NOTE ON THE TRANSFINITE DIAMETER

P. Erpos and J. GLrist.

[Eaxtracted from the Journal of the London Mathematical Society, Vol. 12, 1937.]

I.
We begin with some definitions. A function %(X) is said to be a
measuring function] if it has the following properties :—

(i) A(X) is defined and is continuous in some range 0 << X <h,, and
positive in 0<< X < hy;

(ii) A"(X) exists and is les¢ than or equal to 0 in 0 < X <Ch;
(iii) h(0)=0.

Now let 2 be a measuring function and £ a linear set. Given any positive
number p, we denote by /(p, E) any set of intervals {I,} such that

(i) every point of E is interior to at least one of the I,’s, and
(ii) thelength d of I is less than orequaltop (k=1, 2, ...).
Then we write m{) £ for the iower bound of EK@ for all possible sets I(p, ).
k
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Clearly, as p decreases m{)(E) cannot decrease and so

lim mp) E=m,*E exists.
p—>0

It is easily verified T that m,* satisfies all the axioms of a Carathéodory
measure function and so measurability, measurable sets, etc., can be intro-
duced in the usual way. In this note we are especially interested in the
function h(z) = 1/log (1/x) and, for this A (), we write m, E = AE.

Now suppose that there is sorar rigin of coordinates on the line on
which the set £ lies. We denote b, @, indifferently a point and its distance
from the origin, provided that no ambiguity can arise. Now we define
y 1/n(n—1)

d,(E) = upper bound { 1| |xi—xj[j-
i]

B, Ty ooy Bne

Then it is known that lim d, exists; it is called the transfinite diameter
H—>0

of E. We denote it by 7(E).

It is clear that, if £ is the closure of E, 7(E) = 7(E). The following are
the most important of the known relations between (&) and m, £ for
closed sets§.

(A) If m, E > 0, where S i"-(;—) dt is finite, then (&) > 0.
0

(B) If \E =0, then (E)= 0.

(C) It has been conjectured| that if j h(t) dt diverges and m, E is

t
0

finite, not necessarily zero, then +# = 0. This result has not yet been
proved generally, but Nevanlinna §] has proved it for the special case where
E is a ““ Cantor-set”. In this note we prove it for a general closed set but

1t Cf. Hausdorff, op. cif.

t Cf. M. Fekete, ** Uber den transfiniten Durchmesser ebener Punktmengen *, Math.
Zeitschrift, 32 (1930), 108-114.

§ For (A) see P. J. Myrberg, ““ Uber die Existenz der Greenschen Funktionen auf einer
gegebenen Riemannsche Flache”, Acta Math., 61 (1933), 39-79. For (B) see J. W.
Lindeberg, ‘‘Sur l’existence de fonctions d'une variable complexe et de fonctions holo-
morphes bornées”, Annales Acad. Scient. Fennicae, 11 (1918), KNr. 6; cf. also P. J. Myrberg,
“Bemerkung zur Theorie des transfiniten Durchmessers einer ebenen Punktmenge *,
Annales Acad. Scient. Fennicae, 33 (1830), Nr. 7.

|| R. Nevanlinna, ““ Uber die Kapazitit der Cantorschen Punkimengen ”, Monatshefle
fiir Math. und Phys., 43 (1936), 435-447..

9 R. Nevanlinna, loc. cit.
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only for the special function
1
W= log 1/t

It seems likely that our method can be extended to prove the complete
conjecture, but we have not yet succeeded in effecting this.
The object of this note is to prove the following theorem :

THEOREM. If E is a linear closed sef such that A(E) is finite, then v(F)
18 zero.

II.

Levmma 1. If {p}and {g} G=1, 2, ..., k) denote two sels of positive
numbers such that

E i
Tpy=Z¢g=1
i=1 =1
thent z pi=i
pi>dgi
k
For 1= X p;
i=1
= X p+ Z p
D> Pisig

k
< X p+iZg
Pi= g im]

and so Z p=i
pi=igi
Luzvma 2. If E denotes a set of x non-overlapping intervals {I,} in
(0, 1), where a,, ts the length of I, (n=1, 2, ..., k), and

i 1

—
weyToglja, =

then T(B) < eV,
Take any » points z,, %,, ..., z, in K. Let n, be the number of these
points which lie in I, (r=1, 2, ..., «).

) n; 1 l S _1_
Write =5 E = log a; i§1 log1/a;’

1 Cenditions written beneath the symbols =, 11, &c., mean that the operations are
taken over those terms for which the condition is satisfied.
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The conditions of Lemma 1 are satisfied, and so we deduce that

) n; = in.

nilog l/ai>n/2u
But I |~z < 1T am-D, (1)
i) i=1
This approximation is obtained by replacing |#,—2;| by a, if z; and z; both
belong to I, and by 1 otherwise. We now majorize the right-hand side of
(1) by omitting those values of ¢ for which

1 n
n; log 8 £ 2
Then II |2—~=,;| <exp (— 91 z (n;— 1))
i#j Sfb piYog s =n/2u

L e M2ulin-x)
Since this is true for any set of n points, it follows that
d, (E) < e-nn—2/tun(n-1)_ (2)
We let n tend to infinity in (2) and the lemma follows.
CoroLLARY. If E is a closed set such that \(E) =0, then v(E) = 0.

For given ¢ > 0 we can, by the definition of A(E), enclose F in a set of
intervals {I,} of respective lengths {a,} such that
1 ¥
loglia, = (3)
By the Heine-Borel theorem we can find a finite subset of {,} which also
covers & and for which (3) is @ fortiort satisfied. TFinally we can modify

these intervals so that they do not overlap while the condition (3) is still
satisfied. Let ¢ denote this final set of intervals. By (3) and Lemma 2,

T(§) e Ve, (4)
But, since E c#, it is obvious from the definition of r that
T(E) <7(d). (5)
Since e is arbitrary, we deduce 7(E)= 0.
This corollary is the result quoted under (B) in §1I and first established

by Lindebergf. Lindeberg’s proof, however, depends on results in tbe
theory of functions.

t See foot-note 4 above.
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I1I.
It is clear that the proof of Lemma 2 actually proves the following
slightly stronger result:
Lemma 3. Let E be a finite set of mon-overlapping intervals
{I} (r=1,2, ..., ) such that
x 1
rgl 10g 11"'2{ = o
where a, i8 the length of I, (1 <r <k).
Let z,, z,, ..., x, be any n points in K.
Then Il | g;—a,| < e/ ttee (6)
i#7

if n=ny=ny(x, €), where II' indicates that the product is to be taken only
over those values of v, j for which w;, x; both belong to the same I,.

We proceed to the proof of the theorem stated at the end of §I. Let
E be a closed set in (0, 1) such that A(#) = Lis finite and positive. Suppose
that 7(¥)=1t> 0. Given p> 0, we can, as above, find a finite set {I,} of
non-overlapping intervals such that

) bg—lm— <l (7)
where «, is the length of I, and a, <<p. Let e =min (g;) and
take pis=atl (8)
where N =64l log 2/t. (9)

Now cover £ with a finite set of non-overlapping intervals, each of length
less than or equal to p;, such that (7) is again satisfied. Clearly we can
suppose that all these intervals lie inside the original intervals {7,}; we
denote by 1, (s=1, 2, ..., p,) the set of the former which lie in 7., and by

@,, the length of ..
Now take any = points @, @,, ..., x, of E, where # is sufficiently large.

By (7) and Lemma 3,
0, |2—%,| €AY, (10)
where I1, is taken over those pairs 4, j for which a;, «; belong to the same

interval I ,.
Consider II,|x;—x;| taken over those pairs ¢, j for which a;, z; lie in the

same I, but not in the same I,. Clearly

| = 2 E mipni
I, |2—a;| < a2 ", . (11)
1

where n,, is the number of points z in 1,
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We replace Il,|x;—x;| by Il3]|x;—x;|, where II, is taken over those
a;, x; which do not lie in the same [, but lie in an I, for which

at < ¢4, (12)
Then it is clear that

‘13.|x1-—x5| < ILay—a;| Iy | 2—; . (13)
is]

Suppose that, for i=1, 2, ..., 1,
iy g%nl (?‘:1, 2: eey :pi) (14)
and for each ¢ > 1, there exists 7, (1 < r; << p;) such that
Toip, > 310 (15)

There is clearly no loss of generality in this assumption since we can
order the set {I.} as we please.

nt
Thent ()" < I agwnd
2 i>n '
ari<e "
< T a_gNm,-,-fmw—U by (8),
i>1ig
ati<em il
< I @¥iste-) by (15),
ati ;iin""“
) a
ariEe—nid
4in 2
oo e Z (=<l
ﬁ;ﬁ"-’.&“"'lﬂ
n

Hence, if n issufficiently large compared with the number of intervals,

%
z <13 (say). (17)

¥
)“ < I lz;—a;|, taken over all 4, 7.
i

re|

+ We may obviously assume that (
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It follows that

in

E m= I om— Loy

i=1 ati<em "l i>do
ali<e ¥ ! a;.‘mr‘"-'“

—+% by (1) and (17)

W
rol 3

—
L]
3

|
|

(18)

(]
[==]

For i <4, we have
— & — 2
2 Z g, gy = 0 — Ly, > nP—In, Eny, = dnd,

2
Hence I |—2; | < 11 o™
i<ip
ari<e M
~7/81 z ni
e i<io
a:‘i<s_“-'“

L e (19)
by (18), if n is sufficiently large.
Hence I | z—x,; | < e~(n*/100~(n"/200) (20)
by (10) and (19).

Now take a finer covering of E, {I,,}, deduced from {I,,} as the latter
was deduced from {7,}. Then, by (20), we have

II, | wy—a, | < @3nf/200 21
[ YR} ]

where I, is taken over those pairs ¢, j for which x;, z; belong to the same
interval 7,,. This follows by arguing with the sets {7, } and {I,,} as we
argued above with {I,} and {I,}.
Also, from (19),
I, | —x; | < e ™2, (22)

where I1; is taken over those pairs 4, j for which x;, z lie in the same I, but

not in the same 7.,
From (21) and (22).

II|2;—z; | << e dn?/20, (23)
This process can obviously be continued indefinitely and we deduce

that, if k is any positive integer, then, for all sufficiently large %, we have,
for any set of points of E, x;, x,, ..., a,,

Il |2;—;| S e *n?/20,
i
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Hence, for every £,
T(E) < e ki, (24)
and so 7(B)=0.

This completes the theorem.

Iv.
There are some remarks that seem relevant.

(a¢) We have stated the theorem for linear sets. It is obvious from the
proof that the linearity of the sets iz quite inessential and that the proof is
valid for sets in Euclidean space of any number of dimensions. If the sets
lie in R, then we have merely to replace intervals and their lengths in our
proof by convex n-dimensional regions and their diameters respectively.

(b) The theorem, proved for closed sets in (0, 1), is obviously true for
all bounded closed sets.
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