
ON PRIMITIVE ABUNDANT NUMBERS 

PAUL ERD~s*. 

Let vn be an integer and denote by A’@) the sum of its divisors. Let 

The number W. is called a primitive nbunda.nt number (say p.a.n.) if 

u(m) 3 2, 

but, for ajm, u(a) < 2. 

Primit’ive abundant numbers were first discussed by Dickson?. 

In a previous paperI, I proved that the sum of the reciprocals of the 

p.a.n. is convergent by showing that N(lz), the number of p.a.n. not 

greater than n, satisfies 

I now prove that 

where the c’s throughout denote constants. 

Pirst let us consider the upper bound of N(n). 

It is clear that, if cx and 6 are different squarefree integers, then 

G(U) ;f a(b) ; for, after performing the possible reductions, we obtain two 
irreducible fractions with different, denominators. 

We denote by the ‘( squarefree” part of n the product of its prime 

factors which occur in n to the first power; e.g. the squarefree part of 

23.32.5.7 is 5.7. 

We denot’e by the quadratic part of n the product of the prime fa’ctors 
whose exponents are greater than 1; e.g. the quadratic part of 23. 32. 5.7 is. 

23.32. 

-- _- -- ..-. - 
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For brevity, we write 

x = (log n log log n)+ and y= (l*)‘, 

so that xy = log n and x/y = log log n. 

We have to prove that 

We shall show that it is sufficient to consider only the p.a.n. satisfy- 
ing both the following conditions: 

(1) if m <n, the quadratic part of qti is less than ehx, 

(2) if m < n, the greatest prime factor of 112 is greater than ex. 

For we now prove that the number of integers less than or equal to n 
which do not satisfy these conditions is O(n/e@x). 

It is evident that the quadratic part q of an integer is divisible by a 
square greater than or equal to @ ; for if 

where the u’s and ,f?s are greater than or equal to 1, then g is divisible by 
the square 

p4”lpp *.,p~r;%..T;Qq% 

Hence the integers not satisfying (1) are all divisible by a square greater 
than or equal to e hz, and the number of such integers less than or equal to 
n is less tha.n or equal to 

where es < &. 
The integers not satisfying (2) may be divided into two classes. 
In the first class are the integers for which the number of different prime 

factors is less than or equal to iy. We may suppose that their quadratic 
part is less than e&z. Hence the number of such integers less than n is 
less than or equal to 

For the integers of the second class, the number of different prime 
factors is greater than &J. W7e denote the number of these integers by A 
and estimate its value as follows. 
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It is evident that every number containing at least k primes is divisible 

by an integer containing exactly E prime factors. 

Let the integers less than or equal to 12 which contain exactly k prime 

factors be aI, a,, . . .) a,; then the number of integers containing at least 
I; prime fact,ors is less than or equal to 

-Ik+z+ . . . +$. 
a1 a2 

But 

Hence 

and so the number of integers up to n containing at least 7; prime factors 

does not exceed 

n 2”(loglogn)” 
k! 

Here Ic = [+J], the square bracket denoting as usual the integral part, 

and, since 

k! > (;)b)(+)lC, 

Now 

and so A< 
f& e3v+to log log Iog Ib 

Qz 3 

and, for sufficiently large n, 
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We shall now prove the following propositions concerning pan, 

satisfying (1) and (2). 

(a) The squarefree pa,rt of all such p.a.n. has a divisor bekeen *e*” 

and he&“. 

(n) If m is a pan. satisfying (1) and (2), then 

The proof of (a) requires the following lemma : 

A p.a.n, satiifying (1) awl (2) has a, dir:isor bet~ween Qrc and Je+“. 

Let on be a pan. sa’tisfying the conditions (1) and (2) and let 

where SC contains only prime fwtors less than $ei;c: and 27 contains only 

prime factors greater than &&. 
If one of the prime factors of m lies between $ei” and $et*c: it occurs only 

to the first power in consequence of (I), and so proposit.ion (cl’) is evident. 

Now u > *eJbc J 

for, if not, since m is a p.a.n., 

U(U) < 2. 

Then, since the difference between U(U) and 2 is at least li'21; 11-e have 

O(ZL) <2-s. 

Further, 

since the prime factors of v occur only to the first power in consequence 

of (1). 

Now every numberless than n has at most log n. prime factors since, for 

la,rge rz, 

([log n]) ! > (Y) [‘Ognl > ?a. 

Hence 

and so 
4 logn 

U(V) < 14--&-. 
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Consequently, 

for sufficient,ly large n; and t,his co&adicts the hypothesis that m is 

abundant. Hence zc > +ei2. 

where! from ( I ). 232 < -%e . * +c, and consider the numbers 

it follo\rs that p;lg2 . . . pp;; c &eat, 

i.e. the p.a.n. has a divisor in the desired interval. 

Son-, by (l), the quadratic part of the p.a.n. is less than & and so the 

squarefree part of it has a divisor between +ehx and $efz. 

Proposition (6). Let. 2) be the greatest, prime factor of the p.a.n. PYL. 

From (1) and (2), we see that,J&+: and so 

+Since 7n is a p.a..n., 

and so 

TTsing (2), we hare 

which proves (h) . 
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We have now to prove that the number of p.a.n. satisfying conditions 

(1) and (2) is also 

We have seen that the p.a,.n. satisfying t,he conditions (1) and (2) also 

satisfy the two propositions (a) and (b). 

We now prove that the number of integers satisfying (1) and (2) 

and also (a) and (b) is 

This set ofintegers need not conta,in only p.a.n. We denote its elements 

‘by 
Cl, c,, . . . , c,. 

We assert that 

From (a), the squa.refree part of each C, ha’s a divisor D, lying between 
he&” a,nd $efx. Therefore 

We now show that 

i.e. tha,t the number of integers Cw/Do is less than 2ti/ehx = O(n/ec3r), and 

ao the number of integers C, is O(n/eQr). Suppose that 

c c ‘-3. 
Dw, - J-k, ’ 

then, evidently, Owl f: D,?. 

We prove the impossibility of the last equation by proving that 

@) fo@). 

Now 

and +%) = +) u(D,,). 



Thus, if 

then 
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and we may therefore suppose that 

for, if not, we consider its reciprocal -. 
@m,) 

and D,, being a divisor of a p.a.n. is deficient. Hence 

S(D,J < 2D,,, 

and so the denominator of 4’w, 1 
dkJ 

is less than 2D,,D,,. 

Hence 

But, from proposition (b), we see that 

u(Cw,) < w4214 = 1+ + 

4CW?) 2 ex ’ 

an evident contradict,ion. 
Thus we have proved tha,t 

and in fact N(n) < & 

55 

Consider- now the lower bound of N(n). 
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The numbers 2’p1p2 . . . p,., ,& 3 2, w-here p1 <p, =c . . . <p, are sny 

k primes between (k- 1) 9’1 and l&*1: are all p.a.n. (It will be shown 

by proper choice of X: and 1 that the primes p act,ually exist.) 
First we prove that they are abundant numbers. Now 

since ’ 
k 

if the Z’S are positive; and so 

21’1- 1 pi-1 
2ze- 

%! 
----=2. 2lfl- 1 

We now prove tha,t they are p.a.n. For t,his we must prove hhat 

o(2’-lp1p2 . ..pJ < 2, 

and a(%lp1p2 ..I pi?)l;q) < 2. 

NOW “(2’-1j11j32 * ..pe) < U(2’j,,& . . . p*;J; 

i.e. 

if 

i.e., if p)&> 21+-l-2. 

This is true since PI; > (k- 1) 2’fl. 

Thus we need only prove that 

U(2”P1& . ..p.+,) < 2, 

since the omission of any of the other factors p,, p,, . . .? j>k gives a smaller g. 



< (Y) {w&i+ ;! (gJ+&q3+...; 
< (q?) (1+&i+&) 
= ('I+;;') (22"+24--+1) -23;;1 d2* 

Now choose I a’nd k so that 

gx-4 < p<ex-3 
, 

k = [y-2]. 

Clearly E > k, since x > y. 

In this case, the p,a.n. of the form 2’p,p, . . . p, are all less than 

@-3(y-2)?I-2 &-"W"). 

Now (y-2)uh2 ( yu = f+lOgu <es. 

Hence ~X-3(y-~)~-2&-2KY-2) < e~-3fsy-~-2y+4 

T eXU-2U$l<~ZYz~~ 

Consequently the p.a.n. in question a,re all less than n. We now estimate 

their number. 
By the more exact form of the prime number theorem we see that the 

number of primes between (k- 1) 2@1 and k2z+1 is greater than 

For 

g> (l‘l)$. 

n(u) = J : g-L $-O ((lo&L)” > 

for every k. 
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Take 72 = 4, then 

7i+k-l) 21’1) -e 

and 

Hence 

7T(x;2z+1)--‘rr{(7~--)2~~l~ - 
1 

j - log{(k-l)2’+l+l)+.**+~og~2”+~ -+o($), 

i.e. ,(k22+1)-7i((le-1)22++1) > logF;2;+I) +0(g) 

22+1 

=logk+(E+1)log2 +0(G) 

>g+qg >&, 

(p-4 1.1 ez-5 
+p-r. 

Hence 

since 

i.e. 

N(n) > ( 
[ 1 . 1 ex-5/~] 

> 

($-5)~v-2) 

[Y-21 

> 

xv(y-2)w’ 

n (n-l) n--k+l, 
=TcIc--l”’ 1 

> n n 
ev log log ml-7s = exm 

Thus we have proved that, for sufficiently large n, 

e8(lognTlogloyn)i -x Jv(n) -=l e~(log~L~~oglognP ’ 

The difference between the constants may be reduced by longer calculations. 

I should like to thank Professor L. J. Mordell for help in preparing 
my manuscript. 
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