ON PRIMITIVE ABUNDANT NUMBERS

Pavrn ErpoOs*.
[Bxtracted from the Journal of the London Mathematical Society, Vol. 10, Part 1.}

Let m be an integer and denote by S(m) the sum of its divisors. Let

a(m)= %ﬂl

The number m is called a primitive abundant number (say p.a.n.) if
o(m) =2,
but, for d|m, a({d) < 2.
Primitive abundant numbers were first discussed by Dicksont.

In a previous papery, I proved that the sum of the reciprocals of the
p.a.n, is convergent by showing that N(n), the number of p.a.n. not
greater than n, satisfies

e n
N@n)=0 (—1og2 ).
I now prove that

T

n “
¥ <N (R) = ectlognlog logn)!’

g':xtlag i loglogn.

where the ¢’s throughout denote constants.

First let us consider the upper bound of N (n).

It is clear that, if @ and b are different squarefree integers, then
o(a) #o(b); for, after performing the possible reductions, we obtain two
irreducible fractions with different denominators.

We denote by the ¢ squarefree” part of » the product of its prime
factors which occur in 7 to the first power: e.g. the squarefree part of
23.32.5.7 18 5.7.

We denote by the quadratic part of n the product of the prime factors

whose exponents are greater than 1; e.g. the quadratic part of 23.32.5.7 is
28 3%,
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For brevity, we write

logn \1
z = (lognloglogn) and y= (loglgog??.) %
s0 that zy=1logn and z/y=Iloglogn.

We have to prove that

T
801 T

= n

We shall show that it is sufficient to consider only the p.a.n. satisfy-
ing both the following conditions:

(1) if m < n, the quadratic part of m is less than e,
(2) if m < n, the greatest prime factor of m is greater than .

For we now prove that the number of integers less than or equal to n
which do not satisfy these conditions is O(n/e®?).

It is evident that the quadratic part ¢ of an integer is divisible by a
square greater than or equal to ¢%; for if

22z %a, 2.9, 28,
q =p%§1fp2 T '.p.ua“ri‘&-}-l e }rv'a +1’

where the a’s and B’s are greater than or equal to 1, then ¢ is divisible by

the square
L et - = 2,
piape, ., p:"» 7L 2R 2 i,

Hence the integers not satisfying (1) are all divisible by a square greater
than or equal to e™*%, and the number of such integers less than or equal to
» is less than or equal to
n _ 2n n
s
where ¢; < 2.

The integers not satisfying (2) may be divided into two classes.

In the first class are the integers for which the number of different prime
factors is less than or equal to {y. We may suppose that their quadratie
part is less than e**. Hence the number of such integers less than » is
less than or equal to

eMayin — ’\/’ ne — O(’n /e‘«'"“’).

For the integers of the second class, the number of different prime
factors is greater than }y. We denote the number of these integers by A4
and estimate its value as follows.
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It is evident that every number containing at least k primes is divisible
by an integer containing exactly k prime factors.

Let the integers less than or equal to # which contain exactly k& prime
factors be a,. a,, ..., @;; then the number of integers containing at least
L prime factors is less than or equal to

LA L)
a, ' ay a,
Bub 2oty o Lodls LY
51 I @y l aﬂ k! _’D%’gupd
1
Now Y — < 2loglogn.
p,d P
pi=n
1,1 1 _ 2%(loglogn)t
Hence ;I—ITG_;_}_“-FEQA’—'_’

and so the number of integers up to » containing at least & prime factors
does not exceed
n 2%(loglog n)¥

k!
Here I = [1y], the square bracket denoting as usual the integral part,
and, since .
EX* A
2 | Pl el
> ( e) < ( 3 ) ’
n 2% (log logn)¥ 3% n e3u ghyloglogloga)
4< Ty < T il
_ _ { logn \? (loglogn—logloglog n)
Now ylogy= (log Tog n) ( 3
logn )!' loglogn .
(log logn/ 4 7
3+t logloglogn
and 50 A< — .

e P

and, for sufficiently large =,

A<ei‘ﬁ;=0(g%).
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We shall now prove the following propositions concerning p.a.n.
satisfying (1) and (2).

(@) The squarefree part of all such p.a.n. has a divisor between 1ei®
and le*r.

(b) If m is a p.a.n. satisfying (1) and (2), then
2 g(m)<< 2+ 8_2.,

The proof of («) requires the following lemma :
A p.a.n. satisfying (1) and (2) has a divisor between Lel” and leic.
Let mn be a p.a.n. satisfying the conditions (1) and (2) and let

m=uv,

where % contains only prime factors less than lel*, and v contains only
prime factors greater than ei=,
If one of the prime factors of m lies between el and lei”, it occurs only:
to the first power in consequence of (1), and so proposition («) is evident.
Now u > Lel”,
for, if not, since m is a p.an.,
o(u) < 2.

Then, since the difference between o(u) and 2 is at least 1 #, we have

174
o(u) < 2—22_17.

Further, a(v) =11 (1 + %)

pe
since the prime factors of v occur only to the first power in consequence
of (1).

Now every number less than n has at most log »n prime factors. since, for

large n,
llogn]
([logn])! > (E_'E_“]) i,
logn
Hence o(v) < (H_e_i) g ,
and so o(v) < 1_:_410gﬁ
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Conseq uently,

a(m) = o(u)o(r)

<( )( +4logn)<2

for sufficiently large n: and this contradiets the hypothesis that m is
abundant. Hence u > lel®.

Let W= P B,
where. from (1). p& << Lets, and consider the numbers
Pits PYDPEs PYLPEDT: oo PY DT ... P
Evidently there iz a A such that

PPy - DR < 3O Spypg - DR DR

Since Py < det,
it follows that PP PR

i.e. the p.an. has a divisor in the desired interval.
Now, by (1), the quadratic part of the p.a.n. is less than ¢** and so the
squarefree part of it has a divisor between e and let”.

Proposition (b). Let p be the greatest prime factor of the p.an. m
From (1) and (2), we see that p2+m, and so

olm)=o(2) (14+).

Y, P,

Since m is a p.an.,
o(—"l) <2y
»

and =o o(m) <2+

N |

Using (2), we have
2=a(m) <2 + er?

which proves ().
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We have now to prove that the number of p.a.n. satisfying conditions
(1) and (2) is also
n
O(et:u :c) -

We have seen that the p.a.n. satisfying the conditions (1) and (2) also
satisfy the two propositions (a) and (b).
We now prove that the number of integers satisfying (1) and (2)
and also (a) and (b) is
7
0(5s)-

This set ofintegers need not contain only p.a.n. We denote its elements
by

¢y, Cy, ..., C,.

We assert that = O(e:j-‘) .
From (a), the squarefree part of each C, has a divisor D, lying between
1e’* and letr. Therefore
c, 2n

D, e

We now show that D.. =+ D

i.e. that the number of integers C,/D, is less than 2n/e*” = O(n/e*"), and
80 the number of integers U, is O(n/e”*). Suppose that

Co _ Cus
D, D’

then, evidently, D, #D,,.
We prove the impossibility of the last equation by proving that

(55) e(52)

W] .

Now o(Cy) = “(f)_m) o(Dy,)

Lot

and U(C’m)=0(g‘—’:) o(D,,)-
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Thus, if c(%) =0 (%:—j) ;
o(Cu) _ o(Ds)
a(C.)  o(D.,)

then

Since 1), and D, are squarefree,
o(D.,) #o{D,,)
and we may therefore suppose that

a(D,,)
B~

' , o a(D,,)
for, if not, we consider its reciprocal a(D,)

o(Dy,) _ 8(Dy,) Do,

o (Do)~ SDID.

and D,, being a divisor of a p.a.n. is deficient. Hence

S(D,,) < 2D,

and so the denominator of o(D.) is less than 2D, D,,.

U(DW:)
a(D,) 1
Hence a—'-( D) =14 5D.D,

1 : 1 1

But, from proposition (b), we see that

o(Cy) _2+(2fer) ., 1
(o A

an evident contradiction.
Thus we have proved that

and in fact Nn)< e%ﬁ'

Consider now the lower bound of N(n).
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The numbers 2/ p, py... g, k=2, where p;<Ip,<I...<<p, are any
Ik primes between (£—1)2"! and k21, are all p.amn. (It will be shown
by proper choice of I and [ that the primes p actually exist.)

First we prove that they are abundant numbers. Now

O+
o(2'py Py ... Py) = (2 o l) (1_}_%) (1‘;1712.- [~1'LI:1=)

= () (4 gy () - (Vi)

211N /. 1 1 y 1
= ( oI ) (1‘1“;‘.:2;-,-1_14‘;{2&—1_3_'_ IR 7S D P 1)

211 2
Z 30 (H‘ng:— ke)’

1 . 1 52

. 1
since — =t
T Xy +:t!k_ B o A S e

if the @’s are positive; and so

20+l 1
U(2EP1P2---2’J;}2( 51 )(14‘21—_1_1)

gisl_] il

ey G

We now prove that they are p.a.n. For this we must prove that

a(2F1py Py e D) < 2,

and (2P, pg... Pra) < 2.

Now o(271p Py pp) <o (2Py Py et Pras)s
. 21 al+1_ ]

ve. ExS (1+ ) <

’ 1 2] .

if 14 s <sgm—s— ltam
i.e., if P > 20—

This is true since Py > (h—1) 21

Thus we need only prove that

(2P Py D) <2,

since the omission of any of the other factors p,, p,, ..., Py gives a smaller o.
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Now

o(2P1Ps - Pr)
< (%) (v =)
(+ g=mms) - (=)
< e ) {1+ (;._1)91—)! B
ot e L B S L

(’?I+l 1) (1_}_2”1 ' 22‘{*9)
)

91+1,_] 22£+2 19l |-1+1 98l+3__ ]
( ) = T oalie

=2

L3

22’1—2

Now choose ! and % =o that
et < W gm 3,

b=[y—2].
Clearly [ > I, since a > .
In this case, the p.a.n. of the form 2'p, p, ... p, are all less than
er—3 {y_ 2) ¥—2 ple—2)(y—2)_
Now (y—2)-2 < y¥ = eV1osy g%,
Hence ex—a(y_ 2)3;—2 6(.::-—2)(1,-—2) < esx—3+xy—2x—2u+4
_— e.'l‘fﬂ'—2l."+l < gtV =n,
Consequently the p.a.n. in question are all less than n. We now estimate
their number.

By the more exact form of the prime number theorem we see that the
number of primes between (k—1) 2/+! and k21 is greater than

T ex—o
&> LD
“ du u
Hor )= L logu+ ((logu)")
1 1 , 1 /o
=Eg_2—rlog3+" Tlogu_ok{}.ogu)“)

for every h.
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Take &= 4, then

. 1 1 1 2l
[N - M1 S TR L = I RN -, SR RSN, il
w{{b—1) 27 10g2+log3T"'+log(k—1)2‘+1_r0(32)
and
: 1 1 1 1 A
Lol 1y T e et o ¢ e B witSE e Toipo . = o e,
T = e T g T log{k—l)2‘+1+"'Tlogk2‘+1+0(32)'
Hence
¥ : S e 1 1 : 9
e e 1}*1og{(k—1)2f+1+1}+"""logk24+1"'0(‘32‘)’
5 2H—1 2I
i.e. W(k2i+l)—7?{(k-—‘l)21+1}>wﬁj—f) (?)
9l+1 a9l
~ logk—+ (H-l)logz"'o(ﬁ)
2l+l ! 21’ 21
>E¥T"'O(E§) s 5
eﬁ—i l.le-"."—s
2 z
- :[1 .1e*“"5/m] elz—5)y—2)
Hence Nm)> { [y—2] ) =2
. n\ _n (n—1) n—k+l n\k
since (k)_k —1 " 1 >(k>’
Qe N .

myyy e2x+5y = (logn)yeu'i‘fly

1 "
= evloglogn+7z éﬂ_{." =

Thus we have proved that, for sufficiently large =,

n

T T
1 <N (n) < Frmmimmam”

eBllognloglogn)
The difference between the constants may be reduced by longer calculations.
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