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Abstract

We investigate three technically equivalent subjects. (i) Algebras whose
elements are relations of higher ranks (e.g. binary, ternary, n-ary etc.),
and whose operations are the natural counterparts of logical connectives
like e.g. quantification or substitution. (ii) Fine tuning first order logic via
its model theory to achieve desirable properties ranging from decidability
to well-behaved finite model theory, or ‘tractable’ Beth definability and
Craig interpolation properties. (iii) A proof theoretic approach to (ii).
The extra-Boolean operations on our algebras of relations correspond to
quantification, substitution of individual variables, and the logical con-
stant equality.

Elsewhere this work is applied to multi-dimensional modal logics, ar-
row logics, and to a new generation of generalized quantifiers.

A widely applicable new method called Mosaic Method, which has
common roots with Tableaux Methods, is developed.

1 Introduction

We will investigate some properties of first order logic both from a model theo-
retic and from a proof theoretic perspective. Some of the results will be relevant
to the connections between modal logic and first order logic and also to the the-
ory of generalized quantifiers, cf. e.g. [27]. There will be results relevant to the
theory of schemata of first order formulas cf. e.g. Rybakov [21], [19].

Our methods will yield results about algebraic logic, too. We will prove for
various classes of algebras of relations (of higher rank) that their equational the-
ories are decidable. E.g. we will prove that the class of relativized representable
cylindric algebras has a decidable equational theory. We will look at various

*To appear in: Logic Colloquium’92, L. Csirmaz, D.M. Gabbay and M. de Rijke eds.,
SiLLI-CSLI Publications, 1995. Research supported by Hungarian National Foundation for
Scientific Research grants Nos. T16448 and T7255.



nice and useful subclasses of this class and will prove that their equational the-
ories are also decidable. We will look at other properties of agebras as well as
to other kinds of algebras.

Let us turn to the “purely logical” aspects of this paper. They are related
to the relatively recent trend in logic known as arrow logic (cf. e.g. van Ben-
them [25], [26], [13], [12]), but familiarity with arrow logic is not necessary for
understanding the present paper.

The recent paper van Benthem [25] asks the following question (see Appendix
2D therein): “What would have to be weakened in standard predicate logic to
get an arrow-based decidable version?” Here we show that it is the permutability
of quantifiers which is responsible for the undecidability of first order logic.
More precisely: van Benthem’s question can be understood in at least two
different ways, depending on whether one has the Amsterdam or the Budapest
“manifestation” of arrow logic in mind. Roughly speaking the difference is
whether one choses a syntactic (or proof-theoretic) or a semantic (or model-
theoretic) approach?.

1. First we give a solution of the proof-theoretic (or Amsterdam way) version
of the problem. Below we shall work with the restricted version of first order
logic, which is well-known to be equivalent with the ordinary formulation, see
[8] 4.3. Iere restricted means that relational atomic formulas all have the form

R(VQ,Vl,...,Vn_])

where n is the arity of the relation symbol R. We also assume that there are
no constant or function symbols in our languages (that this again is not a real
restricton is well known, see e.g. the textbook [7]).

Consider the following inference system for restricted first order logic. The
axioms are

((1)) ¢, where ¢ is a (propositional) tautology

) Yvip —

) VviVvip — VviVvip
b)) Vvip — VviVvip
C)) 3Vk§0 — Vvkﬂvkcp
d

and the inference rules are Modus Ponens

IFor definitions and notation we refer the reader to the subsequent sections (esp. section
2) of this paper.



(MP) if b, — 1, then 9

and Generalization

(G) if F ¢, then t- Vv;p.

This inference system is sound and complete for restricted first order logic (see
(8] 4.3.23). Our first answer to van Benthem’s question is the following theorem:

THEOREM 1.1 The set of formulas derivable from ((1))...((3)), ((4b)). .. ((4d)),
((5))...((9)) by (MP) and (G) is decidable.

Proof: See Corollary 3.1 in section 3. ®

Thus while in arrow logic the way to get rid of undecidability is to leave
out (or at least weaken) associativity, here we have to leave out ((4a)) (i.e.
commutativity of quantifiers). We note that it is well known that associativity
in relation algebras corresponds to commutativity of cylindrifications in cylindric
algebras.

2. Let us turn to the model-theoretic (or Budapest) approach now. Here we
give two modifications of ordinary first order semantics both of which make
the set of valid formulas decidable, thus giving two answers for van Benthem’s
question.

Theorem 1.2(i) below says that the strength of first order logic disappears
if we weaken the notion of validity by permitting certain “nonstandard” mod-
els. Theorem 1.2(ii) is connected with usual investigations in logic: we define
(syntactically) a decidable set of formulas and prove that the usual validity is
decidable for the elements of this set.

In the sequel t : R — w is a relational type (so it does not contain function
symbols) and Fy is the set of usual first order (not just restricted) formulas of
type t. We use the set V = {v; : i € w} of variable symbols. Mod, denotes
the class of models of type t2. For M € Mody M = (M, RM)REE, that is, M
denotes the universe of M and RM C ') M is the relation corresponding to R
in M.

DEFINITION 1.1 (i) Let K C Mod,. We say that K is a generalized Kripke-
model or a partial model, and write K € Ky, if

(YM,N € K)M [ (MAN)=N [ (MAN),

that is, if K is a class of “compatible” models. We define the notion of validity

of usual first order formulas in members of K;:

Let K € K;. Then Val(K) o U{“M : M € K} is the set of possible

valuations of the variable symbols in K. Let h € Val(K), R € R, t(R) = n,

2Thus, using the notation of section 2, Fy = Fm(w"), and Mod, = Mod(t).
g w



1 ...90,1,J €Ew and ¢, € Fy. Then

K ;i R(Viy, .o, vi )R] €5 (h(i1), . . . h(in)) € RM for some M € K

K vi= vi[h] €5 (i) = h(j)

K Ii Avip[h] &k }k: w[h(i/u)] for some u such that h(i/u) € Val(K)
KE (oA &5 (K E oli] and K i)

K I= ~lh) €5 K bé o[h]

Ko & (Vh € Val(I\))A £ olh]

l=<p<g(VKEIC)K|=(p

(ii) Models with a prescribed set of valuations. Let

My E (M, V): M €Mod, and V C“M).

Let A=(M,V)e M, keVand R, iy ...i,1,j,p,9 as in (i). Then

=}
=

AE R(viy, oy vi, )lE] &L (k(iy), .. k(in)) € RM
Agv-nwuééu)—Mﬂ
AﬁﬂlﬂH§§GWM#¢MU@]wf k(i/u) € V]
AgwAwméQthm and A= $[k])
AE- ~lk] 5 A olk)
%hwé%WkewAh¢m

EodS (vAe MyAE .

(iii) p is an atomic formula if it is of the form R(vi,,...,v;,_,) where R € R,
n=1t(R) and ¢ € "w.

¢ € Fy is said to be relativized if there is an atomic formula p such that
¢ is of the form p — ¢ where 9 is built up from atomic formulas using =, A
and “Jv;(p A ...)”, and all variable symbols occurring in v occur in p. More
precisely:

Let R€ R, n=t(R), i1,...,in €Ew and p = R(v;,,...,v;,). Then RL(p) C
F; 1s the smallest set satisfying

(i) n € RL(p) if 7 is an atomic formula such that all variable symbols occur-
ring in 7 are among v;,,...,V;

n

(i) {-m, 9 A& 3vi(pAn)} CRL(p) if n,£ € RL(p) and 1 < k < n.



RF; def {p—=v:p€F, isatomicand 1 € RL(p)}.

We say that ¢ is relativized if ¢ € RFy.

Finally, ¢ is an ordinary relativized formula, ¢ € SRF, if ¢ is built up from
elements of {p A7 : % is atomic} using A, p A= and p A v;, and all variable
symbols occurring in ¢ occur in p. ®

k m
We note that |= and |= are generalizations of . If K € K, is a singleton,
k
then (Vo)[K |= ¢ & K | ¢}, and if (M, V) € M, is such that V = “M then
VoM, V) E e & M | ).

k
THEOREM 1.2 (i) {¢ € F; :[= ¢} is decidable, that is, for every formula
it is decidable whether it is valid in generalized Kripke-models. Similarly,

m
{p € F\ = o} is decidable.

(i) {¢ € RF: = ¢} and {¢ € SRF, :J£ —¢} is decidable, that is, validi-
ty is decidable for relativized formulas and satisfiability is decidable for
ordinary relativized formulas.

Proof: See Corollary 4.1 in section 4. ®

k m

REMARK 1.1 (i) (F¢, K¢, ) and (F¢, M, |E) are the logics corresponding to
the classes of algebras G, and Crs, (to be defined later), respectively, in the
sense of [5] or [8] 5.6.

(ii) Validity for members of SRF; is also decidable in the obvious way: if ¢ €
SRF¢ then ¢ is not valid since it is of the form pA1) where p is atomic. Deciding
the satisfiability of members of SRFy is far from being trivial. ®

2 Definitions, notation

Here we define only those notions and notations which are not universally adopt-
ed in the literature.

2.1 Set-theoretic notions

Throughout, we use the von Neumann ordinals. The smallest infinite ordinal
(the set of natural numbers) is denoted by w.

e SbA is the powerset (set of subsets) of A

e ACBEL (ACB and A+#B)



¢« AC,LBLL (ACB and |A|<w)

¢ (a,b) as well as (a,b) denote the pair of a and b.

Let R,S C A x B be relations and H a set. Then

e DomR & {a € A : 3b(a,b) € R}, the domain of R

RngR ef {6 € B : Ja(a,b) € R}, the range of R

def

R*H = {b€ B:(Ja € H)(a,b) € R}, the R-image of H

[ J

RIHY {(a,b) € R: a € H}, the restriction of R to H

R|S et {(a,b) : 3¢[(a,c) € R and (c,b) € S]}, the composition of R
and S

o R-1%f {(b,a) : (a,b) € R}, the inverse of R.

L]

IERS {(H,H) : H is aset} denotes the identity class, and if H is a set

then Idy < {(u,u) : w € H} is the identity relation on H.
Now we list notations used in connection with functions.

e f:A— B &L f is a function mapping A into B
def .

e f:A— B < f isone-one

. f:A—»Bgfisonto

d .
e f:A—— B &L f is one-one and onto

def

e AB={f:f:A— B}

o kerf {(a,b) € Domf x Domf : f(a) = f(b)}, the kernel of f
o fou=yl|f
o J/w)E 1 E A\ e S@)N U ().

f is a sequence if f is a function with domain « for some ordinal «. We do not
distinguish 2-sequences (i.e. functions with domain 2) from pairs.



2.2 Algebraic notions

t' is a (mixed) similarity type (or simply type) if ¢’ = (¢, F'), where t : R — w\ 1
for some R, and F' C R. If R € R\ F then R is a relation symbol of arity t(R); if
R € F then R is a function symbol of arity ¢(R) — 1. Zero-ary function symbols
are called constant symbols.

Let t/ = (t,F) be a type, t : R — w\ 1. A is a structure of type t’ if
A = (A,F), where F is a function with DomF = Dom=. R4 = F(R) is a
relation of arity t{(R) if R € R\ F and R is a {(R) — 1-place function otherwise.

t is a relational (resp. algebraic) (similarity) type if ' = (¢,0) (resp. ¢’ =
(t, Domt)) is a mixed similarity type; and A is a model (resp. algebra) of type ¢
if A is a structure of type ¢'. Mod(¢) (resp. Alg(t)) denotes the class of models
(resp. algebras) of type .

Let H be a set and let A, B € Mod(¢') for some type t’. Then

ATHE (AnH, RAA P H) pep
1s the restriction of A to H. Note that A [ H is not necessarily a structure of
type t' but it is always a model of type .

e ACBE&L A= B[ A (Ais asubmodel of B)

def

e f:A— B f:A— B and {fos:s€ RA} C RE(fisa
homornorphism from A to B)

of:A»—»ng:A—»B and f:A— B
of:A—»Qid:ef?f:A—»B and f:A—>B
def

e f:A—»—»B<f:A— B and f:A>—» B.

From now on let ¢ be an algebraic type, A, B € Alg(t) and K C Alg(t).
¢ SeAH “'N{YCA:A|Y isanalgebra,and H CY}

o SgAH A SgAH

e IK, HK, SK and PK denotes the class of isomorphic copies, homomor-
phic images, subalgebras and direct products of elements of K respectively

e Tmyx(t) denotes the set of terms of type ¢ built up using elements of X
(as variable symbols)

e Tmy(t) denotes the natural t-type algebra with universe Tmx (t)

o 72[k] denotes the value of the term 7 in the algebra A under the valuation

k
o FxK ¥ Tmy(t)/Crx K, where Crx K " N{R: Tmx(1)/R € ISK}.



2.3 First order languages

A is a language if A = (a,t), where « is an ordinal and ¢ is a relational type.
Throughout, v is a unique class-function with domain the class of all ordinals. In
all our languages we shall use the v;’s as variable symbols. For easier readability

we define z Vo, Y def vy and z def vy. We assume that the usual disjointness
conditions are satisfied (e.g. Rngv N Domt = 0).
Let A = (a,t) be a language and let R = Domt. Then Fm™, the set of strict
(or restricted) formulas of the language A is the smallest set F' such that
(i) {R(vo,v1,...,vir-1) :RER}U{v;=v; :i,j€Ea}U{T,F} CF
i) (3vip, ~¢, (p A D), (pV$)} C Fif i € and g, € F.
Fmy,, the set of weak (or redundant) formulas is the smallest set satis{ying
(iii) {R(vjo’vjl) EEEE) vjm-x) ReER,jE t(R)a} CF
besides (i), (i) above. By formula we mean restricted formula unless explicitly
stated otherwise. Truth of a formula (or set of formulas) in a (class of) models

is understood as usual. In particular,
M o &L (Vb € “M)M E o[k] and
def
Lre—= (VMMEZ=> ME ¢

Fvar(p) denotes the set of variables occurring free in . For H C « let

P H def {p € Fm® : Fvar(p) C {v; :i € H}}.

We often write Fm?% and Fm3'* instead of Fm® and Fm™. 1f o € Fm™¥ and
k € 1M then
def

ME k] <= (Fge*M)kCg and Mk ¢g]].
If H C o and ¢ € Fm™! then

UMM = ke M 2 M plk]).

REMARK 2.1 If A = {(a,t) and o ¢ Rngt then for all ¢ € Fm’ there is a
¥ € Fm® with |= ¢ < 4. In this paper this condition usually holds — in those
rare cases where it does not, we shall investigate weak formulas separately (for
example in the proof of Corollary 4.1). ®

2.4 Proof systems

Let A = («,t) be a first order language. The inference system 4 (or simply t4)
is the one defined in the Introduction except that: in place of ((4a))...((4d))
we use the (equivalent)

((4)) ¢ = Vvip  if v; & Fvar(p),

and formulas ¢, are in Fm® and 7, j,k € a.

If Az C Fm® then =4, F=,,% {(p,%) € 2Fm" : Az by ¢ = 9} and

__Adef__def

===0-

We note that the proof system 4 is complete in case o > w or Rngt C 2.



2.5 Cylindric algebras

Let « be a set. The algebraic type cyl, has constant symbols 0, 1,d;; (7,j € «),
unary function symbols —, ¢; (i € ) and binary function symbols +,-. CTA,
denotes the class of algebras of type cyl,.

Let A€ CTA,, K CCTA, and 3 C «. Then

def A LA
&.lﬁé é <A) +Aa 'Ay _Av OA’ li) CiH da)i,]’Eﬁ

1

RdsK € {RdyA: A€ K} and BIA Y RdyA (the Boolean reduct of

4)
AYa) ¥ {ica: Xa) # a} ifa € A.
Let X be a set, 6§ : X — Sba and K C CTA,. Then

CPK ¥ N{R: FY Tmy(cyl,)/REISK and (Vz € X)AE(z) C

sz}
FQK < Ty (eyl, ) /CrP K
Derived operations in CT A, ’s:

The usual Boolean ones, and

S;T déf Ci(d,’j . T).

The variety CA, C CT Ay of a-dimensional cylindric algebras is defined by the
following equations (cf. [8] 1.1.1):

Co equations defining Boolean algebras

C] C,’O =0

Cyz<cx

C3 c;(:c . Ciy) =CGT -Gy

Cy cicjx = cjeix

Csdi; =1

Cs dij = cp(dix - dij) if k & {7, 5}

C7ci(dij - z)-ci(dgj - —z) = 01if ¢ # 5.
More precisely, Cf &f {c;0=0:7€ a},etc. BA def C Ay is the class of Boolean
algebras.

2.6 Special cylindric algebras

A

Algebras of formulas. Let A = («,t) be a language, R 4’ Domt. Then Fm® €

CTAq is defined (see [8] 4.3) as
MA dzef (FrﬂA,V,/\,_',F,T,EIVz',V,' = vj)i,jECl)

where V : 2Fm® — Fm®" is defined by V{p, ¥) e oV for all p, 1 € Fin™, and
similarly for the other operations. Sometimes we write Fmg instead of Fm?.
It is easy to see that

Fm® = Tmp(eyl,) = £zCTA,.

The first of these isomorphisms is defined by



T(R(vo, ..., vir-1)) € Rif RER

Tu(vi = vj) def d;j, Ti(F) def 0, 74(T) def 4

T/t(so( v) V) E rup) V (), T A) o ru(e) A (), Tu(-p) X
—TH(p

def
TH(Ivip) = citu(p).

Then 7y : Fm® ﬁn_ﬁ_(cyla). It is not hard to check that Fm®/ =4, ¢

CAq if Az C Fm®. Moreover (sce [8] 4.3.25) Fm?/ = = fg)CAa. This
means that there is a close connection between the class CA, and the proof
system F4: the collection of CA,-axioms is an algebraic version of the proof
system 4. One corollary (see [8] 4.3.28(1)) is that

CAa =H{Fm"/ =ps: A = (a,t) isalanguage, Az C Fm"}

for @« < w. This is a kind of representation theorem for CA,.

Atom-structures, complex algebras. For a an arbitrary set, cat, is the relational

type with binary relations 7; and unary relations E;; for all 7,57 € «. Let

B = (B,Tig, Eg)i,jea be a model of type catq. Then CmB € CTA,, the

ij
complex algebra of B is

CmB €' (SbB,U,N,\,0, B, T?* ER); jea-

If K C Mod(caty) then

CmK % {CmA : A€ K}.

Let Atoa C Mod(caty) be the class of those models B = (B, T;, Ejj)i jea
which satisfy (i)...(v) below for all ¢, j, k € a:

(i) T; is an equivalence relation on B
() BT =T | T:
(i) E;; = B
(V) Eij = T (B N Exj) il k ¢ {3, j}
(v) Tin%E; CIdifi # j.
We note that (iv) can be replaced with

(iV’) Eij = Ej,', Fa N Ekj - E,’j, E,'j = T:E,‘j and E,’j - T:(Eik n Ek]‘) if
k¢ {i,j}.

10



Elements of Aty are called (cylindric) atomstructures. In (8] 2.7.43(ii), 2.7.40 it
is shown that
CAq = ISCmAt,.

This is again a kind of representation theorem for CA,’s (which, in the a = 0
case, coincides with the representation theorem of BA’s).

Cylindric set algebras. Let a be an arbitrary set and let V C *U for some set
U. For i,j € a let

V] def{ EV (z):s(])}
T[”“if{(, 2) €2V s (a\{i}) =z [ (a\ {i})}

cMx € rlVI*x = (s(iju) eV :se X,ue U}.

(V) v, 7, D e

S0V = CmAlV) = (SbV,u,n,\, v,V DY, S,
def

Crsq = S{SbV : (AU)V C *U}.
Members of Crs, are called cylindric relativized set algebras. For V C *U we
let

base(V) def U{Rngs :sevV}
and if A € Crs, then
base(A) def base(14).

The class of cylindric set algebras is defined by

Cso & S{Sb*U : U is a set)

and the class of representable cylindric algebras is
RCA, ¥ HSPCs,.
We note that if & > 2 then
RCA, =1Gs, = SPCs,
where

Gsoa & S{SV(U{°U;i :i€1}):1 isaset,and
(Ui :i€1I) is system of pairwise disjoint sets}.

2.7 Recursion-theoretic notions

In this paper the notion of decidability will be extended from subsets of w and
sets of terms to other sets (e.g. to sets of finite algebras of finite types) in the
intuitively natural way. Similarly for recursive functions. The expressions “de-
cidable”, “recursive” and “computable” will be used interchangeably. Related

11



terms will sometimes be used inaccurately within proofs, thus we write “N(7)
is computable” instead of “the function N is computable”, or “it is decidable
whether there exists a 7-tree” instead of “there is a recursive function which
decides whether there exists a 7-tree, for each 77.

Let K be a class of structures. (Thus K may be a class of algebras.)

(1) K is said to be strongly decidable if its similarity type is finite and there
1s a recursive function f:w — w such that

(a) (VA€ K)(YXC,A)EB € K)A[X =B [ X and [B| < F(IX])]

and
(b) {Ae K:Aew} is decidable.
(i) FK ¥ {A e K : |4 < w}.
(iii) The set of equations valid in K is denoted by EqK and the set of quasi-
equations valid in K 1s denoted by QeqK .

REMARK 2.2 Let K be a class of algebras.

(i) If K is strongly decidable, then it is easy to see that not only EqK, but
the set of universal formulas valid in K is decidable. In particular, QeqK is
decidable and thus the word-problem of K is solvable. Besides, EqK = EqFK,
moreover K and FK cannot be distinguished even by universal formulas.

(ii) Connections between EqK = EqFK and the decidablity of EqK: It was
observed in Taylor [23], p.26 that if K is finitely based (or more generally:
recursively based) and EqK = EqFK, then EqK is decidable. (Indeed, it is not
hard to see: EqK is enumerable since K is finitely based, and the equations
that are not valid in K are also enumerable since EqK = EqFK and K is
finitely based.) We cannot weaken the condition “K is recursively based” to

“EqK 1is enumerable”: Let N C w be enumerable but undecidable and let

EY {9f*0= f"0:n € N} (thus f and g are unary function-symbols and 0 is

a constant-symbol) and let K be the variety defined by E. Then it is easy to
see that EqK is enumerable but undecidable and Eq K = EqFK. This example
also shows that condition (b) cannot be removed from (i) of the definition of
strong decidability (without aflecting the truth of the implication “K is strongly
decidable = EqK is decidable”). Conversely, it is quite easy to construct a class
of algebras K such that EqK is finitely based and decidable but EqK # EqFK.
For example, let £ = {gfe = z,90 = 0} and let K be the variety defined
by E. Then it is not hard to see that EqK is decidable, FK = 0 = f0 but
K £ 0= fo.

(1i1) Henkin proved the strong decidability of C A5, and even that of RC A4, see
[8] 2.5.4,4.28. m

12



3 The decidability of the equational theory of
non-commutative cylindric algebras

NCAg, the class of “non-commutative CA,’s” was first defined and investigated
by R. J. Thompson.

DEFINITION 3.1 Let « be an arbitrary set. NCA, is the class of those
A € CTA, which satisfy the identities defining C A, with the exception of Cjy.
That is,

NCA, € {A€CTAL: Al CoUCIUCSUCEUCTUCEUCE).

Below, we shall prove the decidability of the equational theory of NC A, and
that there is no equation valid in all finite NC A, but not inall NCA,, ifa < w.
Nevertheless, NC A, is not strongly decidable, since there is a quasi-equation
valid in all finite NC A, but not in all NCA,.

THEOREM 3.1 Let a be an arbitrary set.
(i) EqNCA, is decidable (provided « is decidable).
(i1) EQNCAq = EqFNCA,, if a < w.

(iii) QegNCAy # QeqFNCA,, if |a| > 3. Thus NC A, is not strongly decid-
able if « > 3.

Proof: First we introduce some notation. We will have to work a lot with
terms in the constructions below. Thus we find it convenient to introduce the
following conventions. Let X be a set and fix @ € X. We write Tm instead of
Tmyx (cila). The elements of Tm should be thought of as being built up from
X by the operations —, -, ¢;, di; (4,7 < «) (thus 0, 1 and + are regarded as
derived operations).
Define the algebraic type t4 as follows:
def .
ta = {(tin,1):i1 € a,n € aUTm},

so that all function-symbols in ¢, are unary. We will simply write Tm(tq)
in place of Tmyy(ts). If T is a set of terms, Subterm(T') denotes the set of

subterms of the elements of I'; we write Subterm(o) instead of Subterm({c}).

Subterm(cs)’ wf {6,—6 : 6 € Subterm(o)}.

If ¢ € TmU Tmx(ts), the length of o is denoted by ||o|] and is defined by
the following clauses:

| =1, ify € X

13



def .
|[tinwl] = lw]|+ 1, if t;w € Tmx (to)

def

[ldi;]| = 1
def def
= ol = lleo|| = |lo]]+ 1
16 - o)l € 1161 + l|o]|, if o, § € Tm and 4, j € a.

Eqrel(H) denotes the set of equivalence relations of H. If e € Eqrel(H) and

GCH,thenel G L 2G Ne. We note that if e € Eqrel(H) and h € H, then
e*{h} is the e-equivalence class of h. Let e € Eqrel(H) and g € H. Then

e(g/h) & ler (H\ {gN] U ({g} Ue*{h}),

that is, e(g/h) is the equivalence relation on H obtained from e by moving g¢
into the equivalence class of h if h € H and putting g into a separate equivalence
class otherwise. (We note that e*{h} = 0if h ¢ H.) i is said to be singular in
e if e*X{i} = {i}. In the sequel « will be assumed to consist of ordinals. Then
a is well-ordered by C, and for I' C a, min(I') denotes the minimal element of
I' with respect to this ordering.

DEFINITION 3.2 Let e € Eqrel(a) and 7 € Tm.
(i) E® : Tm(to) — Eqrel(a) is defined by the following recursion:

E¢(z) 4l e, and
E*(tinw) = E¢(w)(i/n) if tinw € Tm(ta).

(ii) Let i € o, n € «UTm and w € Tm(¢,). w is said to start with 7 if w = t;;w’
for some [ and w'.
tf, : Tm(ta) — Tm(ty) is defined as follows: Let

def { min(E¢(w)* {n}), ifn € a,
k= .
n, if n ¢ .
Then
w, if (i,n) € E¢(w); otherwise

te 4 tixw, if w does not start with ¢
T tpw, if (A)w = tyw' and (i, k) ¢ E¢(w)
w’, if (3w = tijw' and (i, k) € E¢(w').

(iii) P is said to be a 7-tree if

1. P C Tm(ta) x Tm, and if (w, o) € P, then ||w|| < ||7]|, (¥i,n)[tin occurs
in w = n € Subterm(7)'Ua], and o € Subterm(7)' U{d;j, —d;; : 4,7 € a}.
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(a) (z,7)€P
) e {G7): (z,di;) € P} € Eqrel(a)
(¢) for allw € Tm(tys), ,j € @ and 0,6 € Tm, we have
(cl)y (w,0) € P = {(w,dij): (4,7) € E¢(w)} U {(w, —d;;) :
(1,7) g ES(w)} C P
(2) (w,0-6)€ P = {(w,0),(w,6)} CP
(w,—(c-6)) € P = [(w,—0) € P or (w,—98) € P]
(w,—(-0)) € P= (w,0) € P
(w,—cio) € P = {(t{,w,—0) :n € e or t§, w € DomP} C P
(w,ci0) € P = (In € a U Subterm(r))(t{,w,0) € P
(¢3) (w,0)€EP=>(w,—0)¢ P

The intuitive meaning of 7-trees will be explained in Remark 3.4(ii) below.
PROPOSITION 3.1 Let 7 € Tm.
(i) NCA, 7 =0<= thereis a T-tree.

(i1) There is a recursive function N : Tm — w such that [NCA, = 7 =
0= {AENCAL: |A|<N(D}ET=0],ifa <w.

Proof: To prove the proposition we need the definition of atomstructures of
NCA,’s first.

DEFINITION 3.3 Let B = (B,T;, Eij)i jea be such that T; C 2B and E;; C
B for all i,j € .

(a) B is said to be a partial N-atomstructure, B € pN Al,, if B satisfies
conditions (i)...(iv) below for all i,j,k € a.

(1) T; € Eqrel(B)

(i) Ei = B, Eij = Eji, Eix, 0 Ey; C Eyj
(iii) By = TXEy; if k ¢ {4, 4)
(iv) T: N2E;; CIdif i # j.

(b) B is said to be an N-atomstructure, B € N At,, if besides (i)...(iv)
above, B satisfies condition (v) below for all 7,5,k € .

(v) Eij C T (Bi O Eij).
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(¢) Let B € pNAt,. Then B = (B, T E T)ijea, that is, its universe is
denoted by B and its relations are dlstlngmshed by the superscript B, unless
explicitly stated otherwise. The conventions governing the use of other under-

lined letters are similar.
(d) Let B € pNAty, b€ B and 1,5 € a. Then

E2(b) % {(i,§) € 2 : b € EZ} and

th = {(a,b) € B aTFb and b€ BL} if i # j; tr < 1dp.
|
PROPOSITION 3.2 NCA, = ISCmN At,.

Proof: The statement follows from [8] 2.7.5, 2.7.14 and 2.7.34. The proof is
patterned after that of [8] 2.7.43 (ii) and is routine. m

REMARK 3.1 The following facts are easy to check so we omit the proofs.
Item (3) will not be used in the sequel, it is included here only in order to help
the reader’s intuition grasp why things are defined the way they are.

(1) NAt, is an extension of the class At, defined in section 2, that is, we
have omitted from the definition of At, the condition “T; | T; = Tj | T; for all
i,j € o”. Furthermore, we have pNAt, = {A | X : A € NAty, X C A} (here
“D” is easily verified and “C” follows e.g. from Lemma 3.3 below). Another
example for a pN At, is the structure At(V) defined in section 2: If V C U,

then it is easy to check that At(V) € pNAt, and [AL(V) € NAt, < (Vs €
V)(Vi,j € a)s(ifs;) € V]. Let A e At(V) s € V and 7,j € a. Then it is
easy to verify that E4(s) = kers and tij(s) = s(i/s;j). We note however, that
the class {At(V) : (3U)V C “U} C pN At satisfies much — in fact, infinitely —
more regularity than pN At,, c.f. Theorem 4.1(iii) below.

(2) Let B € pN At,. Then it is not hard to check that for all i,j € @ and a,
b € B we have

EE: B — Eqrel(«),

t?—- is a unary partial function from B to B, and

(Vi,j € a)f—' is total (that is, Domt% = B)] <= B € NAl,,
EE(1%4) = BE(b)(i/5); and

1faT—b a # b, then [EL(b) r (e\{i}) = EE(a) P (a\{i}) and ELZ(b) =
EB(a) =1 issingular in EB(I))]

(3) Let t/, ef {(tij, 1) : 4,7 € a} be an algebraic type. Define a quasi-variety

of type t!, by the following formulas:
For all ,5,k,l € «
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(A) tijt,-kx = t,'j.’L’, if i # ]
(B) iz =z, ijtx = 2, Eiptijtp; o = Ljlgx
(C) ttije = tije & thz =z, ifid {k,l}
Let A = (A, tij)ijea € Va and EA(a) def {(i,j) € *a : tija = a} if a € A.
Then identities (B) and (A),(C) express E4(a) € Eqrel(a) and EA(t;;a) =
EA(a)(i/j), respectively. Let Rd(t.)B def (B,t%),-’je(, if B € NAto. Then it
can be shown that Vo, = {Rd(t,,)B : B € NAta} and V, # HV,, thus V, is
not a variety. Moreover, N At, and V, are definitionally equivalent for a > 2
in the sense of [8], Part I p.56.: The first order (quantifier-free) definitions are
as follows.

Let 7, j € a.

tijz =y (TiyANE;j(y)ifi#j,and tzz=y oz =y,
Ty ¢ tijz = ti;y (where j € o\ {1} is fixed), Ejj(z) & tije = x.

Let o < w (for simplicity) throughout the remaining part of this remark. By
Lemma 3.3 (to be proved later) both N At, and V, are strongly decidable, thus
for example, the word-problem for V, is solvable. But CmN At,, is not strongly
decidable by Theorem 3.1(iii) (and the proof shows that CmV, is not strongly
decidable either). Indeed, there is a simple decision procedure based on a kind
of normal form for EqV,, that we shall now describe.

On the definition of the function ¢§, : Tm(ta) — Tm(te): One easily checks
that if A € V,, a € A, EA(a) = e and t;,w € Tm(t,), then A k= ¢, w = t;w(a].
Moreover, tf,, was defined so that the equations valid in V, could be described
with the help of the notion of normal-form yielded by it: Let e € Eqrel(), and
define the function n® : Tmy (t,,) — Tmx(t},) as follows:

n°(y) def yif y € X, and
n®(t;jw) et tnfwif 4, j € a and w € Tmx (t),).

Then n® is a computable (i.e. recursive) function and it can be shown that for
all w, z € Tmx ()

(* * %) Vo Ew =2z (Ve € Eqrel(a))nt(w) = né(z).

This gives a simple decision-procedure for the equations valid in V,,. The proof
of (* x x) can be reconstructed from certain parts of the proof of Theorem 3.1
below. It would be interesting to know whether the decidability of EQNC A,
can be derived from that of EqV,, that is, if there is a recursive function tr
on the class of equations of type cily to the equations of type t/, such that
NCA, E q & Vy Etr(q), for all equations ¢. B
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We return to the proof of Proposition 3.1.
(I) Proof of “NC Ay £ 7 = 0 = there is a 7-tree”:
Assume NCA, £ 7 = 0. Then, by Proposition 3.2 there is an A € N At,

and k : X —> SbA such that C <" CmA £ = = 0[k], that is, 7S[k] # 0.
Let a € 7€[k] and e def EA(a). We define P,, and h,, by recursion so that
they will satisfy condition (%) below: Let D,, def DomP,, and R,, def RngP,, \
({dij, —dij : 4,5 € a}U{z,—z : 2 € X}), where Py def Py, and Py, def P\ Py
if m > 0.

Let (*) be the conjunction of *1...x7 below:

*1 Dy, C {w € Tm(ty) : ||w]| < m+ 1}; Dy, = Subterm(D,,); tinw € Dy =
n € Subterm(7)' U «

*2 |lo|| < ||7|| = m if ¢ € Rpm; Rm C Subterm(r)’
*3 hyy : Dy — A

*4 hpw € o<k} if (w,0) € P,

*5 EA(h,w) = E¢(w) if w € Dy,

%6 Ny (tiow) € c€[k] if ti;w € Dy, and ¢ € Tm

*7 hmwﬂihm(tinw) ifiea,n€ aUTm and ¢;,w € D,,.

Let Py & {(2,7)} U {(z,dij) : (i,4) € e} U{(z, ~dij) : (5,7) € 2a\ e}, ho
{(z,a)}. Then Py, hg satisfies (x). Suppose that Py, h,, satisfies (x). Let

Hy {(w,1,0) : (w,¢;0) € P, (Y € aUTM)[té,w € Dy = h (15, w) ¢ 0 <[k]]}.
Let b : H,, — A be such that for all (w,1,0), (v',i,0) € Hn

(hmw)T,-Ab(w, i,0), b(w,i,0) € e<[k] and

b(w,i,0) = b(w,i,0) if (hmw)TiA(hmw’).
There is such a function b. Define f : H,, — Tm(t,) by

det [ 15w, if EA(b(w, i, 0))* {i} = {3}
f(w,i,0) = { tw, if k = min(EA(b(w, i, o)) % {i} \ {i}).
Let det
Gm = {(w,i) : (3¢ € Tm)(w, —c;0) € P}
w {f(w,i,0) : (w,i,0) € Ho} U {5, w : (w,i) € Gp,n € a}
Nt L hmU {(f(w,1,0),b(w,i,0)) : (w,i,0) € Hy}
U{(tfnw,tﬁhmw) t(w,1) € Gm,n € a}
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Pry1 & {(w,dij) s w € W, (i,j) € E*(w)}

U{(w, —di;) : w € W, (4,5) € 2a\ E%(w)}

U{(tf,w, o) : (w,c;0) € P, t5,w € Din, hy (85, w) € 0<[k]}

U{(f(w,i,0),0) : (w,i,0) € Hp}

u{(t;,w, —0) : (w,—cio) € Pp,n € @ or t{,w € D, UW}

U{(w,0) : (w,0-6) € Pp} U {(w,é): (w,0-8) € P}

U{(w, =0) : (w, —(0 - §)) € P, hmw € (—0)<[k]}

U{(w, —8) : (w,—(0 - 6)) € P, hmw € (—=86)<[k]}

U{(w,0) : (w, =(=0)) € Pn} U Ppn.
Now we show that Pp,4q and hp 41 satisfy (x). It is clear from the definitions
that 1 and *2 are satisfied. Next we show that h,,4; is a function. To this end
let us first prove propositions (1)...(5) below. (In the proof we simply write A
instead of h,,.)
(1) h(tizw) = t;ikhw iftjzpw € D, and k € a.
Indeed, if t;zw € D, then w € D, by #1 (and thus h is defined on w), and *7
and x5 gives h(w)TiAh(tikw) € d%, that is, h(t;ew) = t;ikhw (since A € N Aty)
if ¢ # k. One shows by induction that t;;w ¢ D,,, if i = k. m(1)
(2) t%hw = t%hw" if t{,w =tyw', wée€ D,y and i,n € a.
Indeed, let w € Dy, ¢, n € « and &5, w = tw”. If (i,n) € E¢(w), then tf,w =
w € Dy, and 5 gives tf};hw = hw, so we have tﬁhw = hw = h(tgw") = t%hw"
by (1). Suppose that (i,n) ¢ E¢(w), and let ¥ = min E¢(w)* {n}. Suppose
that ¢f, w = t;rw”, where either w”’ = w or (3 € a U Tm)w = tw”. In both
cases w"” € D, (by *l since w € D,,) and thiAhw” by *7, thus we have
tﬁlhw = t;ikhw = t;ikhw” since (n,k) € E¢(w) = EA(hw). By the definition
of tf, the only case not covered so far is t{,w = @', where (I)w = t;;w’ and
(i,k) € E*(w'). Then w' € Dy, and (i,n) € E¢(v'), thiAhw’, $0 tﬁhw = hw'.
If w' = tgw”, then (1) gives hw' = t%hw". m(2)
(3) h(tf, w) = t%lhw if w,t{, w e Dyy,.
Indeed, if t§,w = tyw” for some k, I, w”, then w € Dp,, and (2), (1) gives
t;inhw = t%hw” = h(tpw") = h(t5,w). If tf{,w = =z, then either w = z or
(Aw = tyz. If w = z, then (i,n) € E¢(w) = EA(hw), so h(t¢,z) = hz = t;inh:c.
If w = tyz, then (4, n) € F¢(z)\Id and thus hz = tﬁlh(ti;x) (since h(t,-,:c)]}ihx).
u(3)
(4) flw,i,0) = ti,w”, w"” € D,, and thiAhw“, or

flw,i,0) = tipw", w" € Dy, and b(w,i,0) = tf‘;hw“

and
(5) f(w,i,0) ¢ Dy,.
Indeed, let (w,i,0) € H,, and f def flw,i,0), Qd=8f b(w,i,0). Now f € {t§,w:
n € aUTm}, thus f € Dy, impli_es hf¢ o<[k] by the definition of H. Suppose
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that EA(bY*{i} = {i}. Then f = t{, w. It is easily seen from the definition of
t¢,w that ¢, w = t§,w", where either w” = w or (3)w = tyw”. In both cases we
have w"” € D,, and thiAhw” by *7. Moreover, f = t;;w" ¢ Dpy by *6. Now
suppose that EA(D)* {1} # {i}. Then f = tfw, where k = min EA(b)* {i}\ {1}.
That is, k # i and b € d:ik. Then b = t:—‘,;hw since thiAQ. Thus f = 5w ¢
Dp,, since t§w € Dy, would imply h(tfw) = t;A;hw = b € o<[k] by (3).
This, together with k = min EA(hw)* {k} (since EA(b) = EA(hw)(i/k)) implies
Sw = tigw” by %5, where either w"” = w or (3)w = t;;w", so in both cases we
have w' € D,, and thiAhw”, that is, b = t;ikhw“. m(4),(5).

Now we are ready to prove that hy, 41 is a function. We have to show that
(w, f), (w, g) € hynyr imply f = g. Suppose that (w, f), (w,g) € hmy1.
Case 1. (w, f), (w,g) € h. Then f = g by *3.
Case 2. (w,f) € h, (w,g9) ¢ h. Then w € D,,, thus (w,g) = (tfnw’,t;i"hw’)
for some n € a and (w',i) € Gy, by (5). Since t{,w' = w € Dp, (3) gives
f=hw=h(t;,w') = t%hw' =g.
Case 3. (w, f) ¢ I, (w,g) & h. It will suffice to show

f(w,i,0) = f(v',¥,0) = b(w,i,0) = b(w', 7, o)
fw,i,0) = t5, 0 = b(w,i,0) = tf‘;lhw’
thw = t§,w' = t%hw = tf‘;hw’

for all (w,?,0), (v',¥,0') € Hp, (W', ]), (w,i) € Gy and I, n € . Suppose
that id:ef f(w,i,0) = f(w',@,0"). By (4), either f =t;;w"”, i =4, 0 =0’ and
thiAhw“TiAhw’, and in this case we have b(w,4,0) = b(w',1,0) = b(w', 7', 0')
because of the choice of the function b; or f= tizrw” and then b(w,i, o) =
tf‘,;hw” = b(w', 7', 0"). Suppose that f(w,i,o) = t;,w' = tygw”. Then ¢, w' ¢
D, by (5), and thus, since w’ € D,, and n € «, the defnition of t5,w' shows
that £ € . Then b(w,i,0) = tf‘,;hw” = t;.inhw’ by (4) and (2). Suppose that
thw = tfnw’ = f. If f € Dy, then (3) gives t;i,hw = t;‘—nhw’. If f ¢ Dy, then f
is of the form t,zw”, and then tiilhw = t’;"khw“ = tf—nhw’ by (2).

With this we have shown that hp,4+1 is a function.

Now we show that 41 satisfies *b. Let w € Dp4q. If w € Dy, then
we are finished since h,, C hp41, and hy, satisfies x5. So suppose that w €
W\ D,. Then w = t;w"” for some ¢ € o, k € o U Tm and w"” € D;
and E¢(w) = E¢(w")(i/k) = EA(hw")(i/k). Suppose that w = f(w',i,0) for
some (w',1,0) € H,,. Let b def b(w',i,0). If k ¢ «, then k = o by (4) and
EA(b) = EA(hw")(i/o) since bTiAhw” and EA(b)*{i} = {i}. If k € «, then
EA(b) = EA(hw")(i/k) since b = t;ikhw”. Suppose that w = t;,w' for some
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n € « and (v',j) € G- Then f et hmprw = tf‘;lhw’ = t;-—q,;hw” by (2), whence
EA(f) = EA(hw")(i/k). Thus we have shown that h,,;; satisfies *5.

P_m+1 satisfies *4 since *5 is satisfied and P,, satisfies *4. As an illustration
we consider two cases. Let (w,d;;) € Py, w € W, (i,j) € Ef(w). Then
(1,7) € EA(hpmy1w) by #5, 50 hypw € d% Let (1, w,—0) € Ppny1, where
(w,—cio) € Py and n € a. Then hpw € (—c;0)<[k], and since, as is easily
checked, hmwTI}AhmH(tfnw), we get by (t8,w) € (—0)<[k]. The remaining
cases are completely analogous, so we omit the details.

To show that h,,41 satisfies *6 suppose that t;pw € Dyy1 \ Dim. Then
tiow = f(w',i,0) for some (w',i,0) € Hy, (see the proof of (4) and (5)), and
then b(w', i, 0) € a<[k].

To show that h,,1 satisfies 7 suppose that t;,w € Dy \ D If tipw =
f(w',i,0), then lz,,l+1(tiniu)7}illw by (4). If t;pw = t;kw’, then hm+1(t,~,,w)TiAhw
by (2).

With this we have estabilished () for P41 and hp,qq.

Let P& U{Py, : m < ||7]|}. We show that P is a 7-tree. In what follows, we

refer to conditions 1, 2(a)...2(c3) of the definition of 7-trees. (1) is satisfied by

*1 and *2, and 2(a) is satisfied since (z,7) € Py C P. One proves by induction

that all P,s and thus P satisfies 2(c1). Let h = U{hm : m < ||7]|}. Then

h : DomP — A and hw € ¢<[k] if (w, o) € P, by *3 and *4, so 2(c3) and 2(b)
is satisfied (since 2(c1) is satisfied). Condition 2(c2) is satisfied because of *2
(and the definition of Ppy41). Thus we have shown that P is a 7-tree. For the
intuitive meaning of this part of the proof, see Remark 3.4(ii} below.
(IT) Proof of “there is a 7-tree => {A € NC A, : |A| < N(7)} £ 7 = 0” (where
N(7) will only be defined later, at the end of the proof).

Let e € Eqrel(«). By induction, define

N¢ {2},

1 ef {t{;ww e N&L1 € ayn € aUTm},

Ne ™ U{N5, :m € w}.
Fori, j € « let
Ey © {we Ne:(i,j) € B(w)},

T; def {(w,w) : w e N }U{(w, tinw) € 2(N®) : n € aUTM}U{(t;nw, w) €
2(N®):n € aUTm}U{(tinw, timw) € 2(N®) : n,m € a U Tm}.

{ef
N¢= (N, Ti, Eij)i jea-

LEMMA 3.1 N°® € NAt,.
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Proof: Fix e € Eqrel(a). Let n € w and N™ et U{Ng :m < n}. We claim that
(1) N™ = Subterm(N™).
(2) If tixw € N° and k € a then (i). .. (iii) below hold.

(i) (i k) ¢ £4(w)
(ii) k = min(E*(w)* {k})

(iii)) w does not start with 1.

Indeed, (1) and (2) are easily proved by induction using the definition of ¢, w.
Suppose that (1) holds for N™ and (2) holds for all w’ € N™. Let w € N™,
i€ o, andn € aUTm. Let k% min(E¢(w)*{n}) if n € a, and k Y
if n ¢ a. Then it is immediate from the definition of ¢, w that (1) holds for
N™+1 Suppose that n € . If t§,w € {w,w'} C N™, then we are done.
Suppose that tf,w = t;pw. Then from (i,n) ¢ E*(w) and (n, k) € E¢(w) we
conclude that (i,k) ¢ E¢(w) and k = min(E®(w)* {k}), moreover, w does not
start with ¢. Suppose that ¢, w = t;;w’. Then w' does not start with i, since
w = tyw’ € N™, furthermore, (i,k) ¢ E¢(w’) and (¢,n) ¢ E¢(w), (n,k) €
E°(w) gives (I, k) ¢ E¢(w'), thus E¢(w)*{n} = E¢(w)*{k} = E¢(w")*{k}, so
k = min(E¢(w')*{k}). This proves (1) and (2).

Now we return to the proof of N® € NAt,. Let ¢, j, k € o. T} is obvi-
ously reflexive and symmetric, and its transitivity is a consequence of (2)(iii).
Moreover, Ej; = N¢, E;j; = Ej; and Ey, N Eyj C Ejj, since E¢(w) € Eqrel(«)
for all w € N°. Suppose that k ¢ {¢,7}, and let wT)z. It is clear from the
definition of T} that E¢(w) P (a\{k}) = E°(2) P («\{k}), thus w € Ej; implies
z € E;jj. Suppose that i # j. We show that T; N ?E;; C Id. Let wTiz, w € Ejj,
w# 2. If z = tjpw and n € a, then (i,n) ¢ E¢(w) by (2)(i), and (¢,n) € E¢(z),
thus (4,7) ¢ E°(z) (since (i,7) € E*(w)); if n ¢ «, then i is singular in E¢(z2),
so (i,7) € E°(z); thus in both cases, we have z ¢ E;;. If w = t;,z for some
n € a UTm, then n € «, since 1 is not singular in E¢(w), and (i,n) ¢ E°(2)
by (2)(i), (¢,n) € E¢(w), so (i,7) € E¢(z). Suppose that w = t;,w’, 2z = t;mw’,
for some n, m € a U Tm. Then n € «, since i is not singular in E¢(w). If
m ¢ «, then ¢ is singular in E°(z), thus z ¢ FEjj, and we are finished. Sup-
pose that m € a. Then n = min(E¢(w')*{n}) and m = min(E*(w')*{m})
by (2)(ii). Since w # z, we have n # m, and thus (n,m) ¢ E°(w’). Then
(i,7) € E¢(w")(i/n) gives (i,7) ¢ E¢(w')(i/m) = E*(2), so z ¢ E;j. We have
thus shown that T; N 2E’,~j C Id.

So far we have proved N® € pN At,. Though this is all we need in the
sequel, we prove N° € N At, for completeness’ sake. We have to show that
E;; C T,:‘(E’,-;C N Eyj). Let w € E;;. If k € {4, j}, then we are finished. Suppose

that k ¢ {7,7}. Let 2 def ti;w. Then z € B N Eyy = By N Eyj, and wTity,w, as
can be seen from the definition of t{;w. This completes the proof of N® € N At,.
H(Lemma 3.1)
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REMARK 3.2 (i) The name “N°®” refers to “normal-form”. This is because if
we define the function n° : Tmx (to) — Tmx () as in Remark 3.1, then N¢ =
{w € Tm(ty) : n®(w) = w} = Rng(n®), that is, N¢ is the set of expressions in
normal form.

(ii) Let N ef ye [ Tm(t’,). Then N is the free N A{, with defining relation
E(z) = e “generated” by one element, in the following sense: Let A € N Al,,
a € A and E4(a) = e. Then there is a function k : N — A such that k(z) = a,
and for all B € NAt,, b € B, EE(b) = ¢, and if h : B — A, h(b) = a, then
there is a function f: N — B with f(z) = b and k = ho f. (The second part
of the statement says that k is the “smallest”.) More generally, the following
is true: Let e € Eqrel(a), A € NAt,, a € A and EA(a) = e. Then there is a
function k : N® — A such that k(z) = a. ®

Let P be a r-tree. Let e = {(i,7) € %a : (z,d;;) € P}, and let P’ def

{(w,0) € P : w € N¢}. Then it is easy to check that P’ is a r-tree, and

obviously DomP’ C N¢. Let B(P) et N°® [ DomP’. For all i € a, let K; =

{w € DomP’ : (o )(w, —c;o) € P'}.
LEMMA 3.2 Let P be a 7-tree, and B B(P) Then

(i) B € pNALg, and |B| < B8 (JI7]]) - (Ja| - (Ja| + [Subterm(r) )17,

(it) Ifw € K;, then (Vj € a)(t “w exists).

(iii) If BC A € NAla, and (Vi € a)(Vw € K;)(TZ {w} = T2 {w}), then
CmAET=0.

Proof: (i) follows from Lemma 3.1 and from |[{w € Tm(i%) : ||w|| < ||7||}] € B,
where t/) = {(tin,1): i € a,n € « U Subterm(r) }. (ii) follows from P’ being

a T-tree, since (Yw € N)t§, w = t w. To prove (111) suppose that A O B
satisfies the premiss of (iil). For all y € X, let L(J) {w € B: (w,y) € P'}.

Then k : X —» SbA. Let C % CmA. We prove (w,0) € P' = w € o<[k] by
induction on o. Let (%) be the following statement:

(%) (Yw € B)[(w,0) € P! = w € o<][k]]

If o € X, then (x) holds by the definition of k. If (w,d;;) € P’, then (i,7) €
E*(w), thus w € d%. Suppose that (x) holds for all elements of Subterm(o - §)’.
This implies that if (w,o - 6) € P’, then (w,0), (w,8) € P’, and thus w €
okl N 6<[k] = (o - 6)€[k]. Suppose that (w,—0) € P'. Ifo = y € X,
then (w,—y) € P’ implies (w,y) ¢ P’, thus w ¢ k(y), that is, w € (—y)<[k].
If 0 = djj, then (w,—d;;) € P’ gives (i,j) ¢ E¢(w), thus w € (—d;;)<.

o = o' 6, then it follows from (w, —(¢’ - 6)) € P’ that either (w, —¢’) € P’, and
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then w € (—a")<[k] C —(o’ - §)<[k], or (w, —6) € P’, and then w € —(o’ - §)<[k]
by the same argument. If 0 = —¢”’, then (w, —(—0')) € P’ implies (w, ') € P’,
and thus w € (¢/)€[k] = (=(=0'))<[k]. If ¢ = c;o’, then it follows from
(w,—c;0') € P’ that w € K;, and (z,—¢') € P' for all z € T,ﬁ {w}, thus
* *

z ¢ (0')<[k), but Tié {w} = Tiﬁ {w} by assumption, so w € (—c;0")<[k]. If
(w,cioc) € P’ then (tf,w,0) € P’ for some n, and then tf,w € ¢<[k] and
wTiitfnw, thus w € (c;0)<[k]. W(Lemma 3.2)

REMARK 3.3 (i) Lemma 3.2 (iii) may suggest that if « € 7€[k], where C =
CmA, A € NAt, and £k : X — SbA, then there is a finite neighbourhood
of a in A (its size being dependent on 7) which influences a € 7<[k] and such
that “things outside it” have no eflect on a, and the r-tree is really nothing
but this neighbourhood in an abstract form. Yet this holds only for “free”
N® € NAty’s and not generally: There is a 7 € Tm and A € N At, such that
CmA W 7=0Dbut (VB C, A)[Cm(A | B) E 7= 0] while (VX C, A)3B C,
A)[X C Band A | B € NAt,). An example for such a 7 and A is the 7 given
in Remark 3.4 (ii) and the At(V) € N At, constructed from the Crsq-unit V
given immediately after it.

(i1) It is fairly easy to construct a B(P) C A € N Al, satisfying the condition
of Lemma 3.2 (ii1): B(P) can be extended essentially “freely” to an N At,. But
this extension will be infinite. Next we show that there is a finite extension
provided a < w. W

LEMMA 3.3 Let B € pNAt, be arbitrary. Then there is an A € NAt,
satisfying (i). .. (iii) below.

() BC A
(i1) |A| < n-|B|, where 1) 4l glal|Barel(a)l® . |Eqrel()].
(iii) Ifbe B,a€ A\ B and bTiAa, then (35 € a)[tg does not exist].

Proof: First we introduce some notations. Let B € pN At,, e, ¢/ € Eqrel(a)
and 7 € «. Then

= {w € B : EE(w) = ¢}.

(1) B(e) =

(2) We say that e)ie’, if (k € a)e’ = e(i/k); and e 1 ¢’ means (e)ie’ and
e')ie). e)ie’ is said to be good in B if B(e) x _li(e’)ﬂTl.E : B(e) — B(e');
and ¢ <2 ¢’ is good in B if B(e) x B(e') ﬂTiE : B(e) —— B(e').

(3) Let H ef {(e,e',i) 1 e}ie’ ;e £ €'}, G e {(e,€',7) : e “ele #e'}.

(4) A D B is said to be a good extension of B if it satisfies the condition
formulated in Lemma 3.3 (iii).
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Claim 3.1 Let B € pN At, and suppose that e)ie’ is good in B, for all (e, ¢’,i) €
H. Then B € N At,.

Proof: Let B = (B, T;, Eij)i jea € pN Aty be as in the statement. We have to
check E;j C T¥(Eix N Eyj) for all i, j, k € a. Let b € E;j. Then b € B(e),
where e = EZ(b), and (i, j) € e. Let ¢’ e e(k/i). We may suppose that e # ¢,
Then e)ke’ is good in B. Thus there is an a € B(e’) with bTka. Since (i, j) € e,
we have (i,k), (j, k) € ¢, that is, a € Ejx N E};. ®(Claim 3.1)

Claim 3.1 makes it possible to extend a B € pNAt, to an A € NAt, by
“repairing” the e)ie’’s step by step.

An N € pN At, is said to be regular , if

1. N =W x Eqrel(«) for some set W, and
2. N(e) = W x {e} for all e € Eqrel(«).
Claim 3.2 Suppose that N € pN At, Is regular, and e e s not good in
N, where (e,€’,i) € G. Then there is a regular M € pN At such that
(1) NC M, |M|=2-|N]
(2) e el s good in M

(3) ifeq PN ey is good in N, then eg NN eq is good in M, for all (eq, €1,7) € G.
(4) M is a good extension of N.

Proof: Suppose that N = W x Eqrel(«). Let W’ wu (1 xW)and M def
W' x Eqgrel(a) (cf. Fig. 1).
Let
E%l‘ def {{w,&) e M : (i,j) € €}
for all 7, j € a. Then M(e) = W' x {e} for all € € Eqrel(«).
Since e «— ¢’ is not good in N, either e)ie’ or e'}ie is not good in N. We
may suppose that the former case applies. Let

DY {weN(e):(—3z € ﬂ(e’))w]}ﬂz}, and let g be such that

g : M(e) —— M(e'),
h C g, where h &ef N(e) x N(e')n Tiﬁ, and
g*D C (1 x W) x {e'}. (See Fig. 1.)

There is such a function g, since both h and h~! are functions because of
N € pN Aty and (e, ¢’,i) € G. For all j € a, let
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Figure 1.

_ def _

§=gUg™l,

R; e {{(w, €0), (w, €1)) : w € 1xW, (e, €1,5) € G, eo NEAN e; is good in N}U
Id(le)v

L “ T UR; ifj# i, and

L ¥ TtEUuR Uy,

M del

; the transitive closure of L;”,

def
M E (M TE BEEY, tea.

We will show that M has the desired properties. To this end, let us first describe
. M . ..
the relations T;— a bit more explicitly.

(1) Let j € « and ijM‘q. Then one of the following cases holds:
(i) p, ¢ € N, and ijﬁq
(i) pEN,q¢ N,j=14, and pT,.ﬂagbR,-q for some a, b € M

(iii) p¢ N, g€ N, j =1, and pRia‘(ijiﬁq for some a, b€ M
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(iv) p¢ N, ¢ ¢ N, j=1i, and pRjq
(v) p¢N,q¢ N, j=1i, and pR;agbR;q for some a, b€ M \ N.

Proof of (1): It will suffice to show that if ijMqur, and p, ¢ satisfies one of
(i)...(v), then p, r satisfies one of (i)...(v). (If p = ¢, then clearly (i) or (iv)
holds.) The nontrivial cases are as follows (we note that R; is transitive, and
ete)
N _ _
(a)  pTi-agbRiggr
We claim that in this case we have r = a, and thus (i) holds. bR;q gives
b= (w,e0) and ¢ = (w,e,) for some w, ey and e;, where either ey —— e; is
good in N, or b = q. We have {eg,e1} C {e,€’} by agb, qgr, and thus, since
e —— ¢’ is not good in N, we get ey = e;, whence b = ¢g. But then agh, bgr
gives a = r.
(b) pR;(zﬁbY}E'qgr and r ¢ N

We show that » = a, and thus (iv) holds for p,r. It follows from agb and ¢gr
that b = (w,e9) and ¢ = (z,e;) for some w, z and {eg,e1} C {e,e’}. Then
a¢ Nbe N,ge N, r ¢ N, bTiﬂq, and eg = e; by the definition of g. But
then bT;q gives b = ¢, since ¢ is not singular in e or €’. This, together with agb,
bgr, implies a = r.

(¢)  pRiagbRiqgr

As in the previous cases, agbR;qgr gives b = ¢, and thus a = r, so case (iv)
holds for p,r. m(1)

Now we are ready to prove that M has the desired properties. First we show
that M € pNAt,. Clause (i) in Definition 3.3 is satisfied since the relations
L; are reflexive and symmetric; and (ii) is obviously satisfied. Let k& ¢ {n,m},
k,n,m € a, p € Ey—m and pT,;Mq. Then ¢q € E,?/[—m, since Ly is easily seen to
“preserve E‘;Lj‘im”. Let n # m, p,q € E',%l and anMq‘ We prove p = ¢ by
examining cases (i) ...(v) of (1).

If (i) holds, then p = ¢, since N € pNAt,. Note that EMp = EMy 5o
p = (w,€), ¢ = (z,€) for some w, z, €, thus we have p = ¢ in case (iv), too. Now
we show that there are no more possibilities. Suppose that pTiﬂagbR;q, n=i.
Thena € N, b ¢ N,so {EX(a), EN(b)} = {e,e'}. Suppose that EN(a) = e (the
other case, E¥(a) = ¢, is completely similar). Then bR;q, so e’ —— & is good
in N (this is true even if b = ¢ and thus e’ = ¢, since 7 is not singular in '),
thus there is an r € E¥(e’) such that pTiEr, and then aTi]-V‘r, whence a € N\ D,
contradicting agb, b ¢ N. Thus case (ii) cannot hold for p, ¢, and it can be
shown similarly, that neither can (iii) or (v). This shows that M € pN At,.

Clearly, M is regular, and |M| = 2. |N|. Now we show that N C M.
Obviously, Ekﬂ, =NnN E% forall k, 1l € a. Let j € o, p,g € N and ijMq.

Then ijﬂq by (1). With this we have shown N C M. It is immediate from
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the construction of M, that e s good in M, and if eg NN e is good in
N, (eo,e1,7) € G, then e AR e1 1s good in M. To prove that M is a good
extension of N, suppose that p € N, ¢ € M\ N, j € «, and ijMq. Then it
follows from (1) that j = ¢ and there are a, b such that p:l’ij-v‘aﬁbR;q. Then t%a
does not exists, where k # ¢, and either ¢’ = e(i/k) or e = €’(i/k). Since pY}]”V‘a,
we conclude that t%p does not exist either. W{(Claim 3.2)

Claim 3.3 Let N € pN Aty be regular and suppose that for all (eg,e1,1) € G,

e LA ey is good in N. Then there is a regular M € N At,, such that
(1) NCM, |M|=2-|N|,
(2) M is a good extension of N.

Proof: The proof is similar to that of Claim 3.2. Let W,M E' %1 and M(e)
be the same as in the proof of Claim 3.2, that is, N = W x Eqrel(a), M =
(WU (1 x W)]x Eqrel(a), E,c T=1{(w,&) € M : (k,1) € e} and M(e) = {(w,€) €
M:e=¢},ifkl€ace € Eqrel(«). We may suppose that « > 2 since
pNAt, = NAty for @ < 1. Let i € @ and define T,M as follows: Let j € o\ {7}
be fixed. If 7 is singular in e € Eqrel(«), then let g(e) : M(e) — M(e(i/5)) be
such that

h C g(e), where b = T 0 [N(e) x N(e(i/4))),

(s(e) \ )*M C M\ N,

{{(w,€), (w,e(6/3))) 0 € 1 x W) € g(c), and

2N Nker(g(e)) = 2N(e) N T (see the picture).
There is such a function g(e) since h is a function. Let

g & U{g(e) : e € Eqrel(a), ¢ is singular in e},

_ def -
gi é giugi l)

def

Ri = {{(w,e),(w,e)):w el xWel (a\{i})=¢€T («\{i})},

L 20U UR,,

def ..
T;7— = “the transitive closure of L;”,

def
(MT E Tlijea

We want to show that M has the desired properties. Again, first we will have a
. M
closer look at the relations T, .

(1) Let i € & and pTiMq. Then one of the following cases holds:
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e e(w/4)

g(e)

(i) pTia.

(i1) pTilagime for some a,b € M.
(iii) pR,-ag;bTiﬁq for some a,be M.
(iv) pRiq.

The proof of (1) proceeds as in the previous claim. We show that if pTiMqLir,
and one of (i) ...(iv) holds for p, g, then one of (i) ...(iv) holds for p,r. The
nontrivial cases are as follows.

(a) PﬁﬂaﬁibRiMﬂ', reN.
Let ¢ & EN(a), ¢ e EN(b). Then i is singular in e and e’ = e(i/j) (where
J € a\ {i} is the index “chosen” for i) since ag;b and « € N, b ¢ N. By the
same token i is singular in EX(r) and E¥(q) = EX(r)(i/j). Now bR;q gives
EN(Q)? (a\{i}) = ¢ P (a\ {i}), so EX(r) = e and EX(q) = ¢'. Then bR;q
gives b = ¢, whence ag;bg;r; and a,r € N, b ¢ N gives (a,r) € kerg;, thus
aTiEr, so pTiMr. But this means that case (i) holds for p, r.

(b) pRiagibT{]X‘Hjir’ ré¢ N.
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Let e = EX(b) and ¢’ = e(i/j). Reasoning as above, we get EN(q) = e. Then
agib, a ¢ N, b € N gives bg(e)a, and s1rnllarly qg(e)r, so bT—q gives a = r, and
we conclude that case (iv) obtains for p,r. ®(1)

Now we are ready to prove that M has the desired properties. The proof of
M € pN At, is as in the previous claim, so we only give details for the (hardest)
statement “T/E N ZE"- Cldifi#j".

Suppose that pTi—q and p,q € EtT Then " & EM(p) = EM(4). Now one
of (i)...(iv) (in (1) above) holds for p,q. If it is (i) or (iv) then we are done.
Suppose that pf]“iﬁaggbR,-q. Let e = EM(a), ¢’ = EM(b). Then i is singular in
e but not in ¢’ and e”, thus ¢ —— €'. Since ¢ —— ¢’ is good in N, there is
an r € EM(e') such that pTiﬁr, that is, aTiﬁr, contradicting ag;b, b ¢ N. Thus
(ii) cannot hold for p, ¢. A similar argument shows that (iii) cannot hold either.
With this we have proved M € pN Al,.

Let (e, e',i) € H. If (e, ¢’,1) € G, then e)ie’ is good in M since it was good
in N and the construction preserves goodness. If (e,€’,) ¢ G then i is singular
in e, and then the construction shows that e)ie’ is good in M. Thus M € N At,
by Claim 3.1. The proof of the other properties are as in the previous claim.
m(Claim 3.3)

pNAt,. Let N & B x
X {e} foralle € Eqrel(a).

Now we begin the proof of Lemma 3.3. Let
Eqrel(«) and let h : B — N be such that h* B(e)
For all 7, j € « define

B e
cB

N def e s
Ej; = {(b,e) € N : (i,j) € e} and
TEE {(ha, hb) : (a,b) € TEYUId [ N,

NE (N T ED) i jea.

It is easy to check that b : B N € pN Atq, N isregular, [N| = |B|-|Eqrel(c)|
and N is a good extension of h* B. By repeated applications of Claim 3.2 and
then using Claim 3.3 we get an M € N At, with |[M| < 211l . |N| which is a
good extension of N. From this structure M we obviously obtain an A D B
with the desired properties via isomorphism. M(Lemma 3.3)

Let us return to the proof of “(I1) There is a 7-tree => {A € NCA, : |A| <
N(m)} £ 7 = 07. Recall that just before Lemma 3.2 we have constructed a

partial atomstructure B € pN At, from a given r-tree P. Let N(1) = e B,

where 7 and 3 are as in Lemmas 3.3 and 3.2, respectively. Let A € N At, be an

extension of B(P) given by Lemma 3.3. Then |A| < -fand C ' omA ETr=0
by Lemma 3.2. Clearly |C| < N(7). Thus {A € NCA, : |[A]< N(7)} 7 =0.
If « < w, then N(7) € w and in this case the function N is obviously computable.
m(Proposition 3.1)

Thus we have proved (i) and (ii) of Theorem 3.1 for o < w: (i) follows from
both Proposition 3.1(i) and Proposition 3.1(ii), since the existence of a 7-tree
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is easily seen to be decidable (if @ < w) and all equations can be (recursively)
transformed into an equivalent equation of the form 7 = 0; and Theorem 3.1(ii)
is an immediate corollary of Proposition 3.1(ii).

Next we turn to the proof of the decidability of EQNCA, for « > w. The
proof proceeds by reducing this case to that of « < w via Lemma 3.4 below.
Let ind(7) be the set of indices occurring in 7, i.e. ind(7) is the smallest y C «
such that 7 € Tmx (cyl,). Note that ind(7) is computable.

LEMMA 3.4 Letind(r) C 8 C «. Then
NCAET=0 NCAs=7=0.

Proof: We may suppose that « and § are ordinals. Suppose that A € NCA,,
AW 7 =0 Then RdgA [ 7 = 0 and RdzA € NCAp, thus (NCA, |~
T =0 = NCAg [t 7 = 0). Note that a is a parameter of the concept
of a 7-tree. Let us make this explicit and say that “P is a 7, a-tree” if P
satisfies the conditions in Definition 3.2(iii). Suppose that NCAg |£ 7 = 0.

Then there is a 7, 3-tree P by Proposition 3.1(i). Let P’ e {(w,0) € P :
(Vi,n)[tin occurs in w = i € ind(7)]}. It is not hard to see that then P'isa 7, 8-
tree, too. Let k € B\ ind(7) be arbitrary, e def {(i,5) € 28 : (z,d;j) € P'} and
let € be the equivalence relation (on «) generated by the relation eU{k} x (a\ 3).
Let

pr € pry {(w,ds;) : (4,7) € E¥(w), w € DomP’}

U{(w, —d;;) : (i,7) ¢ E¥(w),w € DomP’, 1i,j€ a}.
We show that P” is a 7, a-tree. Let D 4 DomP"” = DomP". 1t is not hard
to show by induction that E¢(w) = E¥(w) P B and tf,w = t{,w for all w € D,
i € B and n. (This is where we use that « and 8 are ordinals.) From this it
follows that condition (¢3) in Definition 3.2(iii) is satisfied. The only remaining
condition which is not trivially satisfied is

(w,—c;o) € P' = (VYn € a\ P)(t{,w,—0) € P".

Since k ¢ ind(r), for no I does ty; or t,; occur in w, whence (k,n) € E¢(w)
since (k,n) € . Thus {{,w = t§,w and (w,—c;0) € P’ = (w,—c;0) € P' =
(tsw,—0) € P = (thw,—0) € P = (tf,w,—0) € P” (since t{w = t{w =
tf,w). With this we have shown that P” is a 7, a-tree. From Proposition 3.1(i)
it follows that NC A, & 7 = 0. This completes the proof of (NCAp [ 7 =
0= NCAq 7 =0). m(Lemma 3.4)

Using Lemma 3.4 and Proposition 3.1 it is easy to construct an algorithm
deciding EQVCA4. (Note that the recursive function N(7), the existence of
which was proved in Proposition 3.1(ii), has « as a parameter, moreover in such
a way that the two-place function N(7, «) is still computable.) Now we turn to
the proof of Theorem 3.1(iii}.
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Proof of Theorem 3.1(iii): We may suppose 3 C « without loss of generality.

Define
i def g h ..
t;z = di; - iz, where ¢,j € «

(this may be conceived of as a kind of dual of siz = ¢;(d;; - 2)). Let

def
e = t§t?tY, and

q o 7(z - doy —di2) <z — 7(z - doy — di2) = z - do1 — di2.

We claim that FNC A4 | ¢ but NCA, = ¢q. Suppose that C € NCA,, C - q.
We show that C is infinite. This will prove FNCA, = q. We may suppose
that C C CmA for some A € NAt,. Then C [£ ¢ means that there is an

HC E'(% \ EIAZ, H € C such that 7€H C H. Since A € N At,, we have
A LA A A A
tos * Eoi \ Bz —— Bz \ B3
A LA A A A
t51 : Egs \ By —— Ef3 \ Egy, and

A A A A A
tho : B3\ Eg; —— Eg; \ ETs.

Let f & t'f‘b o t% o toiz. Then f : E’OA1 \ E‘lﬁé —— E{% \E‘lA2 Let G C E% \EIAQ,
G € C be arbitrary. Then t(l)gG = d% N clgG = tﬁ,*G, and similarly for the
other indices, so TG = f*G . Since f is a bijection, we have f*G C G =
f*f*G c f*G, thus TH C H implies H D 7H D 77H O ..., that is, H
generates infinitely many different elements in C. This proves FNCA, E q.
In order to show NCA, [£ q we present a specific C € NCA, and H € C

with 7€H < H but H < d% - dl% (see Fig. 2).

Let Z denote the set of integers, and let eqg e 2{0,1}U(a\ 2). Let E
denote those equivalence-relations over « in which exactly two different elements
are equivalent, i.e.

EY {e € Eqrel(e) : |e\ Id| = 2},

Jo Eqrel(a) \ (E U {1d4}),
AYEXZUE x {¥},
Ei; ¥ {(e,n) € A:(i,5) €€},

T; qef {{(e,n),(e,m)) € 2A: el (a\{i}) = e (a\{i}),[e # € and {e,e} C
El=n=m,[e=¢and i € Dom(e\1d)] = n=m}, if i # 1,

Ty = {{(e,n), (&, m)) € 2A 1 e P (a\{i}) = &P (a\{i}),[e # € and {e, &} C

E\{eo}] =@ n=m,[e=¢and 1 € Dom(e\Id)] =>n=me=e £ €€
E=n=m+le=e#e€ E=>m=n+1},
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Adéf (A;ﬂ; Eij)i,an-

It is easy to check that A € NAt,. Let H def {(e0,n) :n € Z,x > F}. Then it

is easy to see that H C Eé‘j\E’% and 7€H C H, where C ' cmA. #(Theorem
5)

REMARK 3.4 (i) It is not possible to omit the condition & < w from Theo-
rem 3.1(ii), since ENC Ay # EQFNCAq if @ > w: Let a > w, i,j €, i # j.
Then NCA, [E dij = 1, while FNCA, | d;j = 1 by the proof of [8] 1.3.12.
Moreover, in Lemma 3.4 the condition ind(7) C B cannot be omitted, since it
was shown in [18] that there is an equation distinguishing NCA, and NCAg
if 2 < B <w, B <a(that is, we have NCAz # HSPRdgNCA, in this case).
The same applies to the classes C A, see [8] 2.6.14(i).

In Theorem 3.1 we have seen that NC A, is not strongly decidable if o > 3.
We do not know whether the word-problem for NC A, is solvable for o > 3.
Below we show that for @« < 2, NCA, is strongly decidable. Furthermore,
ignoring the trivial cases, if & < w, then omitting any nontrivial axiom-scheme
beside C4 gives a strongly decidable variety. (Here C), Cs and Cg are called
trivial, because no variable-symbols occur in them.) For i < 8, let

NCA7 ¥ (A€ CTA.: (Vi €8\ {4,i))A [ CF}.
Below we will show that if 0 < 7 < 8, then
NCAZ" is strongly decidable <= i € {2,3,7}.

It is plausible that NCAZ" is also strongly decidable. Instead of detailed proofs,
we only give the constructions and the corresponding propositions, which can
be easily checked. (We should perhaps note that it is usually easier to check
C%, C§ and C¥’ then Cj.)

Let A€ CTA,, {dij :1,j€Ea} CXCY CA a<w,andlet Be CTA,
be such that B = Sgﬁl—’lY, BIB C BIA, and d% = df}i ifi, 7€ a.
(I) Suppose that Y = X U {s{z,slz : € X} and

c;B‘:c:H{yEB:mSy:ciA—y}, for all i € &« and z € B.

Then A € NCA;” = (B € NCA;7and A | X C B), and if a < 2, then
A€ NCA, = B € NCA,. This proves the strong decidability of NCA, for
a < 2, and that of NCA;” for @ < w.

(IT) Let At def AtB and suppose that Y = X (where AtB denotes the set of
atoms of B).

1. Suppose that ciﬁ:c =Y {aeAt:a< Cz-A:L’}, for all i € @ and = € B. Then
AENCA;?=> (BeNCAZ3and A| X C B).
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2. Suppose that BlA is a Boolean set algebra over U. Let At def At{y € B :

y= ciAy}. Let r : At/ — U be such that Ya € At)r(a) € A (a system of
representatives). Suppose that c?z =Y {a€ At' : r(a) € z} for all i € «,
z € B. Then A€ NCA;?2 = (B€ NCAZ?and A[ X C B).

The above cases prove the strong decidability of NCAZ for i € {2,3,7}.

Now let ¢ € {1,5,6}, and ¢’ def N C§ — ¢, where ¢ is the quasi-equation of

Theorem 3.1(iii). Then ¢’ is easily seen to be equivalent to a quasi-equation,
and (by Theorem 3.1(iii)) FNCAZ' |= ¢’ while NCAZ [~ ¢'. Thus NCAZ' is
not strongly decidable.
(ii) 7-trees were intentionaly called “trees”: the present method is essentially
the method of tree-proof widely used in logic for giving complete calculi (for
instance the so called sequence-calculi are based on it). Below we present some
simple examples in order to shed some light on the essence of the tree-proof
method used in the proof of Theorem 3.1. At the same time we will show why
the method in its present form cannot be used to decide EqCrs,,.

Let 7 = co(y—c12), and suppose we want to decide whether NCA, = 7 = 0.
Let A € NAt, and a € 7<[k] for some k : X — SbA, where C = CmA. Then

a has a 0-neighbour s (that is, aToAs) such that s € (y — c12)€[k]. Suppose
that EA(a) =1d | 3 (ie. a € —dg'l - do% — dl%). Then a may have four types
of O-neighbours in A: t5e = q, toila, tysa (these are the ones that must be
present), and an arbitrary number of 0-neighbours s with EA(s) = 1d | 3. This

is illustrated in the picture below:

A
taa € (101 —dgg — dy2

A
52@ € do2

n times

Thus we have four cases to examine. Suppose that b € (y — ¢;2)<[k], where b
is an “optional” neighbour of a, that is, E4(b) = Id | 3. Then b € k(y) and
b ¢ (c12)<[k]. The latter means that no l-neighbour of b is in k(z). Now b has
three different “obligatory” 1-neighbours: tf‘ab, tlilb =b and tlizb. Of these, t'lA-Ob
and tf,ila may coincide in principle but it will be useful to suppose that they do
not. In picture:
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co(y —c12)

—2z,—C12%,Y,y —C1Z

Sl
tlzb —Z

The picture “ended” with no “contradiction” (that is, there is no w such that
both w and —w are stipulated for some element). Thus our procedure gives
NCA3z [ 7 = 0. Executing the above procedure for 0 = co(y — c1y) in any
possible way gives a contradiction, in accordance with NC A3 |z o = 0.

Now we illustrate the above procedure (explained in terms of pictures) in a
real “tree-proof” form. We do not comment on this drawing since we hope it
speaks for itself.

a g co(y —c12), a € doy — doz — dy2

tooa €EJ—c1z toia€Ey—ci1z tppa€y—ciz lora € y—ciz

‘| .l lora €y, lora ¢ c12

.
N .

tora €y, tiotora ¢ z, tora & z, tiatora & z

We note that the 7-tree in Definition 3.2 corresponds to a “successful branch”
of this “real tree”, that is, it corresponds to a “proof”.

It is natural to ask whether the tree-method in the proof of Theorem 3.1 can
be used, with obvious modifications (using At{(V')’s instead of atomstructures),
to decide Crs,. For example we want to decide whether Crss |= co(y — ¢12):
Below we write abc for {a, b, ¢}, etc.
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o

———
abc € co (y —¢12), {a,b,c}| =3

bbe € 7, abc €@ chc€ o dbe T y—cz, |{a,b,c}|=3
! I l dbe € y, dbc¢ ez
dbc € y, dbcé¢:z

In the final step we made use of the fact that we are working in Crss, whence
the only “obligatory” 1-neighbour of dbc is itself. Indeed, let |{a,b,¢c,d}| = 4,
V = {abc,dbc}, k(y) = {dbc} and k(z) = 0. Then SbV ¥ 7 = 0[k], since
abe € T8V (k). So Crss = 7 = 0.

b 4,7 %
Q
d

This may seemn to be a good procedure, but as the following example shows,
it does not always terminate after a finite number of steps.

def def
Let o = y—d01 'C(J(d()l 'Cl(dIZ"y)) and T = —do1 -dlg—y—CO—-cld.

abb € 7, —do1, di2, -y, —cg—cio, ci0 b -
| a

adb T y, —do1, co(do1 - ci(diz—y)) d

ddb € ¢ (dlg - y) e —

dbb i -y, €0

deb E‘ y, —do1, co(dor-ci(diz—y))

.

It is easy to construct a Crsz-unit V in which this “backward search” goes on
indefinitely. For example, let V def U0, n}u3{n,n+1}u{{n,n+1,0)}: n e
w}. Then SbV [ 7 =0, but SbW = 7 = 0 for all finite W C V. This 7 cannot,
however, be used to distinguish Crs,’s with finite and infinite units: There is a
finite Crsq-unit W with SbW (£ 7 = 0, for example the one given below:

37



q W = {abb, aab, dbb, ddb, adb, dab}
d k(y) = {dab, adb}.

Indeed, the above method can be modified so as to yield this “solution”, by
trying as neighbours all the elements already occurring in the tree, instead of
always introducing new elements:

dbb € —y, cio

R

dabEa debe o

dab 4 y, —do1, co(dor-ci(diz —y))

aab € Cl((llz — y)

abb € —y

We do not know whether this tree-method is suitable for deciding the validity
of equations in Crs,. If it were, then Crs3 £ 7 = 0 would imply the existence
of a finite Crsy-unit V' with SbV = 7 = 0. But we do not even know whether
EqCrss = EqFCrss.

Thus we will use a different method for deciding® EqCrs,. (The new method
can, however, be conceived of as constructing the model from the infinite tree.
But then we have to be able to decide on the basis of a finite amount of informa-
tion, whether there will eventually be a contradiction.) We note that almost all
known decision-procedures are based on the construction of some finite model.
| |

Before turning to our second main theorem (decidability of EqCrs,), let us
prove a logical corollary of Theorem 3.1 (Corollary 3.1 below, cf. Theorem 1.1
in the Introduction). Roughly speaking, it says that it is the permutability
of quantifiers that gives first-order logic its power, and so permutability is an
essential feature of first order logic. More exactly: It is not hard to show that
replacing ((4)) with four of its particular cases, viz.

((4a)) VviV¥vjp — Vv;Vvp
((4b)) Vv — VvipVviep

((4¢)) Avip — Vv Ivip

31t is quite surprising that EqCrsa is decidable at all — just the opposite was expected in
light of other theorems on Crsq.
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((4d)) R(z) — Vv R(z) provided vg ¢ Rngz and R(Z) is an atomic formula,

leaves the proof-system (i.e. the set of formulas provable in) +, unchanged.
[((4a)) is a special case since it comes from Vv;Vvip — VviVv;Vvip by a
straightforward application of ((3a)), ((2)), and this is an instance of ((4)).] It
will be shown below that leaving ((4a)) out of b, yields a substantially weaker
proof-system.

COROLLARY 3.1 The proof-system obtained by replacing ((4)) with ((4b))
...((4d)) is substantially weaker than . Namely, the set of formulas derivable

from ((1))...((3)), ((4b))...((4d)), ((5))...((9)) by (MP) and (G) is decidable.

Proof: Let I denote the weakened proof-system (i.e. + is b, without ((4a))).
Let A = (a,t) be a first-order language, where ¢ : R —» w. Let =/ {(p,¥) €
2Fm? H o o ) and let F e Fm?/ ='. First we show that F is the
free NCA, dimension-restricted by ¢, that is, F = zg)NC'A(,, and then we
show that by “adjusting” the concept of a T-tree to {, we obtain a decision
procedure for the congruence Cr%)NCAa (as a set of pairs). In order to prove

F = _f_g)NCAa, we have to show that
(a) FE NCA,
b) In _.E(t)NCAa, 1)...((9 4a)) are in the same class as True
R

(see the proof of [8] 4.3.25 for details).

On the proof of (a): Ilere one has to repeat the proof of [8] 4.3.22 in a slightly
different setting (that is, we cannot use ((4)), and don’t have to prove C4). ((4))
is used four times in the proof of [8] 4.3.22 (not counting its uses in proving Cy).
For the first three uses (on p.158;3, in (e) on p.158, and in (h) on p.159 in Part
IT) one can substitute ((4b)), ((4c)) and ((4d)), respectively. As for the last one
on p.159;g, note that

C/\cn(d)\n : dn;n)

= C/\Cn(d)\u 'dn;t) by ((7)) (and ((1)))((5)))
= c,\(c,g(l)\,‘ 'c,cd,w) by (h),Cg

=1, by ((6)),(h)

where (h) is the statement from the proof of [8] 4.3.22.
On the proof of (b): This is proved (without using C4) in [8] 4.3.25 for ((1)),((2))
and ((8)). The other claims are direct consequences of axioms of NC A,.

Let 7 € Tmp(cyl,). We may suppose o < w. P is said to be a t, 7-tree if

(i) P is a 7-tree, and

(ii) for all R € R,i € a\tR,n € aUTm and w € Tm(ta), if {w,tipw} C
DomP, then [(w, R) € P « (tinw, R) € P].
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A slight modification of the proof of Theorem 3.1 shows that
(r,0) € Cr(é)NCAa & there is no ¢, 7-tree,

and this yields a decision procedure for Cr%)NCAa. Summing up, the de-

cision procedure for the proof-system F is the following: Let ¢ € Fm® and
let 7u(p) be the term in Tmg(cyl,) corresponding to ¢. Then [ ¢ &
there is a t, Tu(p)-tree], and the latter is decidable. W(Corollary 3.1)

4 Deciding the equational theory of cylindric-
relativized set algebras

We begin the investigation of the class Crsy and the model-theoretic significance
of the permutability of quantifiers. Let
WCA, ci_if {AE NCA;G A }: d;x - (‘lkj < dij = dj,‘ = de]','
ifi,j,k €a, k¢ {ij}}

That is, WC A is the class of those algebras from CT A, which satisfy a weak-
ened version of Cg and all CA, axioms except Cy and Cs. Then Crs, C WC A,
and WC A, is decidable but not strongly (this can be seen from the proof of
Theorem 3.1, since WCA, = ISCmpN At,). Crs, could be called the repre-
sentable part of WCA,. If o < 2, then ICrs, = WC A, by [8] 5.5.5 (thisis a
theorem of Henkin and Resek). By Theorem 4.1 below, for a > 3, ICrs, is ax-
lomatizable by identities, but not by finitely many ones (or not by finitely many
schemes when « > w), so ICrs, C WC A, since the latter is defined by finitely
many schemes. We do not define the concept of a scheme (or rather, a scheme
of equation) since we do not need it later. We note however, that the concept
of a scheme is a quite natural one, e.g. “c;d;; = 1ifi,j € &” is a scheme. For
« infinite, schemes are more important than the equations themselves, since in
this case, the similarity type being infinite, hardly anything can be defined by
finitely many equations, while usually one can define quite a lot of things by
finitely many schemes. The definition of a scheme can be found for example in
(8] 4.1.4; for more on this notion and its importance, see [2], [3].

We cite Theorem 4.1 below (without proof) as a source of motivation. The
proof of (1) and (iii) was published in [15], and that of (ii) and (iii) in [16]. All
these proofs are cited in the monograph [8], see 5.5.10, 5.5.12, 5.5.13 and 5.5.186.

THEOREM 4.1 Let « be an arbitrary set.
(i) ICrsqy Is a variety, i.e. it is axiomatizable with identities.

(i1) ICrsq Is not finitely axiomatizable.
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(iii) ICrs, Is not axiomatizable by finitely many schemes, but it is axiomati-
zable with countably many schemes.

Our main concern in this section is showing that EqCrs, is decidable for all
(decidable) a.

Before beginning the proof we define two subclasses of Crs,, since we are
going to prove the theorem for these classes, too.

DEFINITION 4.1 Let « be an arbitrary set.
Do & {A € Crsq: (Vs € 14)(Vi,j € a)s(ifs;) € 14},
G & {A € Crsy : (Vs € 14)%(Rngs) C 14},

Let X C Crsq. Then V is a K-unit if SbV € K. V is straightenable if V is a
D,-unit. |

Obviously G'sq € G4 C Dy C Crsy. The classes IGsqy, 1G4, ID, and ICrs,
are all varieties, and they are different if o > 2: It is well-known that IGs, is a
variety (see [8] 3.1.108); a modification of the proof of [9] 1.7.27 (p.114) shows
that IG, is a variety if « is finite. For infinite & we do not know whether G, is
a variety. ICrs, is a variety by Theorem 4.1. It follows that ID, is a variety,
too, since it is easy to see that Dy = {A € Crsq : A | ¢;d;; = 1 foralli,j €
a} = {A € Crsq : A E Cs} and thus Crsa NCAy = {A € Dy 1 A E Cy}.
We will see later that for o < w, EqD, is decidable, while Eq(Crsq, N CAq)
is known to be undecidable. Thus omitting C4 yields decidability again. We
note that G &€ C'Aq, that is, G4 & Cs. So the identity C4 distinguishes Gsq
and G4, while the identity Cs distinguishes D, and Crs,. (In the proof of
Theorem 4.3 we will give an equation distinguishing G4 and D,.) Let V be a
Go-unit. Then it is not hard to see that V = |J{*U; : i € I} for some family
of sets (U; : i € I). Since the definition of a Gs4-unit is the same but for one
additional constraint, viz. that the U;’s must be pairwise disjoint, the elements
of G will sometimes be called “non-disjoint Gs,’s”, and V will be called a “non-
disjoint Gse-unit”. Below we prove the decidability of EqG4, while EqGs, is
known to be undecidable. Thus the apparently innocent disjointness condition
in the definition of G's,-unit turns out to be essential. We note that G4 C Dy C
NCA,.

THEOREM 4.2 1. EqG4 and EqCrsy are decidable for all a < w
2. EqD, is decidable, provided « < w.

3. Let & < w and suppose that K C Crs, satisfies the following conditions:
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(a) The union of K-units is a K-unit, i.e. (YV € W)SbV € K =
SlUW) e K.

(b) The restriction of a K-unit is a K-unit, i.e. SbV € K = Sb(V N
*H) € K.

(c) The “base-isomorphic” image of a K-unit is a K-unit, i.e.
SbV € K and f :base(V) —» U = Sb{fos:seV}eK.

(d) Ae K = ShlA e K.
Then EqK is decidable.

Proof: We use some of the notations (like T, Subterm, ind) introduced in the
proof of Theorem 3.1. First we prove (iii).

Let @ < w and suppose that K C Crs, satisfies conditions (a)...(d) of the
theorem. It suffices to give a decision procedure for the set {r € Tm: K 7=
1}, since

KEbl=zo<—=KE-(6®0)=1,

where @ denotes Boolean symrmetric difference?. We may suppose that KX =
SK, for EqK = EqSK and if K satisfies conditions (a)...(d) then so does SK;
we may further assume o > 2, since o« < 1, K = SK and (a)...(d) imply

K = Crsy = Gsq, and Gs, is decidable for « < 1, see [8] §4.2.

DEFINITION 4.2 (i) Let E be a Crs,-unit. Then §(E) denotes the smallest
Dq-unit containing E. (There is such a Dg-unit since the intersection of D,-
units is a Dy-unit.)

(ii) Let 7 € Tm. Then (E, P) is said to be a 7, K-mosaic on U (or simply a
mosaic) if conditions 1, 2 below hold:

1. Fis a K-unit, and U = base(FE),
2. P : Subterm(7) — Sbé(E) such that
(a) P(dij) = DI = {s € E:s(i) = s(j)} if dij € Subterm(r),
(b) P(o-6) = P(e)NP()NE if o -6 € Subterm(7),
(¢) P(—0) = E\ P(0) if —¢ € Subterm(7),
(d) P(e)NE C P(c;o) = Cgé(E)]P(c,'o) if ¢;o € Subterm(7).

4In this proof it is not important, but convenient, that we use identities of the form
7 = 1. If we wanted to decide 7 = ¢ directly, then we would have to replace Subterm(r) by
Subterm(7) USubterm(o) in subsequent definitions, and write “(E,P) | 7 = 0 ¢ P(7)NE =
P(o)NE” instead of “(E,P)ET=1% P(T)NE =E".
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REMARK 4.1 (i) We show that a mosaic is nothing but a finite piece “cut
out” from an algebra-valuation pair. Let (E, P) be an algebra-valuation pair
satisfying the stronger condition (in items (i) and (ii) of this Remark we always
assume 6(E) = E for simplicity’s sake)

(d) P(cio) = Ci[E]P(J) if ¢jo € Subterm(7).

Then it is easy to see that P(c) = e22E[P | X] for all & € Subterm(r). Con-
versely, if A € K, and k : X — A, then (14, (¢4[k] : ¢ € Subterm(7))) is a
mosaic satisfying the stronger condition (d’). Thus there is a one to one corre-
spondence between mosaics satisfying the stronger condition (d’) and algebra-
valuation pairs. If (£, P) is a mosaic satisfying the stronger condition (d’) then
we say that (E, P) is a 7, K-algebra-valuation pair, briefly 7, K-Avp. Now let
(E,P) be a 7, K-Avp and let E' C E be arbitrary (Dy-unit). Then it is not
hard to see that

(E',(P(c)NE': 0 € Subterm(7))) is a 7, K-mosaic.

So far the situation is analogous to the one encountered when we were con-
sidering N Aty \ pN At,. But here the analogy breaks down since pN At is a
complete description of {A | W : A € NAt,} (that is, all pN At, can be ob-
tained from an N At, by “cutting out”), while there are mosaics which cannot
be obtained by “cutting out” from a 7, K-Avp, for example the mosaic (E, P)
shown below:

V\éx

& C(](d()l . Z‘)

O

Here « = 2, E = 22, 7 = ¢o(do1 - z) and P = {(x,O),(dm,Dglzl),(dm-
x,0),(r,{(0,1)})}. But there are mosaics where the “discrepancy” only comes
to light at a later stage, as in the following:

S/E CoC1CoCy Co(:L' - (‘.Q:I:)

Thus in the present proof not mosaics, but good sets of mosaics will play
a crucial role: it will be true for the notion of complete set of mosaics, to be
defined below, that every complete set of mosaics is the set of all “cut out”
mosaics coming from a 7, K-Avp. We note that the 7-tree in the previous proof
is also part of sorne algebra-valuation pair.
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(i) If (E, P) is a mosaic, then the only way P may fall short of being a “real
meaning-function” is to have the “shortcoming”

s € P(c;o) and (Vu)s(i/u) ¢ P(o).

These “defects” will be repaired step by step (by adjoining a new sequence s(i/u)
to E, which will required to be in P(0), cf. the definition of M-continuable be-
low). The advantage of mosaics over algebra-valuation pairs is their “smallness”:
while there are mosaics on U C a, there may be no algebra-valuation pairs on
any finite U.

(iii) In Remark 4.2 we will discuss the reason why should one “take into account
the valuation” on §(E), too (in the Crs, case). m

DEFINITION 4.3 Let (E,P) and (E’, P) be 7, K-mosaics on U and U’,
respectively.

(i) Let W C U. Then

(E,P) | W (En*W,(P(6) N *W : o € Subterm(r))).

(E’, P') is said to be an extension of (E, P) (or (E,P) < (E',P")), if
(E,P)=(E",P)|U.

(i1) Isomorphism of 7, K-mosaics is defined in the usual way: f is an iso-
morphism between (£, P) and (E’, P’) (or f : (E,P) —— (E', P)), if
f:U—»=>U,E ={fos:se€ E},and P = ({fos:s € P(o)} :
o € Subterm(7)). If M is a set of mosaics, then IM denotes the class of
mosaics isomorphic to elements of M.

DEFINITION 4.4 Let M be a set of mosaics and let (E, P) be a mosaic on
U.

(i) (E, P)is M-like if (Vs € E)(E,P) | H € IM, for some H D Rngs.

(i) (E, P)is M-continuableif for all i € «, c;o € Subterm(r) and s € P(c;a)N
E, there is an M-like extension (E’, P’) of (E, P), in which (Ju)s(i/u) €
P'(o)NE".

(iii) M is complete if all its elements are M-continuable.

(iv) M1 & (VM € M)M = 7, where (E, P) £ 7 &% p(r) D E.

(v) II(r, K) (or simply IT) denotes the set of those mosaics (E, P) for which
E C %a.
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Claim 4.1 K |7 =1<= [M |= 7 for all complete M C II(r, K)].
Claim 4.2 It is decidable whether “M |= 1 for all complete M C 11" holds.

Before giving the proofs of these claims, we collect the basic properties of
mosaics in a Lemma.

DEFINITION 4.5 (i) Let M = (E,P) and M’ = (E’, P') be mosaics on
U and U’, respectively. Then M and M’ are said to be compatible if
MIUNU)Y=M [ ({UNU").

(ii) Let M be a set of mosaics. Then [JM df (E, P), where E = U{E' :
(E',P") € M}, and P(os) = U{P'(¢s) : (E',P") € M} for all ¢ €
Subterm(r).

|

LEMMA 4.1 Let M be a set of mosaics and (E, P) a mosaic on U.

() Lee W CU, f: U —»—>» U, E e {fos:s€ E}and P’ = ({fos:
s € P(o)} : o € Subterm(r)). Then both (E',P') and (E,P) | W are
mosalcs, and both are M-like (M-continuable) provided (E, P) is M-like
(M- continuable).

(ii) Let P be a set of pairwise compatible mosaics. Then |JP is a mosaic, and
(E',P"Yy<JP for all (E', P') € P. Moreover, | JP is M-like provided all
elements of P are M-like.

(ii1) If M is complete, then [(E, P) is M-like = (E, P) is M-continuable].

Proof: It is routine to check (i). As for the proof of (il): Let |JP = (E, P).
Then E, being a union of K-units, is a K-unit, and §E = J{6E' : (E', P') € P},
since the union of Dy-units is a Dg-unit. Thus P : Subterm(r) — Sbhé(E).
To show that |JP is a mosaic, first we check condition (2d). Let ¢ € « and
¢jo € Subterm(r). Let s € P(o}) N E. Then there are M’ = (P',E') € P
and M" = (P",E") € P with s € P/(s) and s € E”. Now s € P'(0) gives
s € §E' and thus s € “base(E’) since base(E’) = base(6E'). M’ and M”
are compatible, so s € E’ follows from s € E”. Thus s € P'(¢) N E' C
P'(c;o) C P(cio). With this we have shown P(s) N E C P(c;o). It remains
to prove CE;&(E)]P(C,'O') C P(cio). Let s € C?(E)]P(c,-a). Then s € §E' for

some M’ = (E',P') € P, and z e s(i/u) € P"(cijo) for some u and M"” =

(E",P") € P. Let j € a\ {i} (recall that we have assumed « > 2), and let

w s(i/sj). Then w = z(i/z;), thus w € §E”, and so w € P"(c;0) since

z € P"”(cio). But then w € P'(c;0), since Rngw C Rngz N Rngs, and M" and
M’ are compatible. Thus s € P'(¢;o) C P(c;0) since s € §E’. We have thus
shown that | JP satisfies condition (2d). The other conditions in (2) are easier
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to check: P(dij) = U{P'(di;) : (E', P") € P} = U{DYY 1 : (&, P') € P} = DI,
Let s € P(c-6). Then (3(E', P') € P)s € P'(s-8) = P'(c)NP'(§)NE' C P(an’]
P(6)NE. Suppose that s € P(c)NP(6)NE. Then there are M’ = (E', P') € P,
M" = (E",P") € P and M" = (E" P") € P with s € P'(c), s € P"(6) and
s € E". Since M', M" and M"' are compatible, we have s € E', s € P'(5),
and thus s € P'(e) N P'(6)N E' C P'(0-8) C P(c-6). We have thus shown
P(0-6) = P(s)NP(§)NE. Now suppose that s € P(—c), say s € P"(—¢) C E"
for some M" = (E"”, P") € P. Let M' = (E', P') € P be arbitrary. If s € §(E’),
then s € P'(—0) since M" and M’ are compatible, so s ¢ P'(c). If s ¢ §(E"),
then clearly s ¢ P'(c). So s ¢ U{P'(¢) : (E',P') € P} = P(s). Suppose
that s € E'\ P(s). Then s € E' and s ¢ P'(0) for some (E’, P') € P, whence
s € E'\ P'(0) = P'(—0) = P(—0). That is, P(—=o) = E'\ P(s). With this we
have checked that P is a mosaic.

Let M’ = (£’, P') be arbitrary. We show that M’ < [JP. Let W = base(E’)
and o € Subterm(7). Then E' C EN*W and P'(c) C P(c)N*W as can be seen
from the definition. Let s € EN®“W. Then s € E" for some M" = (E", P") € P.
We have (s € E” = s € E'), since M’ and M" are compatible. So E' = EN*W.
The proof of P/(0) = P(c) N*W proceeds similarly: Let s € P(¢)N*W. Then
s € P"(o) for some M" = (E", P") € P, and then s € P'(¢), since M" and M’
are compatible. We have thus proved M’ < |JP.

Suppose that all elements of P are M-like, and let e € E. Then s € E’ for
some M’ = (E', P') € P. Then [JP | Rngs = M’ | Rngs € IM, since M’ is
M-like. This finishes the proof of (ii).

To prove (iii), suppose that M = (E,P) is M-like. Let i € «, c;o €
Subterm(7), s € P(c;o) N E, and W o Rngs. Then M [ W € IM, since
M is M-like, whence M [ W is M-continuable by (i), since M is complete.
Let M" = (E', P') be an M-like extension of M | W such that (Ju)s(i/u) €
P'(c;o) N E'. We can assume base(E) N base(E’) = W by (i). But then M
and M’ are compatible, and thus M” = M U M’ is a mosaic, and M < M".
Let M" = (E",P"). Then obviously (3u)s(i/u) € P"(c;c) N E"”. Moreover,
M’ is M-like, since both M and M’ are M-like. Thus M is M-continuable.
B(Lemnma 4.1)

REMARK 4.2 (i) The reason to require P(c;0) = Ci['s(E)]P(c,-a) in Defini-
tion 4.2(ii)(2d) instead of just P(c;0) = C’,[E]P(c,-ar) in the Crsy-case is that
in this way the “contradiction” will show up on the intersection of the mosaic-
s one attempts to match, cf. the proof of Lemma 4.1(ii). For example, let
a=2,17=cz E=1{(1,2)}, P={(=0),(cz,{(1,2)})}, E' = {(1,0)} and
P’ = {(z,0),(c1z,0)}, see the picture below.
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L€ 1z (E,P)
1 v

—¢ c1z (E', P
0

Then it takes computing to find out that (E, P) and (E’, P') cannot be

matched. The present definition requires P(c;z) = {(1,2),(1,1)} for (E, P) to
be a mosaic, and then clearly (1,1) € P(c1z), while (1,1) ¢ P'(c;z), so that P
and P’ differ with respect to the sequence (1,1).
(ii) The “key point” in the present proof is Lemmma 4.1(ii). It says that “con-
tinuability” is a local property, i.e. whether a sequence s can be “repaired” in
a mosaic M depends only on M | Rngs and nothing beyond it. (That is why a
model decomposes into a set of mosaics, or more exactly, that is why the model
can be restored from the set of mosaics derived from it.) =

Proof of Claim 4.2: It is easy to check that II is finite, and if (E, P) € I,
then E,6E, P and U are finite, too. Thus there are finitely many M C II. Since
P(7) D E is decidable for all (E, P) € II, it is enough to show that for a given
M C o it is decidable whether it is complete or not. For this we have to be
able to decide whether a given (E, P) € II is M-continuable. Let (E, P) be a
mosaic on U C «, and let i € a, c¢;o € Subterm(7), s € P(c;o0) N E. There are
only finitely many such choices of 7,0 and s. By Lemma 4.1(i), if (E, P) has
an M-like extension (E’, P’) with (Ju)s(i/u) € P'(¢) N E’, then it also has an
extension with U’ C U U {a}. Thus we can check all possible mosaics (E’, P’)
on U U {«} (since there is only a finite number of them) for the properties

(a) (Fu)s(i/u) € P'(c)NE’
(b) (E,P) < (£, P
(¢) (E', P') is M-like.

All these properties are decidable (since “everything is finite” in the mosaics
(E,P), (E’, P'")), whence M-continuability of (E, P) is decidable. m(Claim 4.2)

Proof of Claim 4.1: The idea here is that models can be replaced by complete
sets of mosaics: for all model-valuation pair A € K, k : X — A the set of
mosaics M(A, k) (which consists of “cut outs” of A4, k) is complete; and what
is even more important is that from all complete set of mosaics M one can put
together an algebra-valuation pair A, k such that M = M(A4, k).

(I)Proof of “K f 7 =1 = (AIM C o)[M is complete and M £ 7]7: Let

A€ K andlet k: X — A besuch that A £ 7= 1[k]. Let U e base(A), and

for all W C U let

AW) € (EW), P(W)),
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where det
E(W) = 140w,

and if o € Subterm(7), then

det [ oA[K)NeW if (Vi)(Vn)o # cin
P(W)o = { CEéE(W)](OA[k] new) if (An)e = .

Note that P(W)o N E(W) = oA[k] N °W for all o € Subterm(r). Let M %'

M(A k) et {A(Rngs) : s € E}. We show that M is a complete set of mosaics

and M £ 7. First let us show that M is a set of mosaics. Let W C U. We show
that A(W) is a 7, K-mosaic. It is easy to check that EF(W) is a K-unit (since
K satisfies conditions (b),(d)). Clearly, P(W) : Subterm(r) — SbéE(W) and
P(W) satisfies conditions (2a)...(2d) of Definition 4.2(ii) by the definition of
P(W). Thus A(W) is a 7, K-mosaic on W. Next we show that M is complete.
Let W C U. Then obviously A(W) < A(U) and A(U) is M-like. Moreover, if
1 € o, c;o € Subterm(7) and s € P(W)(c;o) N E(W) then (Ju € U)s(i/u) €
P(U)(e)NE(U). Thus A(W) is M-continuable, whence it is complete. Finally
we show that M £ 7. Since A & 7 = 1, we have 74[k] # 14. Let s € 14\ t4[k]
and W &' Rngs. Then s € E(W)\ P(W)(r), whence P(W)(r) 2 E(W) and so

M E 7. Let M’ T AIM. Then it is easy to check that M’ is complete and
M E T m(])

(IT)Proof of “M C Il is completeand M¥ET=>KE1r=1": Let MCII
be complete and suppose that M £ 7. Our plan is as follows: Let My € M be
such that Mo = 7. Now we construct a mosaic My < M = (E, P) step by step
starting from M, and using Lemma 4.1(iii1), which satisfies

P(o)NE = C',[E](P(o) N E) for all ¢;o € Subterm(r).

(Here one must make sure of “stepping on” every “defect” at least once.) If
A = SbE and k(z) = P(z) N E for all ¢ € X, then it is easy to see that
o2[k] = P(¢) N E for all ¢ € Subterm(7). Thus A & 7 = 1[k] since My < M.
Moreover, A € K since M is a 7, K-mosaic.

Although the full proof can be completely (and almost mechanically) recon-
structed from this plan, we sketch it for completeness’ sake. If M = (E, P) is a
mosaic then D(M) denotes the set of “defects” of M, i.e.

D(M) def {(s,i,0):5€ (P(cia)ﬂE)\CEE](P(a)ﬂE), i € a,¢;0 € Subterm(7)}.
It is easy to check that
(1) M =(E,P)<M' s€E and (s,i,0)¢& D(M)] = (s,i,0)¢& D(M").

Next we show that
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(2) Every M-like mosaic M can be extended to an M-like mosaic M’ such
that D(M)n D(M') = 0.

Indeed, let 8 %' |D(M)| and let f : B — D(M) be an enumeration of D(M).

Define the following sequence of mosaics by recursion: My LT M. Let vy < B

and assume that for all 7 <y, My is defined such that
(%) for all 6 < 5, Ms < M, and M, is M-like.

Let M, = |J{M, : n < v}. Then by Lemma 4.1(ii) M is an M-like mosaic and
so it is M-continuable by Lemma 4.1(iii). Thus there is an M-like extension
M,y of M} such that f, ¢ D(M,). It is not hard to show that M, satisfies (*).
Let M’ = |J{M, : v < B}. Then it is easy to show that M’ has the required
property. W(2)

Now we define an w-sequence of M-like mosaics: Let My € M be such
that My [£ 7. Assume that M, is already defined in such a way that it is
M-like and (Vm < n)M,, < M,. Then let M, be an M-like extension of

M, with D(M,) N D(M,4+1) = 0. (There is such an extension by (2)). Let

MY U{M, : n € w} = (E, P). Then obviously My < M and below we will

show
(%) CI[E](P(O') NE)= P(c;o)NE for all ¢;o € Subterm(r).

First we show P(c;0)NE C CEE](P(U)OE). This is equivalent with D(M) = 0.
Let s € E. Then (3n € w)s € E,,. Then, by the construction and (1), (s,%,0) ¢
D(Mp41), whence (s,i,0) ¢ D(M) by (1) and M,41 < M. This completes the
proof of D(M) = 0. It remains to show that C}E](P(U)QE) C P(c;0). But this
follows frorn M being a mosaic since condition (2d) gives P(6)NE C P(c;0) =

C?E]P(c,-cr). (1) m(Claim 4.1)

We note that in the above construction we could have striven for using up all
elements of M, and in this way we would have ended up with a model-valuation
pair A, k for which IM(A, k) = IM (disregarding some minor differences).

Theorem 4.2(iii) is an immediate conseqence of Claims 4.1,4.2. Since it is
easy to see that the classes Crss, Do and G satisfy conditions (a)...(d) of
Theorem 4.2(iii), so far we have shown the decidability of EqCrs,, EqD, and
EqGq for @ < w. It remains to show that EqCrs, and EqG, are decidable even
if a>w.

Just as in the previous proof, we treat the case of @ > w by reducing it to
the case of & < w (cf. Lemma 3.4 in the previous proof). At the same time we
will show that this kind of reduction does not work for D,. Let X be an infinite
set (of variable-symbols). Below we write Tm(cyl,) in place of Tmyx (cyl,).
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LEMMA 4.2 ® Let y C @, 2 < |y| <w and 7 € Tm(cyl,).
(i) Rd,ICrsq =ICrsy and Crsq E7=1<=Crs, 7= 1.
(i) HSPRA,G4 CIGy but Go ET7=1<= G, 7= 1ifind(r) C v.

(iii) HSPRdy Dy C IDy and for all n < |y| — 2 there is a o € Tm(cyl,) such
that Do E o =1%#= Dy |E o =1 and |y \ ind(o)| > n. Furthermore,
Do Fé=1#> G, 6§ =1 for some § € Tm(cyl,).

We note that the last statement of (iii) shows that the condition “ind(7) C "
cannot be omitted in (ii).

Proof: (I) Proof of Rd,Crs, C ICrs,, Rd,D, C ID,, Rd,G, C IG, and
Crsq C IRA,Crs,: Here we will only use the assumption v C a.

Let A€ Crsqa, V A gmdu ¥ base(A). We define the “reduct-function”
rd, as follows: If f € V, then

thy(f) E{(fi, ) i €9), where f/E £ [ (a\ %), and
rd, (X) def rb;kX ={tb,(f): feX}for X C V.
It is not hard to show by induction that
(*) rdy is an isomorphism between Rd SbV and Sbrd,V.

(The proof can be found in [9] 4.7.1.2 (p. 191) and in [8] 3.1.125. We note that
b, (f) is f [ ¥ “colored” by f’ to make rdy 1-1 and homomorphism w.r.t. ~.)
Since Rd, A C Rd,SbV (by A C SbV) and rd,V is a Crs,-unit, it follows from
(%) that Rd,Crsq C ICrs,. To prove the next two statements one has to show
that rd,V is a D, (resp. G,) unit if V is a D, (resp. G,) unit. These are easy
to check so we omit the details.

Now let A € Crs, be arbitrary. We show that A € IRd,Crs,. Let V ef 14,
u ¢ base(A), g < (u:i€a\y) and for all z € A, f(z) et {sUg:sez}. Tt
is easy to check that f: A»— Rd, SbfV is a homomorphism and f* A is closed
under the operations of SbfV. Thus A € IRd,Crs,. This also completes the
proof of ICrs, = Rd,ICrs,.
(IT)Proof of “Go4 7 =1<+<= Gy E 7 = 1if ind(r) C v”: The implication
Gy E17=1= G4 = 7 =1 holds for all 7 € Tm(cyl,) since

Gerr=1=Rd\Go tr=1=G, tr=1

by Rd G4 C IG,. It remains to prove Gy e 7 = 1 = G, 7 = 1 if
ind(7) C 4. It is enough to show G [ 7 = 0 = G, [ 7 = 0 for all 7 such that

®Item (i) was published in [15], Proposition 8(ii), and the proof is cited in the monograph
[8], see [8] 5.5.15.
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ind(7) C 4. Suppose that ind(7) “Hc vand G, £ 7=0,say A 7 =0[k]
forsome A € Gyand k: X — A. Let p € 74[k], U wf base(4), ¢ e pl(v\H)

and let r € (“\F)Rngq be arbitrary. (The existence of such r follows from

Y\H#0)Let VE {se HU :suq e 14} and W & U{*Rng(sUgq) : s € V}.

Then W is clearly a G4-unit. We show that
(%) V={sefU:surew}.

Indeed, let s € #U. First suppose that sUr € W. Then, by the definition of W,
Rng(sUr) C Rng(zUgq) for some z € V. Then 2Uq € 14 by the definition of V,
and Rng(sUq) C Rng(zUq). Then sUq € 14 since 14 is a G, -unit, and thus
s € V. Now suppose that s € V. Then sUr € W since Rng(suUr) C Rng(sUgq).
This completes the proof of (x).

Let C &f SbV and B ef SbW. Define

fdéf({seﬂU:quE(z}:aeA),and

gdéf({SEHU:sUrEb}:bEB).

Then f(14) = V by definition, and g(W) = V, moreover, Rngg = SbV by
(*). It is not hard to check that f : RdyA — C and g : RdyB — C are
homomorphisms (the proof can be found e.g. in 8] 3.1.117) and f(r4[k]) # 0.

Let &'(z) e fk(x) and let k"’ (z) € B be such that gk”(z) = k'(z) for all z € X.
Then 7E[k'] = f(r4{k]) = g(TE[k"]), so T2[k"] # 0. Since B € Gaq, this proves
Go 7 =0. m(Il)

(*) is a crucial part of the above proof. We give an example showing that (*)
(with the necessary modifications) fails for the classes Dy: Let H Cn € a = w,

pId [0, 14 = {pul(pl < j < n} and let r € (*\H)y, be arbitrary.
i

Then 14 is a D,-unit and p is the only repetition-free sequence in 14. Let

q e pl(n\H),V def {sefw:suUq e 14} and let W be the smallest Dy-unit

containing {sUr :s € V}. Then V # {s € Hw : sUr € W}. This is because
there is a repetition-free sequence z € #w with z 21d [ H and zUr e W (and
then z ¢ V): if r is not repetition-free then since all sequences zUr, z € 1 H
can be obtained from rU(Id [ H) using the “auxiliary storage places” provided
by the repetition (see the proof of (x * *) in (IV) below); if r is repetition-free
then because Rngr is infinite.
(II)Proofof Gy € HSPRd, Gy, Dy € HSPRd, D, and (35 € Tm(cyl,))[Da
6 = 1,G, = & = 1]: It suffices to prove the last statement since it im-
plies the previous ones: Let A € G, C D, be such that A |£ § = 1. Then
A ¢ HSPRd, D, D HSPRd, G, since Dy =6 = 1.

Suppose (for simplicity) that ¥y = n € w. Let 4% [T{—dij : i < j < n} and
let

i (x) Lo d- ci(d - ¢j(dij - ci(=dij - ¢ (2))))
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——————35 € a'd-ci(d-cje‘a_)

p

Figure 3.

for all i,7 € n. Let yo,%1,.--,Yn be n+ 1 different variable-symbols and let

Ti déf Yi ~H{—yj jEM+]) \ {l}}
for all i < n. Let

§4ef 601(™) -H{c,-é,-f(,-)(n) (i €n},

where f(7) it (mod n) if i € n. We show that G, = 6§ = 0 while
Do lE8=0ifn C a. First weshow Dy 6 =0. Let i,j € o, % # j, A € Crsa,
a € A and s € 14, Then the following is easy to check (see Figure 3):

() If s e 61%((1), then there is no u € base(A4) \ Rng(s [ n) with
{s(i/u), s/}, s(i/w) G/ w)} C 14,
def

Let A € Do and k : X — A. Let a; = ‘rf“[k] Then {a; : i < n} con-
sists of pairwise disjoint elements. Suppose that s € 8p1(an) - [[{cibisi(a;) :

ien}. Let k € a\n, u e s(k). Suppose that u ¢ Rng(s [ n). Then

5(0/w), s(1/u),s(0/u)(1/u) € 14 since A € Dy and this contradicts s € o1(an)
by (*). Then there is an i € n with u = s(é). If j € n\ {i}, then u # s;

since s | n is repetition-free by s € 801(an). Then there is a w such that

P s(i/w) € 8isi(a;) since s € ¢ibisi(a;). Now u # w since s = s(i/u) € ay,

s(i/w) € a; and a, Na; = 0. Then u ¢ Rng(z | n), contradicting z € &;y;(a:)
by (*) as before. With this we have shown D4 =6 = 0.
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Next we construct an A € G, with A6 =0. Forallienlet uy=n+1
and let

Vde

Era U (U {w}\ {i}) i € n}, AE SV,
s €14 [, an & {s},

a; € {s(i/u:)} if i € n and

k() € ag if i <

We prove A £ § = 0[k] by showing that s € §4[k]. It is easy to check that
T'.A[k] = q; for all i < n. So it is enough to show that

s € 6p1(an) and  s(i/u;) € bigi(a;) forall i€n.

Note that
(*%) (Vi € n)(Vz € 14){i,n;}  Rngz.

Clearly s € ap, - d and s(i/ui) € a; - d. Suppose that s € co(J~ cy(doy - co(—doz -
¢1a,))). Then there are v and w such that s € d, v # w and %}, € cian.
By (##) s0 € d gives v € {0,uo}, and s0}, € cja, = c¢;{s} gives w = 0. Thus
v = ug since w # v, but then s € 14 contradicts (*+). We have shown
s € bo1(an). The proof of z = s(i/u;) € é;;(a;) (where j = fi) is completely
analogous: Suppose that z € ¢;(d - ¢;(dij - ¢i(—d;ij - ¢;a;))). Then 2z} €d, v £ w
and 2, € cja; for some v,w. 2z € d gives v € {i,u;} and zJ, € cja; gives
w = u;. Then v = i and then 2%, € 14 contradicts (++). m(I1I)

Since IG, and ID, are varieties (see the remark after Definition 4.1), (III)
implies the first statements of Lemma 4.2(ii),(iii).

(IV)Proof of “Dy |= 0 = 0 and Dy £ o = 0 for some ¢ € Tm(cyl,)”: Let
7(z) e —do - ¢1(dot — co(—doy - c1(do1 - coz))). We show that
(% *) If A€ Do,a € A and s € 72(a) then s(0/51)(1/s0) ¢ 14 and s is

repetition-free.

First we show that s(i/s;)(j/si) € 12 for all ¢, j € «, provided s is not repetition-
free. Suppose that s(n) = s(k), n # k. If {i,7} = {n,k} then we are done.
Suppose first that n € {7, j}, say n = 7, and & ¢ {7, j}.

8 e

Let s' % s(j/si) and 8" e s'(i/st). Then s',s" € 14 since A € D, and

clearly s” = s(i/s;)(j/si). Now suppose that {,j} Nn{k,n} = 0.
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Let s' < s(k/sj), s ef s'(i/s5)(5/si) and z e s"(k/s!"). Then s',s",z € 14

(using the proof of the previous case) and z = s(i/s;)(j/s:). We have shown
that if a Dg-unit contains a sequence with repetitions then it also contains all
its transpositions.

So it is enough to show that s € 74({a) implies s(0/s1)(1/s0) ¢ 14 (since,
by the above, this implies that s must be repetition-free). Let s € —do; - a
and suppose that z = s(0/s;)(1/so) € 14. Then the picture below shows that

s ¢ 4(a).

€ doj - coa

[\
. \-——sea

NN € co(—dos - c1(dos - coa))
S/

With this we have proved (x * *).
In the remaining part of the proof we assume v “ hew for simplicity. Let
Yo...Yn—2 be n — 1 distinct variable symbols. Let

n Yy ifien—1,

def .
The1 = [{-vi:ien—-1} iy,

5% 7(y1) — coc1(—do1 - Y_{comi -c1(do1 - comi) s € n}) -y

We show that Dy =6 =0ifnCaand D, 6 =0. Let A€ Do, k: X — A
and suppose that s € 64[k]. Then s is repetition-free by (***) whence |Rngs| >
n. For all i € n let

ot T,-A[k] and

H; def {u € Rngs : s(1/u) € a;}.
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Then | J{H; : i € n} = Rngs and, since |[Rngs| > n, there is an ¢ € n such that
|H;] > 2. Let i € n and u,v € H;, u # v. Let k,! € n be such that k < { and
s(k) = u, s(l) = v.

s
v w7

A
b

K

Then s(0/u) € 14, and 2 ef s(0/u)(1/v) € 14 since | > 0; moreover, s €

coci(—do1 - {2}). We show that z € coa; - ¢1(dos - coa;), contradicting s € 64{k].
2(0/s0) = s(1/v) € a; since v € H; and so z € coa;. And z(1/u) € doy-coa; since
2(1/u)(0/s0) = s(1/u) € a; by u € H;. With this we have shown Dy = 6 =0 if
o >n.

Now we construct an A € Dy, and k : X — A such that A [~ 6 = 0[k]. Let

sE 1 T, VE (syuU(DEM i< i< n), A SBY and k(u) E {s(1/1)}

for all i € n — 1. We show that s € 64[k]. Let a; ef Tii[k] and H; & {u €
Rngs : s(1/u) € a;} if i € n. Then a; = {s(1/7)} and H; = {i} for alli € n. It
is easy to check that s € 7(a;) since a; = {s}. Also, since |H;| < 2, we have
s ¢ coci(—do1 - coa; - c1(do1 - coa;)) for all i € n. Thus s € 64[k]. W(Lemmad.2)

Clearly, Theorem 4.2(iil) and Lemma 4.2(i) (Lemma 4.2(ii)) give a decision-
algorithm for EqCrs, (EqG,) if @« = w. M(Theorem 4.2)

THEOREM 4.3 (i) EqGqs # EqDq ifa > 2.
(ii) EqDy # EqF Dy if a > w.

Proof: Let 7(z) € Tm(cyl;) be the term defined in (IV) of the proof of Lem-
ma 4.2. There we showed that if A € Dy, a € A and s € 74(a) then

(a) s(0/s1)(1/s0) ¢ 14 and
(b) s is repetition-free.

Now G4 | 7(z) = 0 follows from (a), and FD, E 7(z) = 0 if @ > w follows
from (b) (since if s € 14 is repetition-free and A € D, then d% # doij for all
0<i<j<a,sol|A]>w). Butitis easy to construct an A € Dy (for all a > 2)
with A [ 7(z) = 0, namely the one given in (IV) is such. ®(Theorem 4.3)

REMARK 4.3 (i) We suspect the following difference between Do and Gg:
Let o < w. If a new coordinate can be added to A € G, then arbitrary many
new coordinates can be added to it, that is, ISRdaGa+1 = ISRdqGayp for
arbitrary 8 > 1. (This is probably provable by the methods used in part (II)
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of the proof of Lemma 4.2.) By contrast, for all n € w there is an A € D,
such that n coordinates can, but n + 1 coordinates cannot be added to it, that
is, ISRda Da4n # ISRdaDaynti- (For example it can be shown that the a-
reduct of A € D, (y = a+n) constructed in part (IV) of the proof of Lemma 4.2
is not in ISRdaDCH.,H.] )

(ii) If @ < 2 then Crsy is strongly decidable since ICrs, = WCA, in this
case. It is quite plausible that using the methods of Remark 3.4 one can show
that G and D; are also strongly decidable. From now on let « > 3. We don’t
know whether Crs, is strongly decidable or not. We don’t even know whether
EqCrse = EqQFCrs, or whether the word problem for Crs, is solvable. (The
same problems are open for Dy and Gq, except for Theorem 4.3(ii).) We don’t
know whether EqD,, is decidable for &« > w. Richard Thompson gave a nice
finite scheme axiomatization for EqD, based on the present work.

One could call K-units satisfying conditions (a), (b) of Theorem4.2 “loosely
connected”. Below we define the “opposite” of this property, called the “patch-
work property”, and show that the equational theory of Crsy’s with units having
the patchwork property is no longer decidable.

DEFINITION 4.6 A Crsq-unit V is said to have the patchwork property (V
is a Py-unit) if
(Vs,z e V)(VH Co)[(s] H)Uz | («\ H)] € V.

Let P, et {A € Crsqy : 14 has the patchwork property }. ®

Experience suggests that it is the patchwork property the lack of which is
responsible for the behaviour of the classes Crsy, D4y and G4. Furthermore,
there is a close connection between this property and the axiom Cy. This is
what the next lemma is about.

LEMMA 4.3 (i) [SbV | C§ & SbV € PP,] if V is a Crsq-unit. But if
a > 3 then there is an A € Crs, with A | C§ and A ¢ HSPP,.

(i) HSPP, = SPP, =I{A4 € Crs, : 14 is a union of P,-units with disjoint
bases } and Eq(Pq) is not decidable (and is not finitely based) if a« > 3.

(i) SP(PaN Do) = SPCs, = RC A,

Proof: First we prove the first part of (i).
Let V be a Crs,-unit. For s € V let

zd(s) &f U{CE‘:] . .C£‘:]{s} ‘nEw,i€"tla},

and let Subu(V) et {zd(s) : s € V}®. Then it is not hard to show? that SbV
is isomorphic to a direct product of algebras in {SbW : W € Subu(V)}. Thus

5The set of subunits.
7Or one can use [8] 3.1.76
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it is enough to show that for all s € V, zd(s) has the patchwork property if

SbV = C§. Throughout this proof we write C; instead of CEV] foralli € a.
Suppose that SbV = C§. We show that

() A{ss(/w)} SV = [s(j/w) € V <= s(i/u)(j/w) € V].

Indeed, assume {s,s(i/u)} C V. If i = j then we are done. So suppose that i #
j- Iz def s(i/u)(j/w) € V then z € C;C;i{s} = C;C;{s}, hence s(j/w) € V. If
3(j/w) € V then s(i/u) € CiC;{s(j/w)} = C;Cifs(i/w)} so s(i/w)(j/w) € V.
u(+)

Let Z C W C V. Z is said to have the patchwork property in W if
(Vs,z€ Z)YVH Ca)[s HUz | (a\ H)] e W.
Z is good if
(Vi € a)(Vz € C;iZ)[{z} UZ has the patchwork property in C;Z].
Let s € V. Clearly, {s} is good. We claim that
(**) if Z CV is good, then so is C;Z for all i € a.
Let j € . We have to show that
(Vp € C;C;Z)({p} UCiZ has the patchwork property in  C;C; 7).
It suffices to show that
(Vp € C;CiZ)(Vq € CiZ)(VH Ca)[p| HUq | (e \ H)] € C;C; Z.
def

Let p € C;CiZ, ¢ € C;Z, HC aand G = a\ H. Then p = z(i/u)(j/w)
and ¢ = s(i/v) for some z,s € Z and u,v,w such that z(i/u) € V and then
2(j/w) € V by (%). Let ¢ o 2(i/u)(j/w) | HUs(i/v) | G and f e, [ HUs | G.
Then f € C;Z since Z is good, z € Z and s € C;Z. If {i,j} C G then
g=1=z[ HUs(i/v) | G € C;Z since Z is good. Similarly, if i € H and j € G then
g=z2(i/u) | HUs | G € C;Z since Z is good and z(i/u) € C;Z. Now suppose
that j € I and i € G. Then g = z(j/w) | HUs(i/v) | G = f(5/w)(i/v).
Moreover, f € V, f(j/w) = z(j/w) | HUs | G € V and f(i/v) = z | HUs(i/v) |
G € V since Z is good and so () gives f(j/w)(i/v) € V whence g € C;C;Z.
Finally, suppose that {¢,j} C H. Then similarly, f, f(i/u), f(j/w) € V since
z,2(ifu),z(j/w) € V, s € Z and Z is good, so () gives g = f(i/u)(j/w) € V
whence g € C;C;Z. M(xx)

Now we are ready to show that zd(s) has the patchwork property. Let
p,q¢ € zd(s) and H C a. Then p € C;,...C;,{s} and ¢ € C;j,...C;,{s} for
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some iy ...in,j1...jk € a and so p,g € Z & Ci,...Ci,Cj, ...Cj,{s}. Since

{s} is good, Z is good by () (and induction). Then [p | HUgq | («\ H)] €
C;, Z C zd(s). With this we have shown that SbV € PP, provided SbV | Cs.
The other direction is easily shown by checking that if V has the patchwork
property then SbV | C¥.

Proof of the remaining parts: V is said to be a Gpy-unit if it is the union of
P,-units with disjoint bases, that is, if there is a system (U; : j € J) of pairwise
disjoint sets such that V = (J{VN°U; : j € J} and V N*U; has the patchwork
property for all j € J. Let

Gpo e {A€Crsya : 14 is a Gpa-unit}.

Using (the easily provable) [8] 3.1.76 it is easy to show that SPP, = IGps. To
prove EqP, = IGp, we have to show HGps C IGps. The proof goes like that
of HCrso, C ICrs,, one only has to add that Rep(F,c)V is a Gpa-unit if V is
a Gpe-unit (this is not hard to check, for example analogously to the proof of
(8] 3.1.91).

Now we begin the proof of the undecidability of EqP,. Let 7 € Tm(cyly).
We define (recursively) a 7/ € Tm(cyls) such that

CssEr=0<= P, =™ =0.

Since EqCs3 is undecidable (see [8] 4.2.18), this will prove the undecidability

of EqPq. Let § et IM{cid;; : 7,5 € 3}. Define the function tr : Tm(cyly) —

Tm(cyly) as follows:
tr(y) 6. yifye X
tr(di;) 6 dyj if i, j €3
tr(o - 3) = tr(a) - ta(n) if 7,1 € Tm(cyly)
tr(—0) €' 6 — tr(0) if o € Tm(cyly)
tr(cioc) & 6 - c;te(e) if i € 3 and o € Tm(cyly).

We show that Csg 7= 0<= Py, 7/ =0. Let A€ Py, k: X — A and
s € tr(T)A[k]. Let ¢ L [ (@\3), V o {z:zUq€ 14} and W o {z:zUq€
62{k]}. Since A € P,, V = H x G x K for some sets H, G, K and one can check
that W = 3U where U = H NG N K. Then the following is not hard to show
(by induction on 7): for all z € V

zUq € te(r)Alk] & z € tr(r)2V (k') & 2 € 58U k"),
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where et
K(y) S {z€V:2zUq€k(y)}

and

K'(y) € {z €U : 2Uq € k()
for all y € X. Thus s € tr(7)A[k] = s | 3 € rS2°U[k”], that is, Cs3 j£ 7 = 0.
Conversely, it is easy to see that Cs3 C ISRd3Cs3 (see e.g. [8] 3.1.121) and
since C's3 |= 6 = 1, we have Cs3 |= 7 = tr(7) and thus Csz £ 7 = 0 = Cs3 £
tr(7) = 0 = Csq [E tr(1) = 0 = Py J£ tr(7) = 0 since Csq C P,. With this we
have shown that EqP, is undecidable.

A slight modificaton of the above proof immediately yields Eq(P, N Dy ) =
Eq(Csq) which in turn implies (iii). Since Po N Dy = {A € Py : A E cidy; =
1 forall 4,j € a} and Csq is not finitely based (or not axiomatizable by
finitely many schemes, see [8] 4.1.3, 4.1.7) it follows that P, is not finitely
based (or not axiomatizable by finitely many schemes). Since Crsq, N CA, is
axiomatizable by a finite scheme (by a result of Resek and Thompson) and
EqCsq is not (by a result of Monk), there is an A € Crsq N CA, such that
A ¢ HSPCs,. But then (iii) gives A ¢ SPP, = HSPP, while A E C,.
B(Lemma 4.3)

Now we are in a position to prove Theorem 1.2 (in the Introduction). Recall
Definition 1.1 from there.

DEFINITION 4.7 Let

P, def {{M,V) € M :V has the patchwork property and is straightenable }.

P e m
Fo &l (vAe P)AE ¢

p k m
We note that [= is again, like = and |, a generalization of |=.

k
COROLLARY 4.1 (i) {¢ € Fy :E ¢} Is decidable, that is, for every for-
mula it is decidable whether it is valid in generalized Kripke-models. Sim-

m p
ilarly, {¢ € ¥y :|= ¢} is decidable, but {y € Fy ;= ¢} = {p € Fy := ¢} is

undecidable.

(ii) {¢ € RF; :[= ¢} and {¢ € SRF, :}t —p} is decidable, that is, validi-
ty is decidable for relativized formulas and satisfiability is decidable for
ordinary relativized formulas.

We will prove Corollary4.1 after Remark4.4.

59



Figure 4.

REMARK 4.4 (i) The definition of K, is more general than that of the usual
Kripke-models in that we do not require the universes of members of K € K.

k
to be disjoint from each other. The following example shows that }£ 3z3yp —
Jy3ze. Let t contain a two-place relation symbol R. Let K = {M, N}, where
M =1{0,1,2}, N ={0,1,3}, RL = 0 and RX = {(1,3)}. Let = vo, y = Vi
and let £ € “M be such that k0 = 0, k1 = 2 and (Vi > 1)k(¢{) = 0. Then

k k
K | 3y3zR(y, z)[k] but K W 3z3yR(y, z)[k], see Fig. 4.
(i) Models with a prescribed set of valuations are not new to logic, viz. models
of many-sorted logic are such. There, valuations must map variables of sort s
to the model’s universe of sort s. By Corollary 4.1(i) the important thing in the
definition of first-order models is not that we allow all possible valuations but

that the set of valuations is straightenable and has the patchwork property.
P

(iii) (F¢,Pe, =) is the logic corresponding to the class of algebras P, N D, in
the sense of [5] or [8] §5.6. W

Proof of Corollary 4.1: First we suppose that F, contains only restricted
formulas. Later we will indicate the modifications needed to cover the case of
arbitrary formulas. Let ¢ € Fy, n = 1 + max{i :v; occursin ¢} and let

X def VYvo. . . Va1t A{3viR(vo ... va_1)

- R(vo...va_1) : RERi€n\t(R),R occursin ¢}.

Let ¢’ be the formula obtained from ¢ by replacing the atomic formulas R(vo ... vm)
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(where R € R) in ¢ by R(vo...v,_1). Let b : R — w be such that A(R) = n
f

for all R € R. Then ¢ e x — ¢’ € Fi and it is not hard to check that
k k p k
E ¢ < ¢. In fact, the same holds with |= and |= in place of = &.

Define the function 74 : F — Tmpg(cyl,) as in section 2. Let K € K,

E[K] < {k I n:ke Val(K)} and, for all ¢ € Fp, 9K < (k[ n: K ;i w[k]}.

Let k[K] : R — SbE[K] be such that k[K]R = (R(vo...vn_1))¥ for all
ReR.
It is not hard to check that

(#) K p <= SUEK] k= (@) = 1MK]]
and

(%) if E isaGy-unit and k: R — SbE, then
there is a K € Kp such that F = E[K] and k= k[K].

k k
From (*) and (*x) it follows that = ¢ ©F ¢ & G, E (@) = 1. The

m

P
proof of | ¢ & Crs, | ru(p) = 1, E ¢ & P, N D, E mu(

E ¢ & Cs, | (@) = 1 is similar. Now Corollary 4.1(i) for
restricted formulas follows from Theorem 4.2 and Lemma 4.3(ii1).
Suppose that Fy contains R(v;,...v;,_,) forall R € R and io,...,ip_1 €Ew
if t(R) = n, that is, we allow arbitrary formulas, not just restricted ones. Then,
similarly to [8] 4.3.6, one can show that for every ¢ € F, there is a restricted

= 1 and

?)
p k
E, E with

k P
¥ € Fy such that = ¢ — ¥ and | ¢ — ¢, which implies = ¢ < . Moreover,
¥ can be recursively computed from ¢ (namely, the recursively given ¢ in [8]

k P
4.3.6 will do). With this we have reduced the general case of |= and }= to the
m

restricted case. This reduction does not work for |=, so we have to return to the
proof of Theorem 4.2.

Let ¢ € F;. Subform(y) denotes the set of subformulas of ¢. Let n e
I+max{i:v; occursin ¢}. (E,P)issaid to be a p-mosaic if conditions (i),
(ii) below hold:

(i) Eis a Crsy-unit and P : Subform(p) — ShOE.

(i) (a) s € P(R(viy...vi,)) < z € P(R(vj,...vj,)) if s,z € E, 55y =
Zigy - 5Six = 2j, and R(vi, ... vy, ), R(vj,...vj,) € Subform(ep).

8E.g. assume R was originally binary, n = 4 and V is straightenable. Let
(a,b,c,d),(a,b,e, f) € V. If R(abed), then R(abbb) by (a,b,b,c),(a,b,b,b) € V and by x.
Similarly R{abbb) yields R(abef). Hence the new 4-ary version of R behaves as it was really
binary.
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P(vi=v;) = Dgf] if vi = v; € Subform(yp)

P(’l/) An) = P(¥)N P(n)N E if ¥ A n € Subform(y)
P(—~y) = E\ P(¢) if =9 € Subform(yp)

P($)n E C P@v;v) = PP p(3v;) if Iviy € Subform(yp).

(b)

Repeating the proof of Theorem 4.2 with this new notion of mosaic gives a

m
decision procedure for the set {¢ € Fy :} ¢}.
Now we begin the proof of (ii). Let p be an atomic formula. Define the
function rl(p) : Fy — F; by

rl(p)n def p A if 5 is an atomic formula

tl(p) (e A ¥) € tl(p)p ATl(p)¥,
t(p)(~9) E p A =rl(p)p,

ef
t(p)(3vie) E p A 3virl(p)e.

Let p be an atomic formula and let ¢ € F; be such that all variable symbols
occurring in ¢ occur in p. Suppose first that p = R(vg...vp_1) is restricted.

m
Then, using the above methods, it is not hard to show that £ —rl(p)p < ¥ —e,
thus satisfiability of rl(p)y is decidable.

Now suppose that p = R(v;,...v;,_,). Forall k < nlet f(v; ) = v; where
= min{m : v;,, = v;. }, and let ¢’ be the formula obtained from ¢ by replacing
each variable symbol z in ¢ by f(z). Let

RE (k1) €%n: f(vi,) = i}
and

Crs® € (A€ Crsq : (V(k,1) € R)A k= dpy = 1},
for all . Let M{ = def (M,V)€e M, :V isaCrsEunit}, and for all ¢ € F,

!
def m

E v L5 (v, V) € MO(M, V) E 9.

1

Then, just like before, it is not hard to show that {¢ € Fy :|= ¢} is decidable
and

l“’
e ~rl(p)p <= ¢’
So, satisfiability of rl(p)e is decidable. Since every 1) € SRF; is of the form
rl(p)p with the above conditions, with this we have shown that satisfiability

Is decidable for members of SRF;. Now let ¢ be relativized. Then ¢ is of
the form p — v, where 4» € RL(p). Thus to decide whether ¢ is valid it is
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enough to decide satisfiability of p A —%. It can be shown by induction that
E p A=y — r1l(p)—ip. Since rl(p)—y € SRFy, its satisfiability is decidable.
By the above we also proved that

(kx%)  E(p—v) if Ev.
m(Corollary 4.1)

REMARK 4.5 By [17], D, and Crs, have the super amalgamation property
(SUPAP). Hence by Maksimova [11], the corresponding logics have the strong
Craig Interpolation property (and therefore also Beth’s definability property).
We note that SUPAP implies strong amalgamation, i.e. SAP. In this connection
cf. also [12] and [22]. ICrs, is axiomatizable by a schema of equations using one
variable, cf. Monk [14], D, is axiomatizable by a finite schema of equations, cf.
Andréka-Thompson [6], and for @ < w, G, is axiomatizable by a finite set of
equations, [24]. By [4], these axiomatizability results provide the corresponding
logics with elegant, strongly complete Iilbert style proof calculi.

OPEN PROBLEMS 4.1 (i) Is Eq(SRICA,) decidable for a > 2?

(ii) Let NA, be defined as in [6]. Is Eq(NA,) decidable? (We note that
NA. C NCA,.)

Consequences for multi-modal logics, for combining modal logics and for other
kinds of algebras:

As in ITenkin-Monk-Tarski {8] Part I, Df, denotes the class of diagonal-free
CA.’s. RDf, denotes the class of representable Df,’s (this class was denoted as
Gsdf, in [8] Part IT). As in [8] Part II, RI denotes the operator of relativization,
e.g. RIDf, is the class of relativized Df,’s. Below we will use the cylindric
equations Cy — C7 recalled from Henkin-Monk-Tarski [8] at the end of section
2.5 way above.

COROLLARY 4.2 (i) The varieties SRIDf, and SRIRDf, have decidable
equational theories, i.e. Eq(RIDf,) and Eq(RIRDf,) are decidable.

(ii) The equations implied by Coy — C3 are decidable, i.e. EqMod(Co — C3) is
decidable.

(iii) SRIDf, = SRIRDf,.

Proof: RIDf, is denoted by Dry in [8] Part II. By Thm.5.1.32 of [8] Part II,
p.191, SRIDf, = Mod(Cy — C3) is a variety. A theorem of A. Simon (cf.
[20]Theorem.8 or equivalently Lambalgen-Simon [10]) says that SRIRDf, =
Mod(Cy — Cs). Therefore we have
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(*)  SRIRDf, = Mod(Cy — C3) = SRIDf,.

Claim 4.3 SRIRDf, = ISRd(Crsy), that is SRIRDf, coincides with the class
of subalgebras of diagonal-free (i.e. d;j-free) reducts of ICrs,’s.

This claim easily follows from the definitions.

By Thm.4.2 way above, Eq(Crs,) is decidable. Now, we show how to de-
cide Eq(SRIRDf,). Let e be an equation in the language of RIRDf,. Then
RIRDf, | € iff SRIRDS, | e iff Crs, = e, by Claim4.3 above. Therefore, to
decide whether e € Eq(RIRDf,), it is sufficient to decide whether e € Eq(Crs,)
and by Thm.4.2, the latter is decidable. By (%) above, the same method decides
Eq(RIDf,) as well as EqMod(Co — C3). This proves that all the equational
theories in question are decidable. ®(Corollary4.2)

Our algebraic Corollary4.2 above has some logical consequences. In partic-
ular, consider the propositional modal logic S5. Let a-dimensional S5 be the
propositional modal logic having a-many unary modalities {Q; : i < a} and
the usual axioms of S5 postulated for each ¢;. We also assume the usual rules,
modus ponens and generalization. There are no further axioms or rules.

COROLLARY 4.3 Let « be an arbitrary ordinal. Then «-dimensional S5 is
decidable.

Proof: The algebraic counterpart of a-dimensional S5 is SRIDf, (this should
be straightforward but cf. e.g. [4]). Then we are done by Corollary4.2.
m(Corollary4.3)

COROLLARY 4.4 «-dimensional Sb is strongly complete for the “set-theoretic”
frames obtainable from SRIRDf, or equivalently from the greatest elements of
Crsy ’s.

Proof: Immediate by Corollary4.2(iii), cf.[4]. ®(Corollary4.4)

COROLLARY 4.5 «-dimensional S5 has Craig’s Interpolation Property (in
its stronger form) and Beth’s Definability Property.

Proof: Again we use the fact that the algebraic counterpart of a-dimensional S5
is SRIRDf,. By [17], SRIRDf, has the strong amalgamation property (SAP)
and it also has what Maksimova calls super SAP (SUPAP). Cf. also [22], [12].
SAP and SUPAP imply Beth’s and Craig’s peoperties for the logic in question
as is explained e.g. in [4],{22],{12],[8] Part II. m(Corollary4.5)
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