0)} and
P' - {(r,0), (.rr,0)}, see the picture below.
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ctx

ctx

(8, P)

(8, , P,)

Then it takes computing to find out that (E,P) ancl (E',P') cannot be
matclrecl. The present definition requires P(c1z) = {(1,2),(1,1)} for (E,P) rr,o

be a mosaic, and then clearly (l,l) e P(c1x), while (1,1) # P'(rta:), so that P
and P' differ with respect to the sequence (1, 1).
(ii) The "key point" in the present proof is Lemmma4.I(ii). It says that "con-
tinuability" is a local property, i.e. whether a sequence s can be "repaired" in
a mosaic M clepencls only on M I Rngs and nothing beyond it. (That is why a
rnodel decomposes into a set of mosaics, or rnore exactly, that is why the model
can be restored from the set of mosaics derived frorn it.) I
Proof of Clairn 4.2: It is easy to check that II is finite, and if (E,P) € il,
then.O,6E,P ancl [/ arefinite, too. Thus there arefinitely many M g II. Since
P(r) ) E is decidable for all (E,P) € II, it is enough to show that for a given
M g o it is decidable whether it is complete or not. For this we have to be
able to clecicle whether a given (8, P) € II is M-contintrable. Let (8, P) be a
mosaic on U C cv, and let f € &, cio € Subterm(r), r e P(c;a)O E. There are
only finitely riany such choices of f , a and s. By Lemma 4.1(i), if (,E, P) has
an M-like extension (E',P') with (1u)s(ilu) e P'(o)n E', then it also has an
extension with [// gU U {rv}. Thus we can check all possible mosaics (E',P')
on U u {"} (since there is only a finite number of thern) for the properties

(o) (1u)s(iltt) e P'(o) n E'

(b) (8, P) < (E' , P')

(.) (E' , P') is M-like.

All these properties are decidable (since "everything is finit,e" in the rnosaics
(8, P),(E' , P')), whenc.e M-continuability of (E, P) is cleciclable. r(Claim 4.2)

Proof of Clairn 4.1: The idea here is that rnoclels can be replaced by complete
sets of rnosaics: for all rnoclel-valuation pair ,4 € I{, k : X 

--+ 
A the set of

rrrosaics M(A,l;) (which consists of "cut outs" of A,k) is cornplete; and what
is even rnore important is tha,t frorn all cornplete set of rnosaics ,Az1 one can put
togetlier an algebra-valuation pair .4, ft such tha| M - M(A,k).
(I)Proof of "li V, - | + (1M g o)[M is c.orrplete and M V ,]": Let

AeI{ ancllet k:X -------+Abesuc}rthat,4 *r- 1[ft]. Let Uy base(,A),and
for all W g [/ let

A(w)E' pg), P(w)),

w,
ffi*
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and if a € Subterm(r),

P(w)os 
{

where
E(W) I ta ooW,

then

"LLklnoW if (Vf)(Vr7)o * ,,,t
c\68(w))@L[k]n"w) if (3a)a - c;\.

Note tltat P(W)o n E(W) - oLlkln"W for all a € Subterm(r). Let M
M(A,k) g 

{,A(Rngs) : s € E}. We show that M is a complete set of mosaics
and M p r. First let us show that M is a set of mosaics. Let W g {/. We show
that A(W) is a r, I(-mosaic. It is easy to check that E(W) is a /{-unit (since
.I( satisfies conclitions (b),(d)). Clearly, P(W) : Subterrn(") -- Sb6^U(1,7) and
P(W) satisfies conditions (2a). . .(2,1) of Definition 4.2(ii) by the definition of
P(W). Thus A(W) is a r, I{-mosaic on W. Next we s}row thaL M is complete.
Let W g U. Then obviously A(W) < A(U) and ,4(t/) is y'rl-like. Moreover, if
i e u, c;o e Subterrn(r) ancl s e P(W)(.;") n t(tV) then (32 € U)s(ilu) e
P(U)(o)n E(U). Thus A(W) is M-continuable, whence it is cornplete. Finally
we show t\'rat M f r. Since A W r - l, we have rLlkl + lL. Let s € 14\ rLlk)
andW 9 Rng". Then s e E(W)\P(W)(r), whence P(W)(r)l E(W) and so

M * r. Let M' Y II n II4. Then it is easy to check t\-taL Mt is complete and
M' * r. r(I)
(II)Proof of "M 9Il is complete ancl Mtr r * K V, - 1", Let M gII
be cornplete and suppose that yV p r. Our plan is as follows: Let Mo e M be
such that Mo V r. Now we construct a rnosaic Mo I M - (8, P) step by step
starting frorn Mo anrl using Lemma 4.1(iii), which satisfies

P(c;o) A E - C[u)1f 1r) n E) for all cio e Subterrn(r).

(Ilere one rnust rnnke sure of "stepping on" every "clefect" at least once.) If
A - .Sl,E and l,'(r) = P(r) Ct E for all o e X, then it is easy to see that

"Llkl- P(o)o-Bfor all o € Subterm(r). Thus AV r = I[&J since Mo 1M.
Moreover, A € 1{ since M is a r, Ii-mosaic.

Although the full proof can be cornpletely (and alrnost rnechanically) recon-
structed frorn this plan, we sketch it for completeness'sake. If M = (E,P) is a
rnosaic Lhen D(M ) clenotes the set of "clefects" of M , i.e.

D(M)E {(", i,o) :s € (P(c;o)nE)\Clul1r1";nc;, i e a,c;o €subrerm(r)}.

It is ea,sy to check tha.t

(1) lM = (E,P) < M',s € E ancl (s,i,o) ( D(M)I =* (r, i,o) ( D(M').

Next we show that

qer
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(2) Every M-like mosaic M can be extencled to an
that D(M)nD(M') = O.

Incleecl, let B Y |n1m)l and let / : I - D(M) be an

Define the following secluence of mosaics by recursion:
and assume that for all \ 1^1, M., is defined such that

M-like mosaic M/ strch

enumeration of D(M).
mo4sJ m. Let 7 < B

(*) for all 61r1, Ma 1M, and M, is M-like.

Let M\ =U{Mq: r7 17}. Then by Lemma4.7(ii) M+ is an M-like mosaic and
so it is M-continuable by Lemma 4.1(iii). Thus there is an yV-like extension
M, of Ml such that /,, Q D(M.r). It is not hard to show that M, satisfies (*).
Let Mt:U{Mt:l < P}.Then it is easy to show t"hat M'has the required
property. r(2)

Now we clefine an cr-sequence of ,Al-like mosaics: Let M6 € M be such
that Ms ft r. Assurne that Mn is already clefinecl in such a way that it is

"A4-like ancl (Vrn 1 rt)M* I Mn. Then let Mn'r1 be an M-like extension of
Mn with D(M")n D(M,,4r) = (). (There is suc.h an extension by (2)). Let

M E: l){U, : n, e u} = (8, P). Then obviously Mo I M ancl below we will
show

(**) C[uJ1f 1") n E) - P(c;o)A E for all cro e Subterm(r).

First we show P(c;o)nE g C[u)1f 1")nE). This is equivalent with D(M) - 0.
Let s € E. Then (3n €cr)s € En. Then, by the constnrction ancl (1), (", i,o) 4
D(M"+r), whence (s,i,o)e D@) bV (1) ancl Mnqr 1M. This com;rletes the
proof ot D(M) - 0. It remains to show that CjEl Q@)nE) q P@;o). But this
follows frorn M being a mosaic since conclition (2d) gives P(") n E q P(c;o) -
cloul P@;o). r(n) r(clairn 4.1)

We note that in the above constnrction we coulcl have striven for trsing trp all
elements of M, ancl in this way we would have enclecl up with a model-valuation
pair ,4, /c for which IM(A,k) -IM (disregarcling some minor clifferences).

Theorem 4.2(iii) is an imrrecliate c.onseqence of Claims 4.1,4.2. Since it is
easy to see that the classes Crso, Do and Go satisfy conditionr ("). . . (d) of
Theorem 4.2(iii), so far we have shown the dec.idability of EqCrso, Eq.D.' and
EqG* for rr ( c.r. It rerna,ins to show that EqCrso a.ncl Ec1G,, are cleciclable even
ifc'2u.

Just as in the previous proof, we treat the case of o 2 cu by reducing it to
the case of rv ( c,r (cf. Lernrna 3.4 in the previous proof). At the same time we
willshow that this kincl of recluc.tion cloes not work for D.r. Let X be an infinite
set (of variable-syrnbols). Below we write Tm(cyl.,) in place of Trn;(.y1.).
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LEMMA 4.2 5 Let 7 C a,2 S lfl 1u and r € Tm(cyl?).

(i) Rd?ICrso - ICrs, and Crso F " - 1 <- Crs, p r - 1.

(ii) HSPRd.yGo CIG" butGots, - 1=+ G.,?r -l ifind(r) c 7.

(iii) HSPRd,yDo CID.t and for all n l lfl - 2 there is a o € Tm(cylr) 
"r.hthat DoF o -I# Dr? o -l ancllT \ind(o)l 2 n. Furthermore,

D* ts6 = 1 # G1 F 6 = L fc;rsome 6 e Trn(cylr).

We note that the last statement of (iii) shows that the conclition "ind(r) C l"
cannot be ornitted in (ii).

Proof: (I) Proof of Rd,rCrs* C ICrsr, Rdr D, g ID1, Rdlco e IG., and
Crso g IRdTCrso: Ilere we will only use the assumption I e a.

Let A e Crso, V E: 14- ancl U E: base(,4). We clefine the "recluct-function"
rd.' as follows: If / g 7, then

.br(/) -g ttf,, f'), i e i, where f' g / [ (" \ 7), and

rcl,,(X) I rrrfX = {rb., (f), f € X} for X gV.

It is not hard to show by incluction that

(*) rdr is an isornorphism between BQEIV ancl SbrdrV.

(The proof can be founcl in [9] 4.7.1.2 (p. 191) and in [8] 3.1.125. We note that
.b.r(/) is / l7 "colorecl" by f' to rnake rd-, 1-1 ancl homomorphism w.r.t. -.)
Since Rd-A C Rd-,SbV (bv ,4 C ,Sl;V) ancl rcl-V is a Crs--unit. it follows from
(*) that RdrCrs., e ICrs-r. To prove the next two staternents one has to show
tlrat rclr7 is a D., (resp.G.,) unit if V is a D,, (resp. G.r) unit. These are easy
to check so we ornit the details.

Now let A e Cr.s., be arbitrary. We show that A € IRcl" Crso. Let V I lL,
u ( base( A), q9 (" :i eu\7) ancl for all u € A, f(r) €t {rUq:s € r}. It
is easy to check that / : A -, BIISUV is a hornornorphism ancl /*,4 is closecl
uncler the operations of SbfV. Thus.4 g IRd-rCrso. This also completes the
proof of ICrs., = RdrlCrso.
(II)Proof of "Go ts, - I +:+ G., ? r - I if ind(r) C t": The implication
G, ? r - 7 1 Qo ts, - I holds for all r € Tr'(cyl.r) since

Cl^V r - I -:1 ftd.rQoV, - 1 =+ G, V r - I

byRcl.rG.., e IGr. Itrerra,instoproveG", V, -llQoVr- I if
ind(r) C 7. Itisenough toshow G.,V r = 01QoV, - 0forall rsuch that

5Itetn (i) was publishecl iu [ts], Proposition 8(ii), ancl the proof is citecl in the monograph
[8], see [8] s.5.15.
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incl(r) C 7. Suppose that incl(r) 9A C7 ancl G.r*r=Q,say.4 f , -}lkl
forsome Ae gtand k : X --- A. Let n e rLyttl,U y base(,A), g E p t (f\A)
and let r 6 (a\a)Rngg be arbitrary. (The Lxistence of such r follows from

7\/1 +A.) LetV I {r eHU:sUs € 14} andW I U{.Rng(suq) :s e V}.
Tlren W is clearly a Go-unit. We show that

(*) V -{s€.HU:sUr €W}.

Indeed, let s € HU. First suppose that sUr € W. Then, by the definition of W,
Rng(sU") g Rng(zUq) for some z €V. Then ztJq € 14by the definition of t/,
and Rng(s u q) e Rng(z u q). Then s u q e lLsince 14 is a Gr-unit, and thus
s €V. Now suppose that s e V. Then sUr € I4l since Rng(sUr) g Rng(sUq).
This completes the proof of (*).

Let C EJ ,SbV ancl B Y So*. Define

/ g ({r e IIU,sUq € o} : a e A), ancl

e 
g ({" eIrU : sUr € b} : b e al.

Tlren /(14) - V by clefinition, ancl g(W) = 7, rnoreover, Rng.r/ - SbV by
(*). It is not harcl to check that / : R,rlsA 

-+ 
C a,ncl g : R,rtsR -,, C are

hornonrorphisrns (the proof can be founcl e.g. in [8] J.1.117) and f(rLlk)) + 0.

Let kt(x) 91f1"; ancl let k"(r) € B be such that sk,,(r) - kt(r) for all x € X.
Then ,qLk') - f(rLlk)) - s(rLlk,,)),"o rLlk,,) I 0. Sinc.e B € Go, rhis proves
G"Vr-0. r(ll)

(*) is a crucial part of the above proof. We give an example showing that (*)
(with the necessary rno(lifications) fails for the classes Do: Let H c n e e = u,
egtlcl f r, f - {p}uU{Dl;'f :i < j < n} ancl ler r 6 (o\H)c.,,be arbirrary.
Then 14 is a .Drr-unit ancl p is the only repetition-free sequence in 14. Let
q grp I(r,\ H),v I {r e IIu:sUq € 14} ancl let w be the smallest Do-unit
containing {sur :s € 7}. Then V # {t e Hu:sUr €W}. This is because
tlrere is arepetition-free se(luenc.e z €.Hu with z I Id l"H ancl zl)r e W (ancl
tlren z (V): if r is not repetition-free then since allsequences zl)r, z €HH
can be obtainecl frorn r U (ld I 11) using the "auxilizrry storage places" provicled
by tlie repetition (see the proof of (* * *) in (fV) below); if r is re;retition-free
then because Rngr is infinite.
(III)Proof of G,, g HSPRdrGo, D, * HSpRdlD., ancl (16 € Trn(cyl.r))[D" F
6 = l,G, V 6 - 1]' It suffices to prove the last statement since it im-
plies the previous ones: Let A € G., e Dr be such that ,4 W 6 = l. Then
,4 e HSPRdTDo f HSPRdTG* since D* Fd = 1.

Suppose (for sirnplicity) that 7 = ?r € u. LeL,i 9r ;11-cl;7 : i < j < n) and
let

6;i@,) '9t t . ,t - ,n(i. ,i(,|;i .c;(-cl;i ..i("))))
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too

: dr =

e tjul

-d,. .. c .aIJJ
-pd,. .. c. b^rJ l-u

e a.[."r(d'"J6t)

Figure 3.

for all i,j e n. Let !/0,lJr,...,U,r be n* I different variable-symbols and let

'r 
I v''l[{ -vj i i e(n+ 1)\ {i}}

for all i 1n. LeL

6 91 60,(r,.) . fl{.,6,y1i)(rd) : f € rr},

where/(t) g i+l (modn) if i en. Weshowthat G' * 6 = 0while
DrF 6=0if n Co. Firstweshow Drts 6-0. Leti,j€a,i+ j,Ae Crso,
a e A and s € 14. Then the following is easy to check (see Figure 3):

(*) If s € 6+@, then there is no

{s(ilu),'U l"), s(ilu)(j lu)} g t4

Let A € Do and k:X -+ A. Let o; €t #ttt. Then {c; : i l rr} con-

sists of pairwise'disjoint elements. Suppose that s € 6or(o")'fl{.t6tft(ot) ,

i e n). Let k € o\ rr,uY "(k). Suppose that u ( Rng(s I"). Then
s(0lu),s(l/u),s(0/u)(llu) e 14- since A e Do and this contradicts s € 6or(o")
bv (*). Then thereisan i €n with u - s(f). lf i € n\{i}, then u* si
since s ln is repetition-free by r € 6or(4"). Then there is a tu such that

z E-J sQlu) € 6iri(ni) since s € ci6ir,(o;). Now u t' u since s - s(iftt) e an,
s(ilu) € a; ancl a, i a; - A. Then u ( Rng( z I n), contradicting z e 6;1;@;)
bV (*) as before. With this we have shown D' ts 6 = 0.

u € base(,A) \ Rng(s I ") with
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Next weconstruct an AeG" with,4 F6=0. Forall ien let u; =n*i
and let

V E: nn U U{"([" u {u;}] \ {i}) : i e n}, .4 gr SbV,

"€tla I,,onI{r},

n; I {s(f/u;)} if t € rr ancl

k(y;) €t o, if f ( n.

We prove A V 6 = 0[e] by showing that r e 6a[e]. It is easy to check that

"!lU = o; for all i ( n. So it is enough to show that

s € 6s1(o") and s(i/u;) € 6;1;(o;) for all i € n.

(**) (Vi € n)(Yz € 14) {i,n,} QRngz.
Clearly s € on .d and s(i/u;) € ai. J. Suppose that s € co(d'.t(dot .co(-dor .

cra"))). Then there are u and tu such that s! e i, u * u' and s$1, e cror,.
By (**) s! e d gives u € {0, ue}, and r$t, e c1o,. = cr{s} gives ur = 0. Thus
a - us since w * u, but then s$1, € 14 contradicts (**). lVe have shown
s € 6or(n"). The proof of z - s(i/u;) ,6ii(o;) (where, - /i) is completely
analogous: Suppose that z € c;(i:ri(,!ii .ci(-d;; .cjor))). Then zi e d, u * w
and zilu € cia; for some u,ur. zi € d gives u €. {i,u;} and z:!,, € cin; gives

tD = Iri. Then u = i and then z'J, e 14 contraclicts (**). r(lll)
Since IG", and ID, are varieties (see the remark after Definition 4.1), (llI)

implies the first statements of Lemma 4.2(ii),(iii).
(IV)Proof of "DoF o - 0andD., V o - 0forsomeo € Tm(cylz)": Let

r(r) I c - clsl .c1(cle1 - co(-clor .cr(clor .c0c))). We show that

(***) lf A e Do,a €,4 and s 6 rL(o") then s(0/s1)(l/ro) # IL and s is
repetition-free.

First we show that s(f/s )(j lr;) e ta for all i, j e cv, proviclecl s is not repetit,ion-
free. Suppose that s(n) = s(&), n { k. If {i,J} = {r,k} then we are clone.

Suppose first that ne {i,r}, say n= j, and k ( {i, j}.

r".-)r

Note that

Let s/ d:r s(r/s;) and
clearly s" = s(ils1)U lt;).

kj
n

t

s" 9 s'Qls'). Then s',s" € 14 since .4 € Do and
Now suppose tliat {i, j} n {k, n} = 0.
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Let s' 9 s(k/s;), s" $ s'(if s'1)(i / t';)ancl z 
d! 

s" (kl s.i). Then s',s", z e lL
(using the proof of the previous case) and z - s(i/s1)Ultt). We have shown
that if a Do-unit contains a sequence with repetitions then it also contains all
its transpositions.

So it is enough to show that s e r\a) implies s(0/s1)(t/ro) ( lL (since,
by the abov'e, this implies that s must be repetition-free). Let s € -do1 a

and suppose that z - s(0f srXl/"0) € 14-. Then the picture below shows that
s ( rL(a).

( ds1 'cso
s€o
€ co(-do1 cr(do1 coo))

With this we have provecl (* * *).

In the remaining part of the proof we assume 7
Ao...Un-2 be n - 1 clistinct variable symbols. Let

n e u for simplicity. Let

y; if i f n - 1,

def 
-rn-1 '5'fl{-vt :i€rt- l}'crurr

6I r(y1) -.0.r(-.lor .D{.gt, .cr(clor .c.gri) : i € ,r}).yr

Weslrow that Do F 6 = 0 ifn C o and D" V6 = 0. LeL A € Do, lc : X ---+ A
and suppose that s e 6A[k]. Then s is repetition-free by (**+) whence lRngsl >
n.Forallfenlet

def A,, .c; E ri[fr] and

HrY {u e Rngs : s( Ilu) e a;}.

def

def
T;-
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ThenU{Hr:ien}
lH;l>2.Leti€rt,
s(,t) - u, s(l) - u.

= Rngs and, since
andu,u€H;,u*

lRngsl ) n, there
u. Let &,/ € n be

isaniensuchthat
suchthatkcland

Then s(O/u) € 14, and.z 9s(0/u)(tlr) € 14since I > 0; moreover, s €
c6c1(-d6t .{r}). We show that z € coa; .cr(dot'cooi), contradicting s e 6a[e].
z(0/ss) = s(1/u) € o; since u € H; andso z €csct;. And z(1lu) € doycgod since

z(1/u)(01"0) = s(l/u)€ a; by u e H;. With this we have shown Do F 6 = 0 if
d > It.

Now rve construct an A € D^ and

"9ra In,v 9{'}uU{DI;"1 :i<
k : X -----+ Asuch that A V 6 = 0[b]. Let

j < n\, Adg.967 and e(vr) I {"( rli)}
for all i €n-1. Weshow that s € 64[k]. Let o,9 r,tlft ancl Hr €r 1" e
Rngs : s(llu) 6 or) if t € n. Then nr - {"(lli)} and .F1; - {i} for all i e n. lt
is easy to check that s € r(o1) since o1 = {s}. Also, since lHil < 2, we have

s ( c6c1(-dot.coo;.cr(dor.coot)) for all f € n. Thus " e 6a[e]. r(Lemma .2)

Clearly, Theorem 4.2(iii) ancl Lernma 4.2(i) (Lemma 4.2(ii)) give a clecision-
algoritlim for EqCrso (EqGo) if c - c..'. l(Theorem  .2)

THEOREM 4.3 (i) EqG, * ErtD. if a 2 2.

(ii) EqD " t' EclF Do if a 2 u.

Proof: Let r(x) € Tm(cylr) b" the term defined in (lV) of the proof of Lem-
ma 4.2. There we showecl that if A e Do, a € ,4 and s 6 7.4(n) then

(a) s(0/s')(1/ro) ( IL and

(b) " is repetition-free.

Now Go F r(r) = 0 follows from (a), and FD"' F r(r) = 0 if cv ) u follows

from (b) (since if s € 14 is repetition-free and A e Do then dfr + dfr for all
0 < i < j <o,so l/l > c.r). But it iseasy to construct an A € Do(for all d > 2)
with ,4 V ,@) = 0, namely the one given in (lV) is such. r(Theorem 4.3)

REMARK 4.3 (i) We suspect the following clifference between Do and Go:
Let q 1u. If a new coorclinate can be aclded Lo A € Go then arbitrary many
new coorclinates can be adclecl to it, that is, ISRd.Ga*t = ISRd.Golp for
arbitrary B > I. (This is probably provable by the methods usecl in part (lI)
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of the proof of Lernrna 4.2.) By contrast, for all n € cu there is an A e Do
such that n coorclinates can, but n * 1 coorclinates cannot be aclcled to it, that
is, ISRdaDa+n I ISRdrDo+n*r. (For example it can be shown that the o-
reduct of A € D, (t - o* n) constructed in part (IV) of the proof of Lemma 4.2
is not in ISRd" Do+n+t.)
(ii) If u 1 2 then Crs* is strongly decidable since ICrso - WCA, in this
case. It is quite plausible that using the methods of Remark 3.4 one can show
that G2 ancl D2 are also strongly deciclable. Frorn now on let cr 2 3. We don't
know whether Crso is strongly decidable or not. We don't even know whether
EqCrso : EqFCrso or whether the worcl problem for Crso is solvable. (The
same problems are open for Do ancl Go, except for Theorem 4.3(ii) ) W" don't
know whether BqD., is cleciclable for a )_ u. Ric.hard Thompson gave a nice
finite scheme axiomatization for EqDo based on the present work. I

One coulcl call /(-units satisfying conclitions ("), (b) of Theorem4.2 "loosely
connectecl". Below we define the "opposite" of this property, called the "patch-
work property", and show that the eqtrational theory of Crso's with trnits having
the patchwork property is no longer cleciclable.

DEFINITION 4.6 A Crs.,-unit l/ is said to have the patchwork property (V
is a Po-unit) if

(Vs,z €V)(vII e ")[(s I 
H) u z I (rv \ H)] e Iz.

Let Po E {a € Crso: 14 has the patchwork property }. t
Experience suggests that it is the patchwork property the lack of which is

responsible for tlte behaviour of the classes Crso, Do ancl Go. Furthermore,
there is a close c.onnection between this property ancl the axiom Ca. This is
what the next lernrna is abotrt.

LEMMA 4.3 (i) lStV ? Ct e SbV 6 P%J if V is a Crso-tntit. But if
a 2 3 then there is an A e Crso with A ts Ct and Ae HSPP..

(ii) HSP Po = SPPo - I{A€ Crso : lL is a union of Po-units with disjoint
bases ) arrclEq(P") isrrot cleciclable (ancl isrrof finitely based) if c-)_3.

(iii) SP(P, fi Dn) = SPC$cr = RCAn.

Proof: First we prove the first pa,rt of (i).
Le'i v 

'" ' ::i;;U u,:f,' :.li{s} : n e u,i. ,*,o},

ancl let Subu(V) €t 1r,t1r; : s e I/)6. Then it is not harcl to showT Lhat ,1bV
is isornorphic to a clirect procluct of algebras in lSbW :W € Subu(I/)). Thus

6The set of subunits.
70, on" ."" ..." 1s1 3.1.76
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it is enough to show that for all s € V , zd(s) has the patchwork property if
SbV ts Cf;. Throughout this proof we write C; insteacl of Clul for all i € o.

Suppose that SDV ? Ct. We show that

(*) {s,s(i/u)} Sv - ['Uhr) € V e s(i/u)(j/w) eV].

Incleed, assume {s,s(ilu)} SV.lf i - j then we are clone. So suppose that f f
j.It z&J s!lu)(j/.) € Iz then z €C1C;{r} - C;Cr{s}, hence s(jlw) e V. tf
s(jl*) € V then s(i/u) € C;Ci {'U/-)} - C1C;{s(jlw)} 'o s(tlu)(jlu) e V.
r(*)

Let Z gW gV. Z is saicl to have the patchwork property in W if

(Ys,z e Z)(VH e *)[s I H u z I (* \ s)] eW.

Z is good if

(Vi € a)(Yz e CiZ)l{z} u Z has the patchwork property in C;Zl.

Let s e V . Clearly, {s} is goocl. We claim that

(**) if Z g I/ is goocl, then so is C; Z for all i € a.

Let j € cv. We have to show that

(Vp e CiCoZ)({p} U C;Z has t}re patc}rwork property in C1C;Z).

It sufllces to show t,hat

(Vp e C1C;Z)(Yq € C;z)(VH e ")W I 
H u q I (a \ H)] e CiC;Z.

Let p € CiC;Z, Q e CtZ,, H I a ancl G g o\//. Then yt - z(il")Ul.)
ancl g - s(ilu) for sorne z,s e Z and u,'t),'tl strch that z(ilu) € I/ and then

z(jlu)€ Iz by (*). Let ugJ z\ln)(j/u) | Hu"s(ilu) t Cancl / €t 
" I Hus I G.

Then / € C;Z since Z is good, z € Z a:ncl s e C;2. If {i,j} g G then
9 = z I /1U s(ilu) I G e C;Z since Z is goocL similarly, ifi € H and, € G then
g - z(if u) lI/ Us I G eC;Z since Z is good anrl z(if u) e C;2. Now suppose
tlrat j € H zrnd i e G. Then s - z(jlw) I H u s(ilu) [ G = f(jlw)(tlu).
Moreover, f eV, f(jlru) - z(jlu) [ f/Us I G e lz ancl f(;lu) - z I Hvs(ilu) |
G eV since Z is goorl ancl so (*) gives f(jl.)Ulu) e V whence g e CiC;Z.
Finally, suppose that {f, j} e H. Then similarly, f ,f(il"),f(jl*) € 7 since
z,z(ilu),2(j/*) €V,.s €. Z and Z is good, so (*) gives s - f(ilu)(jlw) eV
whence g e CiC;Z. r(**)

Now we are reacly to show
p,q e zd(s) ancl H e rv. Then

that zd(s) has the patchwork property. Let
p e C;, ...C;-{s} and Q € Cj, ...Cju{s} for
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some i1 ...in,ir... j* € a and so p, q € Z 94 C;,...C;,Cr,...Ci-{r}. Since

{s} is good, Z isgood by (**) (and induction). Then [pt U Uq l(o\H)] e

The other clirection is easily shown by checking that if / has the patchwork
property then SDV ts Ct.

Proof of the remaining parts: I/ is saicl to be a Gpo-unit if it is the union of
Po-units with disjoint bases, that is, if there is a system (Ui I j € Jl of pairwise
disjoint sets such that V = U{y A"Uj : j e J} and I/ floUj has the patchwork
property for all j e J. Let

GprY {A e Crso : lL is a Gpo-unit}.

Using (the easily prova,bl") [8] 3.1.76 it is easy to show that SP Po -IGpo. To
prove EqP* - IGytn we have to show HGp* e IGp.. The proof goes like that
of HCrso e ICrs.,, one only has to add that Rep(F,")V is a Gpo-unit if l/ is
a Gp.,-unit (this is not harcl to chec.k, for exa,rnple analogously to the proof of
[8] 3.1.e1).

Now we begin the proof of the unclecidability of EqPo. Let r € Tm(cylr).
We clefine (rectrrsively) . r' € Trn(cyls) such that

CssFr-0gP.,F"'=0.

Since EqCs3 is uncleciclable (see [8] 4.2.18), this will prove the uncleciclability

of EqPo. Let 6 gf ll{c;cl;i : i,i e 3}. Define the ftrnction tr : Trn(cylr) ._
Trn(cyl3) as follows:

tt(v) 9O.yifyeX

rr(cl,;i)Y O.dij if i, j eJ

tr(o .?) It tr(a) .tt(rl) if o,r7 € Trn(cylr)

tr(-o) I o - tr(a) if o € Trrr(cyl3)

tr(c;o) I O . c;tr(a) if i € 3 ancl o € Tm(cylr).

We slrow that Cs3 V, -0 +:+ P" V rt = 0. Let A € Po, k : X 
-.4 

and

s € tr(r).4-[k]. Let q €r s t ("\ 3), V E {, : zu q€ 14} ancl I4l 9t {, : zu q e
6L[k]]. Since Ae Pn,V -- H xG x/i forsomesets H, C;,li ancl one can c]ieck
tLtatW -3U where U - H nGn/i. Then thefollowingis not hard toshow
(by indrrc.tion on r): for all z e V

z u q€ tr(r)a[e] <+ z e tr(r){!' lt'l e z e rft' lk"l,
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where

and
k"(y)osi {t e3U : z u qe k(y)}

for all y € X. Thus s € tr(r)A[k] + s I 3 e r&"u[k/'], that is, Cs3 V, - 0.
Conversely, it is easy to see that Cs3 g ISRd3Cs3 (see e.g. [8] 3.1.121) and
since Cse F 6 - 1, we have Css F r = tr(r) ancl thus Css*r - 0 + Css f
tr(r) = 0 =+ Cs. Vtr(r) = 0 + P" trtr(r) - 0 since Cso eP.. With this we
have shown that EqPo is undecidable.

A slight modificaton of the above proof immecliately yielcls Eq(p* n D") -
Eq(Cs,) which in turn irnplies (iii). Since Po fi Do = {A e Po : A F .;d;i -
1 for all i, j e a) and Cso is not finitely based (or not axiomatizable by
finitely many schemes, see [8] 4.I.3, 4.I.7) it follows that P* is not finitely
based (or not axiomatiza,ble by finitely many scherres). Since Crso OC,Ao is
axiomatizable by a finite scheme (by u result of Resek ancl Thompson) and
EqCso is not (by u result of Monk), there is an A e CrsonCAo such that
A e HSPCso. Btrt then (iii) gives.4 f SPP" = HSPP. while A ts Cn.
r(Lemma 4.3)

Now we are in aposition to proveTheorem 1.2 (in the Introcluction). Recall
Definition 1.1 frorr there.

DEFINITION 4.7 Let

prY {(M,Vl € Mt:V has the patchwork lrroperty ancl is straightenable }.

k'(y)Ej {, € V : zu qe ft(y)}

(VA

and

k

COROLLARY 4.1 (i) {p e Ft :F p} is deciclable, that is, for every for-
mula it is clecidable whet,her it is valicl in generalizecl liripke-models. Sim-

ilarly, {p eF, ,E p} is cleciclaltle, bnt {p ep, 'E 
p} = {p eFt :F p} is

undeciclaLtle.

(ii) {p e Rpr :F p} ancl {9 € SRFI ,V -,p} is cleci<lable, that is, validi-
ty is cleciclaLtle fctr relativizecl formulas arrd satisfiability is decidable for
ordinary relativized formulas.

We will prove Corollary4.l after Rernark4.4.

T

tn

e Pt)A ts e.
,P defFpe

m

F,We note that again, like a generalization of F.
k

F
p

Fit
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Figure 4.

REMARK 4.4 (i) The definition of Kt is more general than that of the usual

Kripke-models in that we do not require the universes of members of I{ e K,

to be clisjoint from each other. The following example shows that [ 1x1yg r-,
1ylrg. Let t contain a two-place relation symbol .R. Let K - {M, N}, where

M- {0, 1,2},N ={0, 1,3}, RM=0and6lL-{(1,3)}. Lett=v0,a=Yr
and let k e'M be such that k0 - 0, k1 = 2 and (Vi > l)A(i) - 0. Then

kk
1( F 3y1xR(y,r)[fr] but /( ft1rlyR(y,r)[&], see Fig. 4.

(ii) Models with a prescribecl set of valuations are not new to logic, uiz. models

of many-sorted logic are such. There, valuations must map variables of sort s

to the moclel's universe of sort s. By Corollary 4.1(i) the important thing in the

definition of first-order moclels is not that we allow all possible valuations but
that the set of valuations is straightenable and has tlte patchwork property.

P

(iii) (Fr,Pt,?l is the logic corresponding to the class of algebras P, O D.,, in
the sense of [5] or [8] $5.6. t

Proof of Corollary 4.Lz First we suppose that Fs contains only restricted
formulas. Later we will inclicate the modifications neecled to cover the case of
arbitrary formulas. LeL g € Ft, n= I * max{i: v; occurs in <p} and let

Vvo . . .v'-r 7\{3viR.(ro . . . v,,-r)
-'r?.(vo...vn-t)'R e R,i € n\t(R),R occurs in g\.

Let gt be the formula obtained from <p by replacing the atomic formulas R(to . . . v-)

defX_
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(where R € R) in <p by ft(ro...vn-r). Let h: R, ------+ u) be such that h(R) - n

for all r? e E. Then g I X + g' e F7, and it is not hard to check that
kkpk
F p <+F p. In fact, the same holcls with p and p in place of F 8.

Define the function rp : F1 
- 

Tmn(cyl.) as in section 2. Let Ii € Kn,

E[I{]9 {t I n : k€ Val(/()} ancl, for all rl, e F n, rl,* 
y: 

{k I n' /( | il\}
Let k[1i] : R -* SbEU(l be such that &[/i]tr = (R("0...vn-t))f for all
ReR.

It is not harcl to check that

(*)
k

/{ F e e SbUlt{) ? rp(p) - l[k[I{]l

and

(**) if E isaG,r-ttnitancl k:R-'SbE, then
there is a 1( € Kn such that E - E[l{] ancl k - kll{1.

From (*) a,ncl (**) it follows that i t o[ p e Gn F rtt(p) =mp
proof of F g e Crsn ? rp(p) = 1, ? p e PnnDn ts rp(p)

I p e Cs, I rp(p) - 1 is sirnilar. Now Corollary 4.1(i) fo, f,
restricted forrnulas follows frorn Theorern 4.2 ancl Lemma 4.3(iii).

Strppose that Fs contains /?(rro ...vdo_r) for all R e Rand fs )... )in-t e u
if t(R) - n, that is, we allow arbitrary forrnulas, not just restric.ted ones. Then,
similarly to [8] 4.3.6, one can show that for every p € Ft there is a restricted

,1, eFrsuch that l t --, { and,E r.- r/, which implies I p.-. rlr. Moreover,
rf; can be recursively computecl from g (namely, the recursively given / in [8]

kp
4.3.6 will do). With this we have reduced the general case of F and I to the

restrictecl case. This reduction cloes not work for p, so we have to return to the
proof of Theorern 4.2.

Let g € Ft. Subforrl(p) clenotes tlie set of subformulas of p. Let n I
1f rnax{i:v; occurs in p}. @,P) is said to be a tp-rnosaic if conclitions (i),
(ii) below holcl:

(i) -O is a Crs,,-unit ancl P : Subfonn(tp) --- SbdE.

(ii) (") s € P(/i(too...vd*)) <+ z € P(R(tjo. ..yj-)) if s, z € E, sio =
zjr,,,...,.sir = ziu ancl R(rro...vdr),/?(ri,...vru) e Subform(p).

tE.g. assrulle R was originally binary, ',1, = 4 ancl V is straightenable. Let
(a,b,c,d),lo,b,e,f) e V. If R(abcd), then ft(o666) by (a,b,b,c),(a,6,b, bl e V ancl by 1.
Sinrilarly R(obbb) yields R(abeJ). Ilence the new 4-ary version of R behaves as it was really
binary.

L The

=1and
k

I with
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(b) P(u, = vj) = Dlfl if v; - vi € Subform(e)
P(rl, n,l) = P(rb) n p(rl) n E if tl' A Tl € Subforrr(p)
P(-rlt) =E\ P(rl')if -,tp €subform(rp)
P(rl') n E g P(3v; ,D - Clou)P(3v; ()) if }v;r/,€ Subforrn(rp).

Repeating the proof of Theorem 4.2 with this new not,ion of mosaic gives a

decision procedure for the set {rp € Fs :[ e]
Now we begin the proof of (ii). Let p be an atomic formula. Define the

function rl(p) : Ft .--* Fr by

rl(p)rl I pn n if q is an atomic formula

.l(p)(p 
^ 

/) og ilQ)p Art(p)$,

rl(p)('-e) ej p n -.rl(st)e,

rl(p)(3v;<p)
def
= p AJv;rl(p)g.

Let p be an atomic forrnula ancl let p € Ft be
occtrrring in <p occtrr in p. Supltose first that p

Then, using the above methocls, it is not hard to
tlrus satisfiability of rl(fig is clecidable.

Now sttppose that p= R(v;o...vf,-,). For all k < n let f(u;u) = r, where
I = min{nr :vd,,r - vrr}, ancl let gtbe the formulaobtained from pby replacing
each variable symbol r in p by /(c). Let

R'gr {(k, t) 62n : f (u;u) - ,r}

and
Crs! 9t {e e Crso:(V(k, I) e R)AF,ln, - l},

for all cv. Let M'rqu: {(M,Vl e Mt:V is a Crsf-unit}, ancl for all r/ e F,

m'm
F ?i +5 (Y(M,Vl e M',)(M,Vl ts rp.

Then, just like before, it is not harcl to show that {T/ € Ft :

and
rn'

p --rl(p)v sft. -'pt.

So, satisfiability of rl(p)p is cleciclable. Since every / e SRf's is of the form
,l(p)p with tlte above conclitions, with this we have shown that satisfiability
is decidable for rnembers of SRFI. Now let g be relativized. Then p is of
the forrn p - 1b, where / e nflp;. Thtrs to clecicle whet,her g is valicl it is

such that all variable symbols

- R(vo . .. v,r-r) is restricted.

show that p --rl(p)p oV -,p,

/) ir deciclable
nl

F

62



enough to decicle satisfiability of p A-tb. It can be shown by incluction that
ts p n--rb *rl(p)-,r!. Since rl(p)-'g € SRFr, its satisfiability is decidable.

By the above we also proved that

(***) l@-rb) ifr

r(Corollary 4.1)

REMARK 4.5 BV [17], D* ancl Crso have the super amalgamation property
(SUPAP). Hence by Maksimova [11], the corresponding logics have the strong
Craig Interpolation property (ancl therefore also Beth's definability property).
We note that SUPAP implies strong amalgamation, i.e. SAP. In this connection
cf. also [12] and [22]. ICrso is axiomatizable by a schema of equations using one
variable, cf. Monk [14], D. is axiornatizable by afinite sc.hemaof ecluations, cf.
Andr6ka-Thornpson [6], ancl for a 1u, Go is axiomatizable by a finite set of
equations ,124). BV [a], these axiomatizability results provide the corresponding
logics with elega,nt, strongly complete Ililbert style proof calculi.

OPEN PROBLEMS 4.L (i) fs Eq(SRIC Ao) cleciclable for a > 2?

(ii) tet NA. be clefinecl as in [6]. Is Eq(NA o) cleciclable7 (We note that
NA, g NCA..)

Consequences for rnulti-rnoclal looics, for corrrbininq rnocla,l losics ancl for other
kincls of alqebra,s:

As in llenliin-l\{onk-Tarski [8] Part II, Dfo clenotes the class of diagonal-free
CAo,'s. RDf., clenotes t,he class of representable Df,..'s (t,his cla,ss was clenotecl as

Gsdfo in [8] Part II). As in [8] Part I[, Rl clenotes t,he operator of relativization,
e.g. RlDf, is the class of relativizecl Dfo's. Below we will use the cylinclric
equations Co - Cz recallecl frorn llenkin-Monk-Tarski [8] at the end of section
2.5 wa,y above.

COROLLARY 4.2 (i) The varieties SRID| o and SRlRDf, have decidable
equational theories, i.e. Eq(RlDf") arrd Bq(RlRDf,) are deciclable.

(ii) The equations impliecl by Co - Ce are cleciclable, i.e. EqMoa(Co - Cg) is
cleciclable.

(iii) sRlDfo - sRlRDf..

Proof: n.lDf. is clenoted by Dr.' in [8] Part II. By Thrn.5 .1.32 of [8] Part II,
p.191, SRlDf., = Naod(Cs - Cs) is a variety. A theorem of A. Simon (cf.

[20]Theorern.8 or ecluivrilently Larnbalgen-Simorr [10]) says that SRlRDfo =
Mod(Cs - Cs). Therefore we have

m

ts rl'.
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(*) SRlRDf. - Mod(Co - Cs) - SRlDf,.

Clairrr 4.3 SRlRDfo = ISRd(Crso), that is SRlRDf, coincicles with the c/ass
of subalgebras of diagonal-free (i.e. d;i-free) reducts of ICrso's.

This clairn easily follows from the definitions.
By Thm.4.2 way above, Eq(Crs.) is deciclable. Now, we show how to cle-

cide Eq(SRlRDf.). Let e be an equation in the language of RlRDfo. Then
RlRDf, p e ift SRlRDf, p e itr Crso p e, by Claim4.3 above. Therefore, to
decide whether e € Eq(RlRDf.), it is sufficient to decide whether e € Eq(Crs,)
and by Thrn.4.2, the latter is cleciclable. By (*) above, the sarne methocl decides
Eq(RlDfo) * well as EqMod(C6 - Cs). This proves that all the equational
theories in question are cleciclable. r(Corollary4.2)

Our algebraic Corollary4.2 above has sorne logical consequences. In partic-
ular, consicler the propositional moclal logic ^95. Let o-dimensional 55 be the
propositional nroclal logic having o-rnany unary rrrodalitier {0; : i < a} and
the usual axiorns of 55 postulatecl for each 0;. We also assurne the usual rules,
moclus ponens ancl generalization. There are no further axioms or rules.

COROLLARY 4.3 Let a be an arbitrary ordinal. Then rv-rJirnensional 55 is
clecidable.

Proof: The algebraic counterpart of cv-clirnensional 55 is SRlDf, (this should
be straightforwzrrcl but c.f. e.g. t4]). Then we are clone by Corollary4.2.
r(Corollary4.3)

COROLLARY 4.4 a-climersiorral 55 js strongly comqtlete for the "set-theoretic"
frames obtainal.tle front SRlRDf. or equivalently from the greatest elements of
Crs.,'s.

Procrf: Irrmediate by Corollary4.2(iii), cf.[ ]. l(Corollary4.4)

COROLLARY 4.5 cu-clirnensictnal 55 ias Craig's lnt,erpctlat,ion Prctperty (in
its stronger form) ancl Deth's Definability Property.

Proof: Again we use the fact that the algebraic counterpzrrt of cv-dimensional .55

is SRlRDf.. By [17], SRlRDf., has the strong arnalgamation property (SAP)
ancl it also has what Malisirrova calls super SAP (SUPAP). Cf. also 1221, 1121.
SAP ancl SUPAP irnply Beth's and Craig's peoperties for the logic in question
as is exlilained e.g. in l4l,l22l,[12],[8] Part II. r(Corollary4.5)
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