1. Ancient theorems

1.0.

Let X be a finite set of n elements and F be a
family of distinct subsets of X . Most of our book deals
with the following type of problems. What is the maximal
(minimal) size of the family F supposing that n is fixed
and F satisfies certain conditions? The simplest conditions
are that the members of F 1) do not contain another member
and 2) are non-disjoint. This order of "simplicity" more or
less coincidesuwith the historical order. Therefore it is the
most natural to start the pfesent monograph with these prob-
lems.

The notation [|X| is used for the size, that is, the
number of elements of the set X . The power set, that is, the
family of all subsets of X is denoted by 2% . A subset F
of 2X is called a family. Script upper case letters are used
for families. Families are considered to be sets, that is,
their members are distinct. The elements of the families are
called members and are denoted by upper case letters. (i)
stands for the family of all k -element subsets of X . The
underlying set of a family is denoted by X and has n

elements, unless it is stated differently. [xJ is used for

the integer part of x , while [x]| denotes the smallest in-

teger 2x .
1.1. Intersecting families

A family F is called intersecting if




(1.1) F1,F2€ F imply F1 ﬂFz#ﬂ .

Theorem 1.1 (Erd8s, Ko and Rado (1961))

{12) max |F|] = il

where the max is taken over all intersecting families F

Proof (Erd8s, Ko and Rado (1961)). F is intersecting

therefore at most one of the sets F and X-F can be a mem-
ber of it. Consequently, at most half of all the B subsets
can occur in F : |F| < 2%/2 = g1 . The family F={F: x€CFcX}
(x is a fixed'element of X ) provides equality in the theo-
rem. o
There are many more extremal families, that is, families

with equality in (1.2). Let e.g. X = X1+X2 be a partition

of X (+ denotes the disjoint union) where Ix1l=n1 is odd.
The family
(13) \F: IFNX, | 2 5 }

is obviously intersecting: there is no room for two disjoint

n.+1
; -element sets in an n1 —element one. On the other hand,

one of F and X-F always belongs to the above family because

n, -1 Ty =1
IFﬂX1I < ; and I(X—F)nx1| < ; lead to the contradiction
|X1I < n1-1 . Therefore (1.3) has 2n—1 members as it was
stated.

If n is odd we may choose n1=n . Then (1.3) consists

of all "big" sets of size 2n§1 . If n 1is even then we can
choose n,=n-1 . Then (1.3) gives the family ({F: IFIEE%l or

(IFI=n/2 and x¢F)} where x is a fixed element of X .




The number of extremal families is much larger. It is true
that one can start to build an intersecting family in any way,
it can be completed to be extremal:

Theorem 1.2 (Erd8s, Ko and Rado (1961)). Let F be an

intersecting family. There is another intersecting family G

such that

F<G and |G| =

Proof. It is sufficient to prove that IFI<2n_1 implies

that there\isezset GFF  such that Fu{c} is intersecting. In
this way we can enlarge F , step by step, until G is obtained.

The number of partitions A+ (X-A) is obviously 2n—1

As F is intersecting, A and X-A cannot both belong to it,
therefore the number of such partitions satisfying either A€F

or X-A € F is exactly |F| . Hence we have 277

-IFI>0 parti-
tions such that A¢F , X-A ¢ F

Suppose that A¢F , X-A ¢ F . We shall see that one of them
intersects all the members of F . Indeed, if there were
F1'F2 € F with F1ﬂA =@ , FZIW(X—A) = @ then F1I\F2 = f
which yields a contradiction. This means that one of A
and X-A can be added to F retaining the intersecting

property. a
1.2. Inclusion-free families

F is said to be inclusion-free if

(1.4) F.,F, € F, F17‘-F2 imply F, & F, .

These families are called antichains or Sperner families in

the literature. The first non-trivial statement of the theory




deals with such families.

Theorem_1.3. Sperner_theorem (Sperner (1928)).

(1.5) max |F| = ([%J)

where the max is taken over all inclusion-free families.

It is easy to see that there is a family F with equality

/ X ' X N
in (1.5). Take simply F==([EJ) or F==(r5]) . These families
2 2
are obviously inclusion-free and their size is ([EJ) . The
2

essential part of the proof of (1.5) is, therefore, to prove

the inequality.
(1.6) |F|_(2).
2]

We give 3 different proofs of this statement in this Section, a

A

fourth one in Exercise 1.10, and a fifth one in Chapter 7.
The first proof is not first in historical sense. It is
the shortest. If the reader really wants to enjoy its brevity

he should begin with the original proof of Sperner (third proof).

First_proof of the Sperner_ theorem (Lubell (1966), Permuta-

tion method). A complete chain in an n -element X is a family

C = {CO,C1,...,Cn} satisfying IC;1=1i (0<ign) and C, cC.c...c

0 1
CCn - It is obvious that there is a one-to-one correspondence
between the complete chains ana the permutations of the elements
of X . The total number of complete chains is therefore n! .
Let F be an inclusion-free family and let us count the
number of pairs (C,F) where C 1is a complete chain, Fe€C ,

FEF . To a fixed FEF there are |F|!(n-1F1l)! complete chains

C satisfying FeC . Consequently, the number of these pairs




is } IFII (n-IF|)! . On the other hand, for any fixed ¢C
FEF

there is at most one F€F with F€C (otherwise there is an
inclusion in F ). The number of such pairs (C,F) is there-

fore at most the number of complete chains. We obtained the in-

equality

(1.7) Y IFIl (n=IF1)! <nl .

Hence

(1.8) ! L_s19 .
~FEF (7))

(I;l) < ( 2 ) and (1.8) imply
|3]

Y

IFl - <1

(1z1)

and (1.6). o
Inequality (1.8) has got an independent and important role

in the theory. It has a long history. Yamamoto (1954) proved

it first using the ideas of Sperner's original proof (see

third proof). Bollobds (1964) proved a more general inequality

(see ) using an induction proof (see Exercise ) .

Lubell found the above ingenious argument. Meshalkin (1967)

proved another generalization (see Section ) using

Sperner's original argument. The literature quotes (1.8) as

LYM inequality. We suggest the name YBL inequality which can

be justified better.




Second _proof of_the Sperner theorem (Permutation method).

A cyclic permutation 7m of the elements of X={x1,...,xn} is
an ordering of the elements along a cycle (see Fig. 1.1). A

set AcX is called consecutive (along w) if its elements are

consecutive along m .

Lemma_1.4. An inclusion-free family A of consecutive

sets along a fixed permutafion has at most n members. If

A has n members then they are equally sized.

Proof. Suppose that F , F'CGA satisfy |[FI<IF'|l and

have the same (clockwise) first element in 1m . The obvious
consequence FcF' 1is a contradiction. Any x€X océurs as the
first element of a member of A at most once. Hence we have
[Alsn .

Suppose now that |A|l=n and its members are denoted by

F1""’Fn in this order alonq m . The first elements of F1

and F, are neighbouring. Since A is inclusion-free

IF1ISIF2I follows (see Fig. 1.2). We can deduce similarly




IFZISIF3IS... SIFnIS1F1I . Hence we obtain |F1I=...=IFnI as
desired. 0
Turning back to the proof of the Sperner theorem let F
be a given inclusion-free family and let us count the number
of pairs (wn,F) where = is a cyclic permutation, FEF and
F is consecutive along w . For any given F there are |F|!
(n-|F|)! cyclic permutations where the elements of F are
consecutive: we can independentlf permute the elements of F

and X-F , resp. The number of pairs is | |F|!(n=|FI|)! .
FEF

By Lemma 1.4 there are at most n appropriate sets F for
any fixed = . Therefore the number of above pairs is at most

n times the number of cyclic permutations. We obtained inequa-

lity (1.7) again:

(1.9) ) IFIt(n=IFI)! < n!
FEF
The proof can be completed as in the previous proof. 0

The reader has probably noticed that the second proof is
an over-complicated version of the first one. A chain in the
first proof is nothing else but a permutation. A set is a member
of such a chain iff its elements are consecutive at the begin-
ning of the permutation. A cyclic permutation in the second proof
is a class of n permutations from the first proof.

Why did we present both proofs? On the one hand we wanted
to show the simplest proof, on the other hand, the second one
offers an easy way to determine all the maximum sized inclusion-

free families:

Theorem 1.5 (Sperner (1928)) If F is a maximum sized in-

clusion-free family then either




[ x
F'[E }
L2
E
[ x }
i _[ o)
2
holds.

two sides of (1.6) can be equal only if the same holds for (1.9).
That is, only if there are exactly n members of F being con-
secutive in n*l. for any = , for any = . It follows by Lemma
1.4 that any two members F,F'E€F consecutive along the same

m are equally sized. However, it is easy to see that there is

a C for any two F,F'€F in which they are both consecutive:
list first the elements of F-F' , then the elements of FNF'

and F'-F and finish with X-F-F' . |FI=|F'| is verified. We
obtained that the members of a maximum sized inclusion-free family

have the same size, say k . However (i) =| 2 } holds only in

L2l J

the cases listed in the theorem. That is, for odd n there are

two extremal families, while for even n there is only one. ]
For the third proof we need a complicated notation and a

lemma. Let A c 2% . The shadow vo(A) of A 1is the family of

all sets obtained from the members of A by omitting one element:
(1.10) o(A) = {B :BCA, |BI=|Al-1 for some A€A}

Of course, A C () implies o(A) C ) I

Lemma_1.6 (Sperner (1928)). If A C (}) (1sksn) then

k

(1.11) |0‘(A)| = Akt

IA] .




Proof. Let us count the number of pairs (A,B) where

AEA ; KOB IBI=k=1 . Fixing an A€A there are exactly k

(k-=1) —-element subsets BCA . Therefore the number of the above

pairs is klA|l . On the other hand, fixing a set BE€g(A) it
can be a subset of at most n-k+1 =|X-B|l) sets A . Conse-
quently |o(A)| (n-k+1) is an upper estimate of the number of

pairs. Hence k|A|<|o(A)|(n-k+1) which is equivalent to (1.11).
(]
We need this lemma because the method of the third proof
is based on a transformation which replaces the largest (say
k -element) members of F by some (k-1) -element ones. There-
fore we have to know something about the number of the new

members.

Third_proof_ of_the_ Sperner_theorem. (Sperner (1928), Trans-

formation method, Compressing method). Outline of the proof.

Suppose that F satisfies the assumptions of the theorem. Con-
sider the members of F with the maximum size k . This sub-
family has, by Lemma 1.6, a large shadow among the (k-1) -element
subsets. More precisely the size of the shadow is at least the
size of the subfamily of the k -element members. It is obvious
that the members of the shadow are not in F . Let us replace this
subfamily by its shadow. It is easy to see that the new family

F' 1is inclusion-free. Iterating these steps we arrive to the

5 .
L3, - Then take the family

position when the largest sizes are
of the complement sets of the members of F and repeat the
procedure. The number of the members of F is not decreased at

any step. Therefore the size of the original family F is at




most the size of the last family ﬁ
L2
Formal proof. Suppose that F 1is extremal and let k de-

note the size of the largest members in F : k=max{|Al:AEF} .

We introduce the notation

i _ X
Fm-=Fn (i) .

Take the family F' = (F-Fk)LJo(Fk) where the union is obviously
disjoint. Choose any two members F, and F, of F' . We have
to show that F, ¢Fé . This is clear if they are both in

F-—Fk or in c__(Fk) , resp. If F.I EF-Fk = F2EG(Fk) and

F, CF, were tr‘eré then F,CF,; would hold for some F;€ FkC -
implying the contradiction F,CF; , F1,F3€5F +« Finally, 1t
F,€o(FX) F,eF-F° then IFI=k-1 and IF,l<k-1 so FCF,

is impossible. Consequently F is an inclusion-free family.

If k> 2! then k > n-k+1 therefore (1.11) gives

2
_k__
n-k+1
follows contradicting the maximality of |FIl . This proves

k < F%1 for any extremal inclusion-free family.

lo (F%) | & 1E% 151551 . Hence IF'I=1FI-1FF1+1a(F5) 1> IFI

The complementary family

F€ = {F : X-FEF}

is obviously inclusion-free, again. It is also extremal, there-

fore

n - min |F|= max |F| < Fgﬂ
reF Fef€
and hence
; Mn n
> - — = e
minl|F| =2 n 5 L7

FeF

hold. Combining our results, we obtain that the members F of




an extremal F satisfy

(1.12) L%J < IFl < f%] )

If n is even, this proves (1.6) and the theorem. If n

is odd then F can contain members of two different sizes,

( n+1 n+1
E%l and E%l . The family F' = (F—F 2 )lJo[F 2 J is inclusion-
free, again. Its size is
n+1 n+1
[F'| = |F| - F2|+ G{Fz”g
n+1 n+1 n+1
2|'F|—}F2 b F 2 | = 5
n-——+1 |
2
(
by (1.11). On the other hand F' c n§1J . We obtained
2
IFlle'lg[nE1J as desired. o
2

Although the names of the method given at the beginning of
the proof are self-evident, we add some remarks. The name
"Transformation method" denotes a method in which a certain
transformation is applied for the considered family which does
not decrease the size of the family and retains its properties.
Usually we apply such a transformation many times. At the end,
the family has some useful additional properties (here
c [ - ] ). Instead of applying'the transformation many times we

13]
often suppose that the family is extremal. We show that if it
does not have the desired property then a single application
of the transformation enlarges the family contradicting its maxi-
mality. This latter way is formally shorter. The present special

transformation is called "compressing".




1.3. Applications

A) Minimal kgzg in date bases. We describe the data base

with the following model. Let B be a matrix. A row of B
contains the data of a fixed object. A column of B contains
the data of the same type (attribute) for all objects. So if
we have m objects and n types of data (attributes, proper-
ties) then B is an mxn matrix. Let X denote the set of
columns.

A set F of columns is called a key if the entries in
these columns determine the entries of all other columns uniquely.
More preciseiy-if there are no two rows equal in the columns
belonging to F but different in some other column then F
is a key. It is obvious that if F is a key and FcF' then
F' 1is also a key. Therefore it is sufficient to consider the

ninimal keys: K is a minimal key if K is a key but no proper

subset of it is a key. Let us denote the family of minimal keys
by K . By definition K is inclusion-free. Theorem 1.3 yields
(Demetrovics ( ))
(1.13) K| < {;‘J
5]

It is proved in the above paper that one can find data bases
with equality in (1.13).

The situation described for data bases is typical in many

applications. A family F is given having the following proper-

ty:

F, =F, EF=»F, € F




_13_

In such families the most important members are the minimal
ones. They form an inclusion-free family'therefore the Sperner
theorem can be applied for their mumber.

B) Littlewood-Offord problem for the number of certain

sums. Let Aqreeesa be real numbers satisfying the condition

lail 21 for all i . Let I be an open interval of length

1 and let f(a1,...,an,I) denote the number of different
sums }a, (Ac{1,2,...,n} ) 1lying in I . f(a,,...,a_)
iea * . L 7

denotes max f(a1}.L.,a + I) over all open intervals of length

n
1 . Finally,

f(n) = max f(a1,...,an)

over all a 's satisfying the above conditions.

Theorem_1.7 (Erd&s (1945))

——
2]
Proof, Ellpswiys ([%Jv%, [%J+%)) = { n ] is obvious and

n
2

this implies £(n) > [ o ] 5

To prove the other direction let us verify

(1.14) f(a1,a2,...,an) = f(—a1,a2,...,an) i
The sums of a,,...,a  are of the form a,+ ) a; or
Leh~{1}

Z a, where Ac{1,...,n} contains or does not contain 1,
i€Aa
resp. We associate the sums ) a, and -a,+ } a, with
iea-{1} i€ea

the above sums in this order. It is easy to see that the latter

ones are all the possible sums of —a1,a2,...,an . The difference




between the corresponding sums is a that is, the set of

1 r

the latter sums can be obtained by shifting by —a, the set

of the first type. This proves (1.14).

With repeated application of (1.14) we arrive to the
situation where all a 's are non-negative. Suppose that this
is the case, let I be an interval of length 1 and denote

by F the family of sets Ac{1,...,n} satisfying ) a, €I .
icA

If AgB, ABEF then the difference | a, - ] a, =
; |
i€B

= ) a; 2 IB-A|l 2 1 . Both sums cannot be in I . This proves

i€B-A e
that F is inclusion free. The Sperner theorem yields

_ (8
f(a1,...,a I) = |F|] £ lL%JJ . Hence we have f(a1,...,an) <

nl

< [ 2 } for any choice of a 's and this implies the statement
12]

of the theorem. o

C) Let f(x1,...,xn) be a Boolean function of n vari-

ables, that is, both the variables and the function takes on
the values 0 and 1 . The function is called monotonic if
X; £y, for all i , (1<£ign) imply f(x1,...,xn) £ f(y1,.",gn).

A set of switches arranged like in Fig. 1.3 is called a

8 -network.

Fig. 1.3




The switches labelled with the same variable are mechanically
connected. If x;=0 then all switches labelled with x; are
open and all switches labelled with §i are closed. If xi=1
then their positions are opposite. Any given 6 -network defines
a Boolean function: _f(x1,...,xn) = 1 1iff the points a and
b are electrically connected at the positions XqreoerXy of

the switches. We also say that the 6 -network represents the

function f(x1,...,xn) .
Any f can be represented by a 6 -network: take a branch

for any system of values x S€qreeey X =Eh satisfying

1
f(e1,...,en) = 1 , @ branch contains n switches, the i th
one is labelled with x; if ;=1 and with X, if ¢,=0 .
Let a(f) denote the minimum number of branches of a 6 -net-
work representing f . Similarly, g (f) denotes the minimum

number of switches.

Theorem 1.8.

(1.15) a(f) < | “] '
o
2
M1 n )
(1.16) g(e) <2 [,_EU ,
2

hold for any monotonic Boolean function f of n variables.

Proof. Let f(x1,...,xn) ‘be a monotonic Boolean function
and fix a representation of it by a 6 -network R . Suppose
that there is a switch labelled with §i for some 1<i<n .
Omit this switch and connect its endpoints. It is easy to see that
the new 6 -network R' also represents f(x1,...,xn) . Re-
peated application of this operation shows that f(x1,...,xn)

has always a minimum representation (in sense of o or g )




- 4G =

containing no switch labelled with x .

A branch can be described with a set F of variables
(F<:{x1,...,xn}) . A minimum representation cannot contain two
branches with F1CZF2 because otherwise F2 could be omitted.
In this way the branches define an inclusion-free family F ,

where |F| 1is the number of branches. Hence, applying the Sper-

ner theorem, we obtain
a(f) < |F| <

proving (1.15).

The number of switches is [ |F| . To prove (1.16) it is

enough to show

i - < 1.
r%j[rgj]
2
Since
¢ alle & n-1 n-1 _ M n }
i(30) = n(;_4) = n[ n-1 ] = 2 [FnTJ
LR 2

is obviously true, the inequality

IF|
FEF .
" = FgF | |IFrll ) éF l =
5 rmn F IFI] = [IFI
2
follows from (1.8). O

For the analogous problems for non-monotonic functions see

Tarjan (1974).
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D) Search with subsets. Let XO be an unknown element of

X (IXI=n) . The aim is to find x but we are allowed to use

0’
only some special kind of information. A family FC2X is given
and we may ask if xo€F or not for any FEF . x, should be

uniquely determined by the answers to these queries. It is clear
that this can be done iff for any X,YEX , x#y there is a mem-
ber F of the family satisfying either =x€F and Y¥F or x¢F

and y€F . Such a family is called separating.

Theorem_1.9 (folklore).

min |F| = rlog ﬁj

for separating families F .

Proof. The incidence matrix M of a family F=={F],...,Fm}

is an mxn 0,1 matrix in which the j th entry of the i th

T denote the matrix obtained from

row is 1 iff ijFi . Let M
M by changing the role of the rows and columns. The family whose

incidence matrix is MT is called the dual of F and is denoted
T

by 3
F is separating iff for any two columns there is a row con-
taining different entries in these columns. More simply, F is

separating iff its columns are distinct. This can be formulated

in the way that FT consists of distinct members. Hence n<2™
=

follows and this implies m 2> log n_1 » It is easy to construct

the incidence matrix of an extremal F . S

A family F is called strongly separating iff for any x,y€X

x#y there is a member F ‘satisfying x€F , y¥¢I" , Dickson (1969)
proved that a minimum strongly separating family has approximately
1og2 n members. Later Spencer found the real way of solving the

problem; he reduced it to the Sperner theorem:

’
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Theorem_1.10 (Spencer ( )). The minimum cardinality |F|

of a strongly separating family in an n -element set is equal

to the smallest integer m satisfying

m
(1.17) n < | m l
L2
Proof. It is easy to see that F 1is strongly separating iff

T . . .
F is 1nclu51on—fr%3;:>

CTheorem 1.5 implies (1.17) if m denotes the number of

members of |F| , that is the size of the underlying set of Pt

On the other hand, if m and n are integers satisfying

(1.17) then it is easy to construct an inclusion-free family FT
T

on m elements with IFT|=n g (FT) = F will be a strongly

separating family on n elements and of size m . O

Exercises

1.1. Let AC(3) , IXl=n and suppose that if B€g(A) then it
is contained in precisely n-k+1 different members of A .
Prove that either A=@ or A=(§) .

1.2. Prove that equality in (1.11) implies either A=@ or
A=) .

1.3. Prove Theorem 1.5 by the third proof of the Sperner theorem

using Exercise 1.2.

1.4. Determine min|o(A)| where ACI(§) , IXl=n and |A|l is
given.
1.5. Make a guess on min|o(A)| where ACZ(i) , IXl=n , k<a ,

IAI=(i) are fixed integers.

1.6. Prove that the YBL-inequality ((1.8)) may hold with equality

iff F=(§) for some 0<k<n .




1.7.%

1.8.%

1.9.

1.10.

- 19 -

(Erd®s, Ko and Rado (1961)) Prove that there is only one
extremal family in Theorem 1.1 under the additional con-
dition F,NF,NF, # § (F,,F,,F3 € F) .

(Bollobas ( )) Prove the YBL -inequality ((1.8)) by in-
duction on n .

Determine max|F| for inclusion-free families satisfying
IFI<k (FEF) , where k:;% is a fixed integer.

Let S be a set of sequences of length n formed from

the symbols ) and ( . Suppose that S has the fol-

lowing property: if a€S and some of the symbols ) in a

are reéiaced by ( then the so obtained sequence b

cannot be in S . In any sequence, form pairs of the

neighbouring brackets being in the right directions: () .

Then repeat this step not considering the .brackets already

paired, e.qg.: (£ %) . And so on ... . Prove that 1) the

set of unpaired brackets form a sequence of symbols ) fol-

n
lowed by a sequence of symbols ( ; 2) IS| £ [ n J .
L2




= OE s

Hints to the exercises

1.1. Let A€A and Bfé(i) . Prove by induction on |A-B|
that BEA
1.2. Use the argument of the proof of Lemma 1.6 and Exercise

1.1.

1.3. 1f k> 21 then |o(F%)| >F* by (1.11). This is
sufficient for the case if n is even. If n is odd then
Exercise 1.2 should be used at k = E%l .

1.4. If |A|;z(g) for some integer a (2<a<n) then we
need at least a vertices. So |A| = (;) implies |o(A)]| =a
and (g) < IAL\S (a;1) implies |[o(A)| = a+1 . The constructions
are (%) with fA|=a and its completion with |A|—(;) two-
element sets containing a new (a+1)-st element.

1.5. See Theorem ...

1.6. See the proof of Theorem 1.5.

1.7. (Pbsa ...) Take a smallest member (€F) of cardinality
£ . An  (£-1) -element subset of it is not in F therefore its
compiement €F . We found two sets with a one-element intersection.

1.8. The subfamily of the sets FE€F not containing a fixed
X€X 1is inclusion-free. Write the YBL-inequality for n-1 elements

and for these subfamilies with each x . Sum up these inequalities

and take into account that FeF occurs in n-|F| inequalities.
1.9. (E) - Use the YBL -inequality.

1.10. Change the subsequence of unpaired brackets so that it

M7
contains L%J symbols ) followed by % symbols ( .




2. Intersecting families and shadows

2.1. Intersecting families of equally sized subsets

Theorem 1.1 answered the first question concerning inter-
secting families. This question was rather easy to answer.
However it becomes considerably harder if we consider k -ele-
ment subsets only:

Theorem 2.1 (Erd8s, Ko and Rado (1961)). Let k

(1<k <n/2) be a fixed integer. Then

n_1)

(2.1) max|F| = (k—1

over all intersécting families F<:(§) .

If k>n/2 then (2.1) is not true. The problem becomes

(i) meet, there-

If ks<n/2 , it is easy to construct a family

trivial in this case: any two members of

n
k) -

giving equality in the theorem. Fix an element x€X and take

fore max|F| = (

all the k -element subsets of X containing x . This family

is intersecting and its size is (EZ}) » indeed. We have to prove
only that

< B
(2.2) |F| < (k1)

holds for any intersecting family of k -element sets. We give
two proofs. The first one is much shorter, the second one is the
historically first proof and is very illuminating: its ideas

will be used several times.

First proof of the Erd8s-Ko-Rado theorem. (Katona (1972),

Permutation method.)

Outline of the proof. We use the ideas of the second proof

of the Sperner theorem. A cyclic permutation of X will be




considered and we first solve the analogous problem for inter-

secting families of consecutive sets (Lemma 2.2). We will see

that their maximum size is k , that is, the proportion of

the intersecting family in the whole family of consecutive

sets is <k/n . Then we derive by a counting argument

K e h=l
LEl2 -ﬁ(k) = (k—‘l) 2

Formal proof

Lemma 2.2. If A 1is an intersecting family of k -element
(1£k <£n/2)

consecutive subsets along a cyclic permutation m

then

|A] < k

Proof. Take an arbitrary member A of A Suppose that

the elements of A are labelled in the following way:

A=={x1,...,xk} (see Fig. 2.1).

Fig. 2.1.

Any further member of A has its starting point or endpoint

in A . Any point of A «can serve at most once as a starting

point and once as an endpoint. However, we cannot have a member

B with endpoint X and a member C with starting point

Xi41 (1<ix<k-1) simultaneously in A . They cannot meet at

their other end since 2k <n Therefore there is at most one

member of A whose endpoint is X; Or starting point is




Xi4q - Their number is at most k-1 . If A is included then

at most k . O
Let F be an intersecting family of k -element subsets

and let us count the number of pairs (w,F) , where 7 1is a

cyclic permutation of X and F€F is consecutive in T .

For a specified F there are k! (n-k)! cyclic permutations
in which F 1is consecutive. Therefore the number of the pairs
is |F[-k! (n-k)! . Conversely, if we fix a 7 then there are

at most k consecutive sets F€F by Lemma 2.2. We obtained
|Flk!(n=k)! < (n-1) !k

and this is eéulvalent to (2.2). O

It should be mentioned that the original proof of Katona
was somewhat different. P. Erd8s and E. C. Milner called his
~attention to the present simpler variant. It was published in
Katona (1974). Later, independently, Biagioni also discovered

this nicer way.

Second proof of the Erd¥s-Ko-Rado theorem (Modified version

of Erdds, Ko and Rado (1961), Transformation method, Shifting
method) . First of all, let us introduce a transformation. Let
x and y be different elements of X and F be a family.

Define the families

F'={F: FEF, (%4F) or (x,y€F) or (x€F, v&F, FUly}-{x}€F)}

(2.3)

F'={F: FEF, x€F, y¢F, FU{y}-{x}¢F} .
The shift Ty y(F) of F from x to y is defined by
(2.4) T (F) = FrUu{rFu{y}-{x}: FeF"}

X,y




Outline of the proof. We will see (Lemma 2.3) that the

shift of an intersecting family is also intersecting. Let more-
over an ordering of the elements of X be fixed. Apply Tx’y
for any y<x as long as it makes any changes, then the members
of the obtained family will meet in the first 2k-1 elements
of X (Lemma 24). This observation makes an easy counting
argument possible which uses induction on k .

Formal proof.First we need a lemma stating that T (F)

X,y
is intersecting if Fcz(i) is intersecting. For further pur-

poses the lemma will be stated in a more general form. F is

called t -wise. £ -intersecting (1s<t, 1<£) if

IF1ﬂ...nF » £

¢ |
holds for any F1,...,Ft€ F . If £=1 the name is simply

t -wise intersecting while in the case t=2 we say that F

is £ -intersecting

Lemma 2.3. Let 1<£<k< |X| , 2<t be integers. If

Fc:(i) is a t-wise £ -intersecting family then e y(F) has
r

the same size and the same properties.

X _ .

Proof. Tx'y(F)c:(k) and |Tx,y(F)l = |F| are trivial, we

have to prove only that Ty y(F) is t -wise £ -intersecting.
r

Let G1”"'Gt.ETx,y(F) . The definition of Tx,y shows
that either
F. = G, €F'

i

1

or
xd,f(;_,.L r YEG; , F; =G, U {x}-{y}eF"

holds.




(2.5) G1n...nGt:>F1ﬂ...nFt—{x}

is a trivial consequence. Here |F1r1...r1Ft|2.E holds by the
assumptions. If this size is 2> 4£+1 or x§F, N...NF_ then
(2.5) leads to the desired inequality

(2.6) |G1n...nth > £ .
Thus we may suppose

(2.7) |F1ﬂ...nFt| = £
and

(2.8) x€F1 n... nFt .

I1f y'GF& holds for all i then we have Fi==Gi for all i

and hence (2.6) easily follows. We may assume

(2.9) y¢F1ﬂ...nFt.
In the case vy E€G

fore

(2.10) x,y € G,N...NnG,

can be also assumed.
(2.8) and (2.9) imply that there are some j 's satisfying
XEFj 7 y¢Fj . We may suppose that one of them, say Fs i

satisfies the additional condition GS =F . Otherwise all Gi

S
would : k& F'
Then, by the definition of Ty v F contains a member
’
?S =F_ U y-x . FiN...NF N ...nF, is of size at least £

by the conditions. This intersection does not contain x . It
cannot contain y otherwise F, =G, holds for all i%s and

(2.6) is trivial. Hence

F1n...nan...nFt = 1?1n...nFt - {x}

1 M. NG, (2.5) and (2.9) imply (2.6). There-




follows. This equation, combining with (2.7) and (2.8), implies

IF1r1...r1ﬁs n...f1Ft|==£—1 , a contradiction. O

Suppose that the underlying set is X =1{1,2,...,n} . Sup-
pose that Fcz(ﬁ) is an intersecting family. Take a pair vy<x
(1<y<x<n) and consider Tx,y(F) . This new family is an inter-
secting family of the same size by Lemma 2.3. We repeat this
transformation as long as Txry(F)# F for some y<x . It is

obvious that this procedure stops, because the transformation

decreases the sum )] ) x and this sum has a minimum value.
FEF XE€EF

So after finitely many steps we arrive to a family F satis-

fying

. F) = F
(2.11) TX:Y( )

for any 1<y<x<n . We say that F is shifted. We need a lemma
stating that the members of a shifted intersecting family
(C(ﬁ)) meet in {1,...,2k-1} . For further purposes we prove

a generalization:

Lemma 2.4 (Frankl ( )). Let F be a shifted t -wise

£ -intersecting family on an n -element underlying set X

t
t-1

where n >

(k-=£) +£-1 . Then the intersection of any t mem-

bers of F contains at least £ elements in T =

= {1, eon, g5 (k-0) J+L}.

Proof. Denote the intersection F1r1...r1Ft by R and

suppose that
(2.12) IRnT| < £ .
Choose F1""'Ft satisfying (2.12) and minimizing

(2.13) IR| = r (2£) .




(2.12) and (2.13) imply R-T#@ . Fix an x € R-T . The sets

Fi—R are of size k-r . They may cover at least t-1 times at

t(k-r) t(k-r) t(k-r) +
t-1 t=-1 t-1

< E%§%£1”+£—1 < |T| holds, therefore T contains an element

most elements. However + |RNT| < r-1 <

Yy covered by at most t-2 of Fi-R 's, that is, Fi 's.

Suppose , that
§r¢FS . Apply (2.11) for these x and vy : ?S =
= F_U{y}-{x}eF . YEFP, N ... nﬁslw... NF_ is obvious by the

choice of y , therefore (2.12) remains true. On the other hand,

;<¢EH § nﬁsl1...11F shows that the size of this intersec-

t
tion is <r contradicting the minimality of r . O

Let us turn back to the proof of the theorem. We mnay sup-
pose that Fc:(ﬁ) is a shifted intersecting family. Lemma 2.4
states that the members of F meet in {1,...,2k-1} . We use
induction on k . The case k=1 is trivial. Suppose that k>1

and the theorem is proved for smaller values. Let a; (1<i<ck)

denote the number of distinct i -element sets of the form

Fn{1,...,2k} where FE€F
2k-1 .
a, < (1_1) (1<i<k)

follows from the induction hypothesis in view of Lemma 2.4
for 1<i<k-1 . 1In the case i=k it also follows since at

most one of the complementing pairs can occur, therefore

aks;%(i?) = (1&31) - The number of the j -element distinct sets
of the form Fn {2k+1,..., n} is at most (nifk) . The obvious
inequalities
k k
2k-1, .n-2k, _  n-1
L 121 a; Py < 121 Cicq ) Gly) = Gl

prove the theorem. O




The original proof of Erd#s, Ko and Rado used only the
idea that the members of a shifted intersecting family meet
in {1,..., n-1} . Then the calculation is somewhat easier but
double induction is needed.

Let us say a few words about the connecitons to extremal
graph theory. FC:(§) is called a graph (or simple graph).
Generalizing this concept, many authors call a family F<:2X

a hypergraph. If Fc:(ﬁ) then F is a k -hypergraph or

k -uniform hypergraph. Apparently, the present theory is a

generalization of the theory of extremal graphs which is pre-
sented very well in Bollobéds's book (Bollobds ( )) . However,
most of our theorems have no sense for graphs or are trivial.
Theorems 1.1, 1.2, 1.3 and 1.4 are obviously non-generaliza-

tions of graph problems, while Theorem 2.1 is trivial for k=2 .

2.2. Shadows

The next theorem deals with shadows. Actually, it gives
the exact answer to the problem of Lemma 1.6 for some "nice"
values of |A| . Later, in Section we will generalize it
for any |A| . In a certain sense, this theorem stands behind
both the Sperner and the Erd8s-Ko-Rado theorems. First we need
a lemma stating that Tx'y does not increase the size of the
shadow. For later purposes we formulate the lemma in a more

general form, again. The s -shadow (1<8) of a family A<:2X

is defined by
o ,(A) = {B: BcA, |B|=|A|-s for some A€A} .

Lemma 2.5 (Katona (1964)). & FCZ(i) then




(2.14) ]OS(TX'Y(F)H < |OS(F)I (1<s<k)

for any distinct x and y (x,y€X) .

Proof. Let us define the function ¢ on os(rx y(F))—
_— r

~o (F) by
(2.15) ©(A) = AU {x}-{y} .

We will see that ¢ is an injection into o (F)-o (T (F)) .
s s' X,y

First we show that A€o (T y(F))--GS(F) implies the

Xy

existence of an F€F such that
(2.16) AcFU{y}-{x} , x€F , y¢F , FU{y}-{x}¢F

Indeed, there 1s a G satisfying AcGE Tx,y(F) , by defini-
tion. G 1is either a member of F or G=FU {y}-{x} for an
FEF satisfying (2.16). In the first case, however, AcFEF
implies AEOS(F) , & contradiction.

Now we show that AeOS(TX,y(F))_OS(F) implies x¢A ,
Y€A , that is, |@(A)| =k . xéA follows by (2.16). The assump-
tion yéA and (2.16) imply AcF and A€ o (F) . This contra-
diction proves yE€EA .

Our next aim is to verify ¢(A) € OS(F)-OS(TX'y(F)) &
(2.15) and (2.16) imply o(A) =F , hence (A) EOS(F) is ob-

vious. Suppose now that ¢(A) €0 (TX y(F)) ¢ Ethat s,
r

S
X €p(A) cGE T y(F) . Then GEF and either x,y€G or

i .
GU{y}l-{x} €F hold. Wwe have AcG or AcGU {y}-{x} , resp.
The conclusion is A€ OS(F) in both cases. This contradiction

shows (p(A)¢OS(Tx'y(F)) :

¢ is obviously an injection, so

IOS(TX,Y(F))_OS(F)I < |OS(F)—US(Tx'y(F))|




holds. (2.14) easily follows. O

r

Remark 2.6. Suppose that Ty y(F) =(i) for some AcX

’
x¢A , yEA and F=#(i) ' F=#(AU{Xi—{Y}) . Then strict inequality

stands in (2.14).
To prove this statement consider the families F(x)
(= the subfamily of the members of F containing x ) and
F(y) . It is easy to see that F==F(x)+F(y)+(A_éy}) and that
exactly one of the sets GU{x} and GuU{y} is in F for any
(k-=1) -element subset G of A-{y} .
Take two sets F

» F, satisfying F,€ F(x) , F, € F(y)

1

and maximizing -
|F1ﬂF2| =r (<k-2) .

If r<k-2 , one can find elements u and v such that
11€F1—F2-{x} and vEZF2-F1-{y} hold, resp. The set
F1lJ{v}-{u,x} has k-1 elements, therefore either F1U{V}-hﬂ
or F1lJ{y,v}-{u,x} is in F . In the first case
(Fle{v}—{u})r1F2 , in the second one (F1U{y,v}--{u,x})ﬂF1
has a size >r . This contradiction proves r =k-2 .

Take a (k-s-1) =-element subset HO of F111F2 .
H U {x} and HOlJ{y} are both in o_(F) . Any (k-s) -element
subset of A-{y} is in o ,(F) while at least one of HU{x}

is also in OS(F) . Hence Ios(F)I > [|A££§}|]+[|A—{Y}q+1 -

k-s-1
= A +1 follows o_.(t (F)) = ( & ) proves the statement
k-s ; : S X,y k-s -
O
Our aim is to minimize |o(F)| given k and the size

|F| of the family FC:(ﬁ) . Here X 1is the underlying set.
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Its size could have a role in the solution, but it does not

have. (Except the trivial condition |F| < [lﬁlJ .) Lemma 2.5
(with s=1) says that F be shifted without increasing
|o(F) | . One can feel that this is true in a stronger sense
than just this shifting transformation T,y Namely, if |F|
has luckily the form |F| =(i) for some integer a>k then
|0(F)| is minimized for the family (i) where AcX , |Al=a .

The minimum would be then (kf1) . We will prove this state-
ment here. The other values of |F| need more computations with
binomial coefficients. We will do it in Section . We do
not want to ffighten the reader in such an early stage.

Theorem 2.7 (Special case of Kruskal (1963), Katona (1968)

Ya IE Fc:(i) i |F] =(i) where

1T<k<a<|X|=n are integers then

(2.17) oY 2 (2))

with equality if and only if F==(i) holds for some a -element

subset A of X .

Proof (Frankl (1983), Transformation method, Shifting

method) . The family () shows that (2.17) is the best pos-
sible estimate.

To prove (2.17) and the statement about equality we use
induction on n . The statement is trivial for n=1 . Suppose
that it is true for n-1 and prove it for n . (2.17) is triv-
ial if k=a , so we may suppose that k<a .

Let X=1{1,2,...,n} be the underlying set. The shift
T (y<x) does not change the size of the family F (Lemma

X,y
2.3) on the other hand it does not increase the size of its
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shadow (Lemma 2.5). Therefore it suffices to prove the theorem
for a shifted family F .

Introduce the notations

A(z) = {A: zeaeAl , A(z) = {A: z¢aeA} ,

{avu{z}: A€ A}

A+z

X

A-z {a-{z}: A€A} , where z€ex , Ac2” .

I

Let F1= F(1)-1 and F2 = F(1) . Here

(2.18) |Fl+IF | Fl

2l =

is obvious. If AEZO(FZ) then there is an F satisfying

1¢F€F and "AcF . Denoting F-A by {y} (y$1) , = 1(F) =F
M r

: Y
implies FU {1}-{y} € F . Hence F—{y}==A(EF1 . We proved

0(F2) = F1

what is the advantage of the shifted F . Actually, we need

only
(2.19) |o( 2)| < [F1| .

Suppose that |F,| <(i:1) . Then (2.18) implies |F2| >
> (i)—(iZl) =(a;1) . Take any subfamily F3 of F2 with
|Fé| =(a£1) . Its underlying set is smaller than n , we can

use the induction hypothesis: |o(F2)| > |0(F3)| > (i:}) . By

(2.19) we obtain

(2.20) |F1[ 2 (p_q)
to be true in all cases.

Observe that F1C:0(F) ; o(F1)+1c:o(F) ’ F1f1(o(F1)+1 =¢ ,

imply our second crucial inequality

(2. 213 |0(F1)| + |F1| < |lo(F)| .
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Using (2.20), there is an F4CF1 with |F4| = (

use the induction hypothesis:
(2.22) [o(F )| 2 [o(F | 2

The sum of (2.22) and (2.20) is

a _ ,a-1 a-1
(koq) = (o) + G2 < [o(F |+ |F | .
(2.21) completes the proof of (2.17).
Equality in (2.17) implies equality in (2.22). Hence, by

the induction hypothesis F, =F consists of all (k-1) =

4 1
element subsets of an (a-1) -element subset B of X-{1} .
(2.18) implies . |F,| = (*.") . This combined with o (F,) < F,
. . _ /B _ _ (BU{1} _
gives rise to Fz-(k) . Hence F-—(F1+1)lJF2-[ X ] fol

lows. This proves that the shadow of the shifted family has

exactly (kf1) member only when F = [{1,.£.,a}] . Remark 2.6
proves that o(F) =(ké1) implies F==(§)  |A|=a for any
non-shifted family. O

The above theorem (in its general form) has a central
role in the theory. The original proofs of it were very long.
Now there are several shorter ones. In Section we will say
more about the history of the theorem and its different proofs.

Theorem 2.7 gives a much better inequality than Lemma 1.6
does. The new bound e.g. does not depend on n at all. So if
this estimate is applied in the second proof of the Sperner
theorem then sharper results can be obtained. Of course, the
upper bound cannot be improved, but we can say something about
the possible sizes of the members in an inclusion-free family
(see Section ).

On the other hand, the Erd&8s-Ko-Rado theorem is also an
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easy consequence of Theorem 2.7 (see Exercise 2.7).

The next theorem could be called the "intersecting
Kruskal-Katona", because it tries to minimize the shadow for
£ -intersecting families. Actually, it gives only an estimate.
(For improvements see Section .) But it is sharp in the
sense that it determines the minimum of the ratio |o(F)|/]|F]| .
Actually, for further use we need this result for s -shadows:

Theorem 2.8 (Katona (1964)). Let k, £, s be positive in-

tegers such that s<f<k<n . Suppose that @ % Fcz(i) iz £=in-

tersecting. Then

2k-2
(2.23) CIF s ) lo_ (F) |
: (2k— - s
k
!
holds, with equality only for F = R;) where X'ex , [X'|=

=2k={ .

Proof (Katona (1964), modified in Frankl (1983), Trans-

formation method, Shifting method). We distinguish two cases:
1. n<2k-£ , 2. n>2k-£ . The proof of the first case uses a
simple counting argument, while the basic line of the proof of
the second case copies the second proof of the Erd&8s-Ko-Rado
theorem.

1. n<2k-£ . The number of pairs (F,G) where FEF ,

GeF , |G|=k-s is [F[(kﬁs) - On the other hand, any GE€o_(F)

(n—k+s
s

ity IFI(kEs) < |OS(F)|(D_Z+S) follows. That is, we obtained

is a subset of at most ) sets F€F . Hence the inequal-

B y f b,

the lower estimate (
k-s s

for |o (F)|/|F| . To prove

(2.23) for this case we need the inequality




2k-£ k

(k—s ) . (k—s)

(2k—£) = (n—k+s) b
k s

Carrying out the possible cancellations, this is equivalent

5 (k—£+s) 5 (n—k+s

g b ) which is true when 2k-£>n , with equal-

ity iff 2k-£=n . The proof of (2.23) is complete for this
case.

2. n>2k-£ . We use induction on k . The case k=1 is
trivial. Suppose that k>1 and that (2.23) holds for smaller
values of k . A shift Tx'y does not change the size of F
and it remains £ -intersecting (Lemma 2.3). On the other hand
it does not inc;éase the size of the shadow (Lemma 2.5). There-
fore we may suppose that F 1is shifted. Lemma 2.4 implies that
any two members of F intersect each other in at least £
elements of T={1,..., 2k-£} .

Let FA denote the family FA
Ac{1,...,n}-T . Introduce the notations A-B = {A-B: A€A} and

A+B = {AUB: A€A} for any BcX , Ac2X | The family F,-A is an

= {F: FEF, F-T=A} for any

£ -intersecting family of (k-|A|) -element subsets of T , by

Lemma 2.4. If A$+0 the induction hypothesis can be applied:

[2(k—|A;)—£]
s k-lAl-s
= T2(k-12D) -2

e

(2.24) log (Fp=2) | |F -2l .

If A=¢ , then (2.24) follows by case 1. We prove that the co-

efficients in (2.24) are > than the coefficient in (2.23).
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jZ(r—1)—£] (2r-2)

r-1-s r—s
2(r-1) =2 2 (2r_£) (r>£2s21)
r-1 r

(24 25)

reduces to (r-s) (r-£+s) > r(r-£) after carrying out the pos-
sible cancellations and this is equivalent to s(£-s) >0 which
is true. This proves (2.25), with equality only for 4£=s . By

repeated application of (2.25) we obtain

[Z(k—lAl)—ﬁ} (2k—£)
k-|A]|-s k-s
[ k-I1A]| J k

with equality only for £=s . (2.24) and (2.26) imply

2k-£
k-s
(2.27) |OS(FA—AJ| 2 S |FA—A| .
)
Let us observe that
o (F) = 3 (04 (F,=R)+A) .

Ac{1,...,n}-T

Hence we have the desired inequality

lo_(F)| > ) lo_(F,-A)+A| =
= A {1,...,n}-71 ° B
2]{._2)
k-s
= N lo (F.-A) | > ——— |F. -a| =
Ac{1,...,n}-T7 ° G (2§{£) Ac{1,...,n}-T &
(22, k-t
) 5171 ) [Fal = ‘%%E%"|F|
( X ) Ac{1,...,n}-T ( X )
by (2.27) and F = ) Fa o

Ac{1,...,n}-T

We have to check the cases of equality, only. In case 1 a

necessary condition of the equality in (2.23) is n =2k-£ as




= 4T -

it was remarked above. On the other hand any G (IG|=k=-s)

(n—k+s

must be a subset of exactly ) sets FeF , that is,

F= where |T| =2k-£ .

()
In case 2 we consider first a shifted F . Then F con-
tains {1,...,k} as a member. Hence F¢+¢ follows. The
equality in (2.23) implies equality in (2.27) with A=@ . This
belongs to case 1: F¢=(E) . Let F€F satisfy the condition
|FNT| <k-1 . Then there is an F'(E(E) satisfying |FNnF'| <4 .
This contradiction proves F==Fﬂ==(i) . Remark 2.6 shows that

we may have equality in (2.23) for a non-shifted F only when

F==(§) for some [B| =2k-£ . O

The original proof used only the idea that the members of
a shifted family meet in {1,..., n-1} in at least £ ele-
ments. Then the calculation is somewhat easier but double in-
duction is needed.

Observe that the conditions £<k<n and s<k are quite
natural in the above theorem but the problem has a meaning also
in the case [£<s . However, in this case (2.23) does not hold,
moreover |o_(F)|/|F| is not bounded from zero (see Exercise

2.8) s
2.3. L -intersecting families

The generalization of Theorem 1.1 for £ -intersecting
families is non-trivial:

Theorem 2.9 (Katona (1964)).

Z (?) if n+f is even,
. n+g T T
max |F| = 1= 2
S n n-1
n+%+1 (i)-F[n+£—1] if n+f is odd
= 2




for £ -intersecting families Fc:(i) (2<€<n) . There is only
TOX
one extremal family: F = L ({) if n+f is even and
=22t
X X-{x}
F= (%) if n+f is odd, where =x€X is a fixed
i n+f-1 —
. _n+L+1
j=— 2
2
element.

Proof (Method of complementing families).

OQutline of the proof. Observing that the complement of an

(n-i+£-1) -element member of F cannot be a subset of an i -

element set in F and using Theorem 2.8 we infer that the

total number of_ (n-i+£-1) -element and i -element members of
F is bounded by (n—i?£—1) . Then we just have to add up the

obtained inequalities.
n+f-1

Formal proof. Let £ <1ic< 5 . The members of F' and
Fn:l+£_1 meet in at least £ elements. Therefore, if
AcBEF' |a|=i-(e-1) , ce 1M1 pen ANC#4¢ . Hence

A$C , that is, 03_1(Fl)cr1Fn_l+£-1 =@ follows. Consequently:

(Fl) |+|Fn—i+£-‘| I ( n

18427 el =

1001

Apply Theorem 2.8 to F* with s=4£-1 . The coefficient in

(2:23) 1is (iiz;a)/(zﬁiﬂ) = (ﬁi}z)/(zﬂjﬂ) . This is greater than
1 for £22 since i-1 2 2%;2 . Substituting this result into
(2427) s

(2.28) |EL [ | FETAE=T] o ¢ B 4

D=d4L~1

is obtained where equality holds only if Fi=¢ .

The case i.=n*§_1 is somewhat different. (2.28) can be

obtained in the same way, however Theorem 2.8 should be applied
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in a sharper form. The coefficient in (2.23) is

n-1 n-1 _ n+L-1 ) ) i
[ ] /l[ ] T n-£+1 ° Taking into account that F~ =

n+f-3 n+f-1
5 -
- PAHET sy WhiEs 4, (2.27) Fesulbs is
n+f-1
2 n+f-1 n
F e+ 1) = [n+£-1]
3

and this is equivalent to

n+f-1
2 n-1
(2.29). F \ < n+£_1]
2
where only the family of all n+§—1 -element sets of an (n-1) -

element subset gives equality. Fl'=¢ is obvious for i<Z by
the £ -intersecting property. |F"] 5(2) is trivial. Hence

the statement of the theorem follows by (2.28) and (2.29):

n n-1

IFI=_ZO|FiI=_Z£|FiI+(;‘) =
i= i=
n+f-2
£ i n-i+f-1 n = n
L OCIFH|+|F |)+(n) < ¥ (;) if n+f is even
L= . _n+{p
= B
n+f-3 _—
2 . n
L 1 n-i+f-1 ' 2 n n n-1
izﬂ [F=[+[F |+1F +(n)]s r§+£+1(i)+ n%_J
L ' i= > 2

if n+f is odd.

Equality is possible only when (2.28) and (2.29) are equalities,

n+f-1
that is, Fl=¢ (f.sisig-:ﬁ) and F 2 ;(:é}_{%] for
2

some xX€X ., D




2.4. Intersecting families without common points

X€X 1is called a common point of F is F€F implies

X€F . We showed after Theorem 1 that there are many extremal
intersecting families. Only one of them has a common point.
The situation is very different for equally sized subsets. If
we do not allow the existence of a common point then the maxi-

mum size of an intersecting family is considerably reduced:

Theorem 2.10 (Hilton and Milner ( )) .
_ a1, n=-k=1
maxlF| = Mgq) (=g ) 1

for intersecting families F<:(§) r 2<k <n/2 satisfying

(2.30) n F =¢g .
FeF

Proof. (Frankl and Fiiredi (1983), Transformation method,

Shifting method). Let us first give the construction of the
extremal family. Fix x€X and K satisfying |K|=k , x¢K .
The family F consisting of K along with all k -element sets
containing x and intersecting K 1is obviously intersecting.
A common point y should be in K , however (by k22 and
n > 2k) F has a member containing x and meeting K in an
element different from y . Thus F has no common point and
|F| is obviously equal to the value given in the theorem.

To prove that an intersecting family F satisfying (2.30)

can have at most

(2.31) k] ¢ &Y - @7k g
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members we use induction on k . A family of intersecting 2 -
element subsets contains either a common point or forms a
triangle. This proves (2.31) for k=2 . Suppose that k>2

and that (2.31) is proved for smaller values. Moreover let us
suppose that F 1is maximal under the above conditions. Set
X={1,...,n} and apply the transformations LI (x>y) for
F . It cannot be applied without limitations, because it may
cause the appearance of a common point. We distinguish two

cases:

Case 1. The repeated applications of Tx'y never produce
a common point. After some steps we arrive at a shifted inter-
secting family Hc:(i) satisfying |H|=|F| , by Lemma 2.3. In
addition, H has no common point.

Case 2. After repeated applications of Tx'y we arrive
at a family G without a common point but TX1’Y1(G) (x1 >y1)
has a common point (y1) . Permute the elements of X moving
X, and Y1 to 2 and 1 , resp. The family obtained from
G is denoted by G' . It is obvious GN {1,2} $# 0 for all
GEG' . Therefore any k -element subset of X containing
{1,2} can be added to G' . Therefore, by the maximality of

|F| = |G'| , all these sets of in G' :
(2.32) GEG' for any {1,2}cGeXx , |G|=k .

Apply the transformations Ty y (3sy<x) for G' as long as
14

it makes any changes. We cannot obtain a common point because

the sets listed in (2.32) are unchanged during these transforma-

tions and any point y23 1is missing from at least one of them.

The final family H clearly possesses the following properties:
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f{C(i) . |H|=|F| , H 4is intersecting (Lemma 2.3), H has

no common point,

(2.33) Hn{1,2} ¥+ 0 for all HeH

and

(2.34) T (H) = H for all 3gy<x .
X,y

In Case 1 we may simply apply Lemma 2.4 (t=2, £=1) to

obtain
(2.35) H,nH, n {1,...,2k} # ¢ for all HyH, € H .

However, in Cgse 2 we have to repeat the argument of Lemma 2.4
because H 1is not shifted. Suppose that (2.35) is not true.
Choose such a pair H1, H2 violating (2.35) and minimizing
|H1nH2| - (2.33) implies that H, and H, intersect {1,2}
in distinct elements. Thus H1-{1,2} and H2-{1,2} are
(k-=1) -element sets. They are non-disjoint, therefore there
exist x €H, NH,Nn {2k+1,...,n} and y€{3,...,2k}—H1—H2 .
Then (2.34) implies Hy=H, U {y}-{x} € H . However, here

H2f1H3

dicting the minimality of |H1r1H2| . This contradiction proves

n{1,...,2k}=¢ and |H2r1H3| <|H1IWH2| hold, contra-
(2.35) for both cases.

Let A be defined by A={HnNn{1,...,2k}:HE€H} . Then AL
denotes the family of the i -element intersections of the mem-

bers of H with {1,...,2k} . We prove now the inequality

(2.36) IAiI ) (2<ic<k-1) .

<k-1 and suppose that (2.36) fails: |AL| >

1
2k-1 k- 2k-1) _ 2k-i-1
i i-1 i-1

Assume 2 < i

> | )+1 . AT is intersecting by
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(2.35). Thus the induction hypothesis yields that Al has a

common point, say x€ NA . As x is not a common point of
acAt . \
H , we may choose an HEH with x¢H . The total number of i -

element subsets of {1,...,2k} containing x is (iﬁ31) #
The members of Al intersect H by (2.35). The number of i -

element subsets of {1,...,2k} containing x but disjoint to

H is 1{1""’2k}_H|_1] > (¢ 1) . This proves (2.36), contra-

i-1 i-1

dicting our assumption.
(2.36) also holds for i=1 . Indeed, if |A'|>0 , then

H1r1{1,...,2k} contains exactly one element x for some

EH €H . (2.35) implies that all HEH contain x . This contra-
diction proves |Ai| =0 .
Finally
k 2k=1, _ 1.2k
(2.37) |A™] < (h—q ) = 3(%)

is a consequence of the fact that A and {1,...,2k}-A can-
not be simultaneocusly in AkczH as H 1is intersecting.

We count now the number of members of H wusing (2.36) and

n—2k)
k-i

tinuations", that is, members H€EH satisfying HN {1,...,2k}=

(2.37). For a fixed A€ Al there are at most  ( "con-

=A . We infer

k : k=1
1 Hm2k 2k-1 le=1 =2k 2k-1

H| < iLIA | L5 < i21((1_1) G G+ (L0

k
= 1 EEh-Eh R a -

i=1
_ % (2k=1) (n-2k) ? (&=T1y a2k g L (n—1)_(n_k-) 1

goq  d=d % k-4 351" el © k-1 k-1 :




Let us make a final remark comparing the order of magni-
tudes of the bounds of the Erd8s-Ko-Rado and the Hilton-Milner
theorems, resp. Let f(n) and gag(n) be positive real-valued
functions defined on the set of positive integers. The nota-
tion g(n) =0(f(n)) denotes the fact that for some constant
C g(n) £ Cf(n) holds for all n . Similarly, g(n) =o0(f(n))

means that 1lim S—(-El-=0 .
nsw £(0)

It is easy to see that

k-1

n-1, _ (n-=1)...(n-k+1) _n k-2
(k-1 = =) 1 =T * 0T )
- k-1
for any fixed k . On the other hand TR=TV T cancels from
(2:1)—(n;§;1)+1 . Therefore it is O(nk—z) . In conclusion,

the order of magnitude of the maximum intersecting family of
equally sized subsets becomes definitely smaller if the family

cannot have a common point.
2.5. Applications

A) Search with qualitatively independent sets. We con-

sider the same modul of search as in Section 1.3 D). Let F
and G be two members of the family F of subsets of pos-
sible questions. If FcG and we know the answer x€F then it
also determines the answer x€G . Similarly, if FcG  then
the answer =x¢F determines x€G . The situation is analogous
when FcG or FcG . If these cases are excluded then knowing
the answer for the question "X€F or x€F" the same question
for G is not answered in advance. We call a family F

qualitatively indépendent if




(2.38) F¢G , F¢G , F¢G , F¢G

hold for any distinct members F, G of F . This can be formu-
lated so that F and G divide X into 4 non-empty parts.
The following theorem answers a question of Rényi:

Theorem 2.11 (Katona (1973), Bollobds JCTA 15 (1973),

363-366, Daykin ( )) .

max |F| = [?;%]
2

for qualitatively independent families.

Proof (Katona (1973), Transformation method, Compressing

method) . The family [Xfiﬁ}] is qualitatively independent for
2

any xX€X . Thus we have to prove

(2.39) |F| < [?;;J
2

only.

The family F+f¢ is an inclusion-free family by (2.38).

Hence |F+FC| < [ ﬁ ] follows by the Sperner theorem. That is,
2
|F| = |FC| < %[[2J] . If n 1is even, this yields the desired
2

inequality (2.39). The case of odd n's remains only.

FEF can be substituted by F without violating (2.38).

n+1
2

Apply now the idea of the third proof of the Sperner theorem.

Let k:>§%l be the maximum size in F . The family F' =

Therefore we may suppose that |F| 2 holds for all Fe€F .

= (F—Fk)lJO(Fk) is inclusion-free and satisfies |[F'| > |F|




by the arguments described there. F4G for F,GE€F' follows

also easily from the same property of F . F¢§ is a consequence

of |F|,]|G]| 2 5— - F' satisfies (2.38) and has more members

than F has. This proves that a maximally sized F must con-

sist of E%l -element subsets and FCC:[H§1J . By (2.38) F€
2
is intersecting, Theorem 2.1 can be applied to obtain
i n-1| _ [n-1 !
FI = [F°] < [HJ - [rm] : o
2 2

The proof using the permutation method (see Exercise
2.9} is probably easier, but the present proof shows more
directly the connection to the Erd8s-Ko-Rado theorem. The
reader can find further results along this line in Kleitman-

Spencer (Discrete Math. 6 (1973), 255-262).

B) Reconstruction of graphs and hypergraphs from their

line-graph. A family Hc:(ﬁ) is called sometimes k —graph

(for k=2 : graph). The line-graph L(H) of H is a graph

with vertex-set H in which two vertices H1,H26ff are con-
nected iff H1ﬂH2 =@ . An old question (see e.g. Lovasz
(book)) is the following one: Under which conditions does

L(H) determine H uniquely or, equivalently, when can H

be reconstructed from L(H) ? The next theorem deals with this

problem. Before formulating it we need some definitions. We say

that f+c(§) and H'c 8; (|X|=]X"|) are isomorphic iff

there is a bijection ¢: X->X' such that HcH iff @(H) =
= {@(X): x€EH} €H' . H(x) is the subfamily of the members con-

taining the fixed element x , deg, (x) = [H(x)]| and




deg(H) = min degH (x) .

xeX
Theorem 2.12 (Erdds Pé. - Firedi (1980)). Suppose that
Hc(@ ' H‘CRE), |X| = |X'"|=n , n22k>4 and
n-1 n-k-1
(2.40) deg (H) > (1) - (P57 +1

hold. Then H and H' are isomorphic iff L(H) and L(H")

are isomorphic.

Proof. If H and H' are isomorphic then L(H) and

L(H') are trivially isomorphic. Suppose, conversely, that
L(H) and L(H') are isomorphic, that is, there is a bijec-

tion : H—>H'x°such that
©(H)) No(H,) + @ iff H,NH, $0

holds for all H1’H2 EH .

H(x) is an intersecting family. Consequently ¢(H(x)) =
= {p(H) : HEH(x)} 1is also intersecting. Theorem 2.10,
lo(H(x)) | = [H(x) | =deg, (x) > deg (H) and (2.40) imply that

¢(H(x)) has a common point Y(x) . It cannot have two common

n-=1 n-k-1

points because otherwise its size is < (E:%) <(k_1)-( k=1 )

contradicting (2.40), i.e. Y(x) is unique.

Suppose that w(x1)==w(x2) . Then w(H(x1)) and m(H(xz))
have the same common point. Therefore H(x1)lJH(x2) is inter-
secting, consequently it has a common point X4 by Theorem
2.10 and (2.40). Like @(H(x)) , H(x1) has also exactly one
common point, hence X4 = X3 follows. Similarly we have

X, = X3 . We obtained Xq =Xy . This proves that y¢(x) is a

bijection between X and X' .




_28._

Finally, x€H implies y(x) € @(H) . Since |H|=|@(H) |=k
holds, o(H) ={y(x): x€EH} proves that x€H iff Y(x) € w(H) ,

i.e., H and H' are really isomorphic. O

If k=2 , (2.40) has the form deg(H) >3 and Theorem 2.12

reduces to an old theorem of Whitney (1932).

C) A problem of Erd&s and Sarkézy. Let n be an even num-

ber and a,,...,a  be reals such that |a1| <1 (1<ign) . We
n

form all the sums ) €524 where e;=+*1 or -1 (1<isn) .
i=1

Denote by f(n) the minimum number of such sums satisfying

n
121 ]

<1 over all possible choices of a; .

Theorem 2.13 (Erd®s and SArkdzy (1978)). '

f(n) = [2] (n 4is even).
2

Proof. Changing the sign of an aj; it does not change the

set of these sums, therefore we may suppose that ai.ZO for
all i . Introduce the notation J,= ) a.,- ) a, where
A, 1 g
ieA iga
aAc{1,...,n} and A={1,...,n}-A .

Suppose that A,Bc{1,...,n} and |ANB| <1 . Then

latle = ) a, - J_a, + ) a, - Y a, =
A "B yéa iR Y jés * ies 1
=2 } a; -2 ) a <2

i€ANB i€AUB

proves that either ZA or ZB is at most 1. This implies
the sets A corresponding to the sums ZA:>1 form a 2 -in-

tersecting family. By Theorem 2.9 we know that this family has
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at most (?) members. That is, this is the maximum num-

i==+1

N8B 3

ber of sums satisfying ZA:>1 .

It can be proved that ZA-rzB;z—Z holds if |AUB| <1 ,
that is, |AnNB| <1 . This implieé that the family of sets
satisfying ZA‘<—1 satisfies the condition |ANB| >2 . Hence

the number of these sets is, again by Theorem 2.9, at most

o n
L) .
D
)
The number of sums -1 szA;s1 is therefore at least
n 2 n, -(n
27 -2 z (i) = {HJ . The setting a1=...=an==1 shows that
i=5+1 2
this estimate is sharp. ]
Theorem 2.13 has a very natural generalization. Let
a1,...,an be r -dimensional vectors of length <1 . Beck
n
(1983, EJC) proved that the number of sums ) eja; (g;=%1)
i=1
n e
satisfying ) €48 < Yr is at least c(r) £— . "Unfortu-
i=1 vn

nately" he used analitical methods.

D) Linear combination of 0, 1 wvalued random variables.

Let 51""'£n be independent random variables such that
P(£i=1)=p 5 P(£i=0) =1-p . Let further Oqreees be non-

negative real numbers which sum to one.

Theorem 2.14 (Liggett JCTA 23 (1977) 15-21).

n
1 . 1
P i£1ui£i 2 5| 2 p , provided that P25 -




a I =

1

Proof. Suppose first that ) a, %5 for all
—_— y 3. V.2
i€eA
AcX=1{1,...,n} . For 0<k<n , let N, be the number of sub-
sets A of X of size k for which | a, > % . These sets
i€A

form an intersecting family, therefore the Erd8s-Ko-Rado theorem

n-1

(Theorem 2.1) gives Nk'S(k—1) for k<n/2 . We have

n n
1 ' k n~k
P[ ) a.g.z-—] = ) p (1-p) N, .
i=1 TP ko "

n

k-PN k==(k) , the above row is equal to

As N T

n/2[(n-1

n.
21

pn/2(1-—p) + § pRr-pkK N+ ) pn_k(1—p)k((;)—Nk)=

k<n/2 k<n/2

_ _ (N ;
= Nk-+Nn_k-(k) » the above row is equal to

pX (1-p) " Ky, +

k

pn/2(1_p)n/2[n—1

+
%—1 k<n/2

D S R L R

k<n/2
_ pn/2(,]_P)n/2 2—1 . pk(1—p)n_k(Nk—(£:;)) &
7—1 k<n/2
k n-k n-1 n-k k, n-1
+ 1 p-p) o+ L P T (@D ) o+
k<n/2 = k<n/2 k-1 K
3 z pn—k(1_p)k(n;1) =

k<n/2

= 1 (G- ("R (-p Ropk (1-p) PR &

k<n/2
n '3 -
+ ] pfa-p RO,

k=0




where the term with exponent n/2 occurs only for even n .

The first sum of the above expression is non-negative by

N, < (ﬂ:]) and p;:% . The second sum is equal to p . There-
fore the investigated probability is 2>p , indeed. O

E) Proportion of triangles of a certain shape. Burnashev

(SIAM Review 24 (1982) 477-478 Problem 82-18) asked if the
following statement is true in Hilbert spaces. For any §6>0
there is an €(8) >0 such that for any set of points Xqpeon
oo r Xy there is a subset Xi1""'xiM of size M2 e(§)N
inducing no trigngle having two sides <1 and one side

21+36 . These tfiangles are called ¢ -bad. The answer is nega-
tive.

The following counterexample will be given in the Hilbert
space of infinite sequences (y1,...,yn,...) of real numbers
such that '21 Yy, <® with the usual norm .f y; - Actually,
only finitel;equences will be used in the cé;;truction, but the
dimension will be unbounded. It will be shown that one can con-
struct N==(g) sequences of length n not satisfying the
above statement with 6 =+/2-1 . That is, for any given ¢ ,
e(g) of these sequences always induces a (¥2-1) -bad triangle,

providing that n is large enough.

Theorem 2.15 (R. Ahlswede; P. Erd8s; F. Chung, A. Odlyzko,

L. Shepp, SIAM Review 25 (1983) 574-575). There are (g) se-

quences (y1,...,yn) of real numbers such that any n+1 of

them induce a (v2-1) -bad triangle.
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Proof. Consider all the sequences (y1,...,yn) having

two components é% and n-2 components . There is a natu-
ral way to associate these sequences with the edges of the com-
plete graph K on n vertices (Kn==(§), |X|=n) . The dis-
tance of two distinct sequences are 1 or V2 iff the cor-
responding edges of Kn meet or do not meet, resp. Three se-
quences form a (v2-1) -bad triangle iff the corresponding 3
edges in Kn form a (non-circuit) path. So, if we choose a
subset of the above sequences inducing no 1-bad triangle then
the graph G formed from the corresponding sequences cannot
contain a (nonfcircuit) path of 3 edges.

Determine‘fhe maximum number of edges of G under this
condition. A connected component of G cannot contain two
disjoint edges. Let n, denote the number of vertices of the
i-th component [_% ni==n) . If ni >4 , then the very special
case. (k=2) of t;é1Erdds—Ko—Rado theorem can be applied: the
number of edges in the i-th component is at most ni—T s« LT
ny equals 1, 2 or 3 then the number of edges is obviously at

most 0, 1 or 3, resp. We have in all cases at most n, edges.

r
The total number of edges of G is at most n = Z n, , prov-
i=1

ing the theorem. O

In the above proof, we could have used a theorem of Erd&s
and Gallai (Acta Sci. Math. Huné. 10 (1959) 337-357) stating,
in a special case, that if a graph on n vertices has n+1
edges then it contains a path of 3 edges. Here we quoted Erdds-
Ko-Rado since we list its applications. For a generalization

see Exercise .




Exercises, problems
2.1. Let Fc:(?) and define

01(F) = {B : |B|=j+1 and BoA for some A€F} .

Prove OT(F)= (O(FC))C .

2.2. Suppose FC:(§) . Prove

1 L
o (A | 2 [FISTE

2.3. Erd8s-Ko-Rado (1961). Prove the following generaliza-
tion of Theorem 2.1. (It was its original version.) Let

X

FC:(§)+(§)+"'+(k) (1<k <n/2) be an intersecting inclusion-

free family. Then |F| 5(2:1) .

2.4, Let A be an intersecting inclusion-free family of
at most k -element (1 <k <n/2) consecutive subsets along a

cyclic permutation. Prove [A| < min{|A| : A€A} .

2.5.% sSuppose that Fcz(ﬁ) has the property that
t

Firee. ,F_€F implies | U F.| < m . Prove that T, Y(F)

. i
i=1 !

(x,y € X) has the same property.

2.6.% Suppose that Fc:(ﬁ) has the property that

) |Fi NF, | 2 £ . Prove that T, y(F) (x,y € X) has

: r
1<125t 1 2 |

the same property.

1<i

s (Daykin, Katona). Deduce Theorem 2.1 from Theorem

2.7 or Theorem 2.8.

2.8 (Katona ) . Show that, using the notations of
Theorem 2.8, |OS(F)]/|F| is not bounded by a positive constant

from below if s , £ and k are fixed in the following way:




1<L<k , £<s<k .
2.9.% Prove Theorem 2.11 by the permutation method.

2.10 (Liggett JCTA 23 (1977) 15-21). Let F be a family
of k -element subsets of an n -element set (k <n/2) . Define
F as the family of all k -element sets disjoint to some mem-

ber of F . Prove the following sharpening of Theorem 2.1:

| F

T =7 <

I
|F| |F]

S|~

2.11 (Ahlswede). Let Fc:(ﬁ) where 3 <k<n/2 . Suppose

that F,,F,,F3€F , F,NF,%§ and F,NF,%0 imply F,NF#0 .

3 2
Prove |F| < (2:1) what is a sharpening of Theorem 2.1.
2.12 Conjecture. Let Fc:(ﬁ) where 3 <k<n/2 . Suppose
that F contains no 4 members satisfying F1nF21=¢ ; F20F3#¢,
- _ _ n-1
F;NF, %0 , F/NFy;=F . NF,=F,NF,=¢ . Then |F| < (k-1

for n:>no(k) . (The case k=2 1is entirely different; see

) +1

Erdbs-Gallai.)
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Hints
2.1. Trivial consequence of the definitions.

2.2. Either use Exercise 2.1 and Lemma 1.6, or apply the

method of the proof of Lemma 1.6.

2.3. Use the compressing method with Exercise 2.2 as

long as the family consists of merely k -element members.

2.4. Repeat the method of the proof of Lemma 2.2 starting

with a minimum sized member of A .

£ t
2.5. Follow the proof of Lemma 2.3: By U Gic U F, Uly}
. L i=1 s
we may suppose that | U Fi| =m and yé¢ U F. . Moreover,
i=1 i:‘]
b

X€eE U Gi holds. On the other hand, there is an Fj =Gj satis-
i=1 -
fying x€ Fj , vé Fj . Then Fj = Fj U{y}-{x} 1leads to a contra-

diction.
2.6, Let G,,...,G_ €T (F) and suppose that they are
1 t X,Y
transformed from F1""'Ft€ F . Denote by I1, I2, 13, I4 and

I, the set of indices i satisfying
X,y € Gi ’

x¢Gi i TEG,

x¢Gi,yEG r F, =G, U {x}-{y} ,

X€G, , y¢Gi (=Giu.{y}—{x}eF)

xqtc;i , y¢Gi ;

resp. Define
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¢

G, if i€XI

i 1

G, if ie€I,
) GiU{x}—{y} 1£ i€I3
F, =4

G; U{y}-{x} for a=min(|I3|,|I4l) elements of I,

Gi for the other elements of I

4
L Gi if 1€I5 .
Cbserve the F.€F for all i . As G.NG. and F,NnFf. can
i i 3 i 3j
differ only in x and vy , ) |G, nG; | 2 ) Iﬁi ne, |
1si1<izst 1 2 1511<125t 1 2

can be proved by comparing the total number of occurrences of

X and y in the intersections.

2.7. Suppose that Fcz(ﬁ) (k £n/2) is intersecting but
has more than (E:l) members. Observe that F and on_Zk(Fc)

are disjoint, therefore |FJ+|Gn_2k(FC)| < (E) However, the
lower estimate of |0n_2k(Fc)| obtainable by Theorem 2.8 or the

iterated application of Theorem 2.7 leads to a contradiction.

(FC is (n-2k+1) -intersecting.)

2.8. Let A be an £ -element subset of X , |X|=n . Take

F={F: AcF, |F|=k} .

2.9. Observe that condition (2.38) implies that both F
and F© are intersecting inclusion-free families. Prove that

the maximum number of members of F consecutive along a given

cyclic permutation is at most [%J . This follows by Exer-
cise 2.4 if one of the sets if of size S[%J . Otherwise F°©
should be considered. Count the number of pairs (B,F) , Where

B is a cyclic permutation, F€F is consecutive along 8 anda

use |F|! (n-|F]|)! Zl%j![%]! .
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2.10. Prove first the analogous statement for consecutive
sets along a cyclic permutation. Let € be such a family and
A€8 . Prove that [@l plus the number of k -element subsets
not belonging to éué and "being left" from A is at most
k . The same is true for "right". This implies
2|8|+n-|8U8| < 2k which leads to the desired inequality. To
prove the final inequality rewrite it into the form
E%EIFIS |F| and compare the number of pairs (8,A) and

(@,i) where A€F , AEF are consecutive sets in € .

2.11. Observe that the connected components contain inter-
secting subfamilies of F . Then, by Theorem 2.1,
|[F] <) (lil)*_z_(lil;T) where P and S are the ground

sets of the components of size <2k-1 and »>2k , resp. This

is maximum for one component of size n .




