ˇ
Comparing
theories: the dynamics of changing vocabulary. A case-study in relativity
theory. In:
Johan V. A. K. van Benthem on logical and informational dynamics. Editors: A.
Baltag and S. Smets., Springer Series Outstanding contributions to logic Vol 5,
Springer Verlag, 2014. pp.143-172. Andréka, H. and Németi, I.
ˇ
Faster than light motion does not imply
time travel. Classical and Quantum Gravity 31,9 (2014), 095005 (11pp).
Andréka, H., Madarász, J. X., Németi, I., Stannett, M. and Székely, G.
ˇ
Using Isabelle/HOL to verify first order
relativity theory. Journal of Automated Reasoning, 52,4 (2014), 361-378.
Stannett, M. and Németi, I.
ˇ
A note on
`Einstein's special relativity beyond the speed of light by James M. Hill and
Barry J. Cox'. Proc. R. Soc. A. (2013) 469: 20120672. Andréka, H. Madarász,
J. X. Németi, I. and Székely, G.
ˇ
A logic road from
special relativity to general relativity. Synthese 186,3(2012) 633-649.
Andréka, H. Madarász, J. X. Németi, I. and Székely, G.
ˇ
Decidability, undecidability, and Gödel incompleteness in
relativity theory. Parallel Processing Letters 22,3 (2012), 1240011 Andréka, H. Madarász, J. X. and Németi, I. Preprint
version
ˇ
Vienna Circle and
logical analysis of relativity theory. In: The Vienna Circle in Hungary
(Der Wiener Kreis in Ungarn). Eds: Máté, A., Rédei, M., Stadler, F.
Veröffentlichungen des Instituts Wiener Kreis, Band 16, Springer Verlag, 2011, pp.247-268. Andréka, H.
Madarász, J. X. Németi, I. Németi, P. and Székely, G.
ˇ On logical analysis of relativity theories. Hungarian Philosophical Review 54,4 (2010), 204-222. Andréka, H., Madarász, J. X., Németi, I. and Székely, G.
ˇ Visualizing ideas about Gödel-type rotating universes. In: Gödel-type Spacetimes: History and New Developments. Eds: M. Scherfner and M. Plaue. Kurt Gödel Society, Collegium Logicum X, 2010, 77-127. Németi, I. Madarász, J. X. Andréka, H. and Andai, A.
ˇ A twist in the geometry of rotating black holes: seeking the cause of acausality. General Relativity and Gravitation 40,9 (2008), 65-89. Andréka, H. Németi, I. and Wüthrich, C.
ˇ
Axiomatizing
relativistic dynamics without conservation postulates. Studia Logica 89,2 (2008),
163-186. Andréka, H. Madarász, J. X. Németi, I. and Székely, G.
ˇ
Logic of
spacetime and relativity. In: Handbook of Spatial Logics. Eds: Aiello, M.
Pratt-Hartmann, I., and van Benthem, J. Springer Verlag, 2007.
pp.607-711. Andréka, H. Madarász, J. X. and Németi, I.
ˇ
First-order
logic foundation of relativity theories. In: New Logics for the XXIst
Century II, Mathematical Problems from Applied Logics. International
Mathematical Series Vol 5, Springer, 2007. pp.217-252. Madarász, J.X., Németi,
I. and Székely, G.
ˇ
Twin paradox and the
logical foundation of relativity theory. Foundation of Physics 36,5 (2006),
681-714. Madarász, J.X., Németi, I. and Székely,
G.
ˇ
Logical
axiomatizations of space-time. Samples from the literature. In:
Non-Euclidean geometries. János Bolyai Memorial volume. (A. Prékopa
and E. Molnár eds)
Mathematics and Its Applications Vol 581, Springer 2006, pp.155-185. Andréka,
H., Madarász, J.X. and Németi, I.
ˇ
Logical
analysis of relativity theories. In:
First-order Logic Revisited (Hendricks et al. eds) Logic Verlag,
ˇ
Generalizing the
logic-approach to space-time towards general relativity: first steps. In:
First-order Logic Revisited (Hendricks et al. eds), Logos Verlag,
ˇ
Logical
Analysis of Special Relativity Theory. In: Essays dedicated to
ˇ
Introduction to
logical analysis of relativity theories. E-book, 2002. Andréka, H.,
Madarász, J.X. and Németi, I.
Course Notes, 2006. (In Hungarian at the time being.)
Work in relativistic computing