NOTE ON THE EUCLIDEAN ALGORITHM

PAUL ERDŐS and CHAO KO*

1. The E.A. (Euclidean Algorithm) holds for a quadratic field \(R(\sqrt{m}) \), when, for any two integers \(a, \beta \) in \(R(\sqrt{m}) \) with \(\beta \neq 0 \), a third integer \(\gamma \) in \(R(\sqrt{m}) \) can be so determined that

\[
|N(a-\beta\gamma)| < |N(\beta)| \quad \text{or} \quad |N(\beta-\gamma)| < 1. \tag{1}
\]

The existence of the E.A. is undecided in the following cases, \(p, q \) denoting primes:

I. \(m = p = 13 + 24n \) (\(n > 1 \));

II. \(m = p = 1 + 8n \) (\(n > 7 \));

III. \(m = pq \) with \(p = q = 3 \) or \(p = q = 7 \) (mod 8), and \(pq > 57 \).

In this paper, we show that the E.A. does not exist for large \(p \) in the first two cases, i.e. it can exist only in a finite number of quadratic fields \(R(\sqrt{p}) \).

The integers in \(R(\sqrt{p}) \), where \(p \equiv 1 \) (mod 4), are given by \(x + y\sqrt{p} \), where \(x, y \) are rational integers and \(x \equiv y \) (mod 2). Instead of (1), we can write

\[
|N\left(a+b\sqrt{p}-\frac{1}{2}(x+y\sqrt{p})\right)| = \left| (a-\frac{1}{2}x)^2-p(b-\frac{1}{2}y)^2 \right| < 1,
\]

where \(a, b \) denote rational numbers, i.e.

\[
|(x-2a)^2-p(y-2b)^2| < 4. \tag{2}
\]

* Received 12 March, 1937; read 18 March, 1937.
LEMMA 1. (Behrohr and Rödei.) The E.A. does not exist in \(R(\sqrt{p}) \), \(p = 1 \mod 4 \), if there exists a quadratic residue \(r \) of \(p \), where \(0 < r < p \), such that each of the equations
\[
px^2 - Y^2 = -4r, \quad px^2 - Y^2 = 4(p-r)
\]
is impossible in integers \(x, Y \).

For suppose that \(z^2 \equiv r \mod p \). Take \(a = 0, b = z/p \). Then, from (2),
\[
|px^2 - (py-2z)^2| < 4p.
\]
Since the term on the left under the modulus sign is congruent to \(-4z^2\) (mod \(4p\)), the result follows by putting \(Y = py-2z \).

Now, by special choice of \(r \), we have

LEMMA 2. The E.A. does not exist in \(R(\sqrt{p}) \) for \(p = 1 \mod 4 \), if \(p \) can be expressed in the form
\[
A_1 Q_1 + A_2 Q_2, \quad (A_i > 0, Q_i > 0, i = 1, 2)
\]
where \(Q_1, Q_2 \) are odd primes, \(A_1, Q_1, Q_2 \) are quadratic non-residues \mod p, and \(A_1, A_2 \) are not divisible by odd powers of \(Q_1, Q_2 \) respectively.

Since \((A_1 Q_1/p) = (A_2 Q_2/p) = 1\), we can take \(r = A_1 Q_1 \) in Lemma 1, and then (3) becomes
\[
(4) \quad px^2 - Y^2 = -4A_1 Q_1, \quad px^2 - Y^2 = 4A_2 Q_2.
\]
Since \((p/Q_i) = (Q_i/p) = -1\), and \(A_i \) is not divisible by odd powers of \(Q_i (i = 1, 2) \), both equations in (4) are not solvable and so the Lemma follows.

The proof of the main theorem requires also the following Lemma, of which the proof is given in § 2.

LEMMA 3. Let \(q_1, q_2, q_3 \) be the least three odd prime quadratic non-residues of \(p \). Then, for large \(p, p > p(\eta)\),
\[
q_1 q_2 q_3 < p^{1-\eta},
\]
where \(\eta < 0.001 \) is an arbitrary positive constant.

THEOREM. The E.A. does not exist in \(R(\sqrt{p}) \) for large \(p \), when
\[
p = 13 \mod 24 \text{ or } p = 1 \mod 8.
\]
I. When \(p = 13 \mod 24 \),
\[
(2/p) = -1, \quad (3/p) = 1.
\]
Let \(q_1, q_2 \) be the two least odd prime quadratic non-residues of \(p \). Define \(B_1, B_2 \) by

\[
p = 3q_1 q_2 + 2B_1, \quad p = q_1 q_2 + 2B_2.
\]

Since \(p = 3B_2 - B_1 \), one of the \(B \)'s must be odd. Suppose first that \(B_1 \) is odd; by Lemma 3, \(B_1 > 0 \). Since

\[
(2B_1/p) = (-3q_1 q_2/p) = (-1/p)(3/p)(q_1/p)(q_2/p) = 1,
\]
we have

\[
(B_1/p) = (2/p) = -1,
\]
and so \(B_1 \) contains an odd prime factor, say \(q_3 \), such that \((q_3/p) = -1 \) and \(B_1/q_3 \) is not divisible by an odd power of \(q_3 \). Hence, by Lemma 2 with \(Q_1 = q_1, A_1 = 3q_2, Q_2 = q_3 \), the E.A. cannot exist. A similar proof holds when \(B_2 \) is odd.

II. When \(p = 1 \pmod{8} \),

\[
(2/p) = 1.
\]

Let \(q_1, q_2, q_3 \) be the three least prime quadratic non-residues of \(p \).

Suppose first that \(q_1 \leq p^\epsilon \ (\epsilon \ll \eta) \). The congruence

\[
p - q_2 q_3 x = 0 \pmod{q_1} \quad (0 \leq x < q_1)
\]

is always solvable, and, by Lemma 3, \(p - xq_2 q_3 > 0 \). By the definition of \(q_1, (x/p) = 1 \). If

\[
p - q_2 q_3 x \not\equiv 0 \pmod{q_1^2},
\]
we can express \(p \) in the form of Lemma 2 with \(Q_1 = q_2, A_1 = q_3 x, Q_2 = q_1 \), and so the theorem is proved. Otherwise, we can replace \(x \) by \((1+q_1)x \) to make

\[
p - (1+q_1)xq_2 q_3 \not\equiv 0 \pmod{q_1^2}.
\]

Obviously Lemma 2 applies, since, by Lemma 3,

\[
(1+q_1)xq_2 q_3 < q_1^2 q_2 q_3 < p \quad \text{for} \quad \epsilon \ll \eta.
\]

Suppose next that \(q_1 > p^\epsilon \). The argument above shows that the theorem is proved if \(x \) exists such that \(0 < x < q_1 \) and

\[
p - q_2 q_3 x = 0 \pmod{q_1} \quad \text{but} \not\equiv 0 \pmod{q_1^2}.
\]

Suppose then that

\[
p - q_2 q_3 x = 0 \pmod{q_1^2};
\]
we prove that there exists at least one quadratic residue of \(p \) among the integers
\[
x + q_1, \ x + 2q_1, \ldots, \ x + \left[2 \log q_1\right] \cdot q_1.
\]
By the prime number theorem, the product of the primes not exceeding
\(2 \log q_1 \) is
\[
e^{2 \log q_1 + o(\log q_1)} > q_1 > x.
\]
Thus there exists a prime \(q_0 \leq 2 \log q_1 < q_1 \), i.e. \((q_0/p) = 1 \), and \(q_0 + x \).
Since \(q_0 \) is a divisor of one of the set \(x, x + q_1, x + 2q_1, \ldots, x + (q_0 - 1)q_1 \), say
\(x + yq_1, \ y > 0, \ x + yq_1 = q_0 \cdot s, \ s < q_1 \). Hence \(x + yq_1 \) is a quadratic residue
mod \(p \), since \((s/p) = 1 \), and
\[
p - q_0 q_3 (x + yq_1) \not\equiv 0 \pmod{q_1^2}.
\]
Also, by Lemma 3,
\[
q_3 q_0 (x + yq_1) = q_0 s q_3 < 2q_1 (\log q_1) q_3 q_0 < 2p^{1+\epsilon} \log p < p,
\]
and hence, by Lemma 2, the theorem is proved.

2. It remains now to prove Lemma 3. This requires the following
lemma, the proof of which is similar to that of the well-known Satz 494 of
Landau’s Zahlentheorie, Bd. 2, S. 178.

Lemma 4. For \(1 \leq f < (p - c)/d \),
\[
\left| \sum_{n=1}^{f} \chi(c + nd) \right| < \sqrt{fp \log p},
\]
where \(c, d \) are rational integers, \(p \) is an odd prime and \(\chi \) is any character mod \(p \)
except the principal one.

Let \(q_1, q_2, \ldots, q_3 \) be the odd prime quadratic non-residues mod \(p \) up to
\(p^{1+\epsilon} \) \((0.01 > \epsilon_1 > 0)\). By the prime number theorem, \(z < 2p^{1+\epsilon}/\log p \).
Let \(k \) be the number of odd quadratic non-residues mod \(p \) up to \(p^{1+\epsilon} \).
Then
\[
k < \frac{1}{2} p^{1+\epsilon} \sum_{i=1}^{z} \frac{1}{q_i} + z < \frac{1}{2} p^{1+\epsilon} \sum_{i=1}^{z} \frac{1}{q_i} + 2 p^{1+\epsilon}/\log p,
\]
since each odd non-residue must contain at least one \(q_i \). If \(h \) denotes the
number of odd quadratic residues mod \(p \) up to \(p^{1+\epsilon} \), then
\[
h + k \geq \frac{1}{2} p^{1+\epsilon} - 1.
\]
From Lemma 4, we have
\[
|h - k| < p^{1} \log p;
\]
hence

\[2k > p^{1+n}(\frac{1}{2} - \log p/p^n) - 1. \]

Thus, by (5),

\[\frac{1}{2} p^{1+n} \sum_{i=1}^{z} \frac{1}{q_i} + 2 \frac{p^{1+n}}{\log p} > \frac{1}{2} p^{1+n}(\frac{1}{2} - \log p/p^n) - \frac{1}{2}; \]

hence

\[(6) \quad \sum_{i=2}^{z} \frac{1}{q_i} > \frac{1}{2} - \epsilon_2, \]

with \(0 < \epsilon_2 = \epsilon_2(p, \epsilon_1) < 2 \cdot 10^{-5}. \)

Suppose first that \(q_1 \leq p^\epsilon. \) Then, since \(q_1 > 3, \)

\[\sum_{i=2}^{z} \frac{1}{q_i} > \frac{1}{6} - \epsilon_2. \]

If \(q_2 \neq 5, \)

\[\sum_{i=3}^{z} \frac{1}{q_i} > \frac{1}{6} - \epsilon_2 - \frac{1}{7} > \frac{1}{43}. \]

From the prime number theorem,

\[\sum_{p \leq x} \frac{1}{p} = \log \log x + C + O(1), \]

where \(P \) denotes a prime, and \(C \) is a constant. Hence

\[\sum_{p_i < p < p^{1+n}} \frac{1}{p} = \log \log p^{1+n} + \log \log p^{1+n} + O(1) < 1/43, \]

by choice of \(\epsilon_4 > 0. \) We see also that we can take \(\epsilon_4 > \frac{3}{4} \eta. \) Hence

\[q_3 < p^{1-\eta}, \]

and so

\[q_1q_2q_3 < q_1q_2^2 < p^{3+1-2\epsilon_3} = p^{1-\eta}. \]

If \(q_2 = 5, \) by Lemma 4, with \(c = 1, d = 30, \) there exists at least one quadratic non-residue among the positive integers of the form \(30n + 1 \) up to \(p^{1+n}, \) since \(p^{1+n} > \sqrt{p} \log p, \) and so

\[q_3 < p^{1+n} \quad \text{and} \quad q_1q_2q_3 = 15q_3 < p^{1-\eta}. \]

Suppose next that \(q_1 > p^\epsilon. \) Since \(q_2 > q_1 > p^\epsilon, \) from (6), we get

\[(7) \quad \sum_{i=3}^{z} \frac{1}{q_i} > \frac{1}{2} - \epsilon_2', \]

where \(0 < \epsilon_2' < 10^{-5}. \) Since, by choice of \(\epsilon_5 \) \((0.008 > \epsilon_5 > 0.007), \)

\[\sum_{p_i < p < p^{1+n} \leq p_{i+n}} \frac{1}{p} = \log \log p^{1+n} + \log \log p^{1+2\epsilon_2} + O(1) < \frac{1}{2} - \epsilon_2', \]
we have*, from (7),
\[q_2 < p^{1/2+\varepsilon}. \]
Hence
\[q_1^2 q_2 q_3 < p^{3/2+3\varepsilon} < p^{1-\varepsilon}. \]
This proves the lemma.

We should like to thank Prof. L. J. Mordell for his help with our manuscript.

The University of Manchester.

* Vinogradov proved that the least quadratic non-residue mod p is less than
\[p^{1/2+\varepsilon}(\log p)^2. \]