NOTE ON THE PRODUCT OF CONSECUTIVE INTEGERS (II)

P. Erdös*.

[Extracted from the Journal of the London Mathematical Society, Vol. 14, 1939.]

In a previous paper[†], I proved that a product of consecutive positive integers is never a square. In part I of the present paper, I show that, for every l > 2, there exists a $k_0 = k_0(l)$, such that, for $k \ge k_0$,

(1)
$$n(n+1)...(n+k-1) = y^{l}$$

is impossible. From the well-known theorem of Thue and Siegel it follows that, for fixed k, equation (1) has only a finite number of solutions; thus there is only a finite number of cases in which a product of consecutive integers is an l-th power.

In the second part of this paper I show that, for $k \ge 2^l$,

(2)
$$\binom{n}{k} = y^l \quad (n \ge 2k)$$

is impossible. The condition $n \ge 2k$ involves no loss of generality, since $\binom{n}{k} = \binom{n}{n-k}$. It is obvious that $\binom{n}{2} = y^2$ is possible; for example, $\binom{9}{2} = 6^2$, $\binom{50}{2} = 35^2$; but it is very probable that (2) has no solutions if l > 2. I have proved this only for l = 3.

I.

We need two lemmas.

LEMMA 1. Let c_1 be a fixed positive number. Let m be sufficiently large, and let $0 < a_1 < a_2 < ... < a_r \leq m$ be a sequence of integers with $r > c_1 m$. Then there exists a positive number c_2 , depending only on c_1 , such that there are at least $\frac{1}{2}c_1m$ pairs a_i , a_j for which $(a_i, a_j) > c_2m$.

Proof. Denote by $b_1, b_2, ..., b_s$ all integers greater than $c_2 m$ and not greater than m having every proper divisor less than or equal to $c_2 m$. Obviously every integer lying between $c_2 m$ and m has a divisor among the b's. Hence there are at least

$$r-c_2m-s > (c_1-c_2)m-s$$

^{*} Received 24 February, 1939; read 23 March, 1939.

[†] P. Erdös, Journal London Math. Soc., 4 (1939), 194–198. I refer to this paper as (I).

pairs a_i , a_j for which (a_i, a_j) is divisible by a b, *i.e.* is greater than $c_2 m$. Thus to prove the lemma it is sufficient to show that, for sufficiently small c_2 ,

(3)
$$s < (\frac{1}{2}c_1 - c_2) m.$$

To prove (3) we split the b's into two classes. In the first class we put the b's less than $c_2{}^{\frac{1}{2}}m$, and in the second class the other b's. It is evident that every prime factor of any b of the second class is greater than $1/c_2{}^{\frac{1}{2}}$; thus, if we choose c_2 sufficiently small, the number of b's of the second class is less than $\frac{1}{4}c_1m$ for sufficiently large m. Also the number of b's of the first class is at most $c_2{}^{\frac{1}{2}}m$. Hence

$$s < \frac{1}{4}c_1 m + c_2^{\frac{1}{2}} m < (\frac{1}{2}c_1 - c_2) m,$$

for sufficiently small c_2 . This proves the lemma.

LEMMA 2. The number of solutions of

 $Ax^{l}-By^{l}=C,$

where l > 2 and A, B, C are given positive integers, is finite.

Proof. Lemma 2 is a special case of the well-known theorem of Thue and Siegel.

THEOREM I. For $k > k_0(l)$, (1) has no solutions.

Proof. First we show that, if (1) has a solution, then* n > k'. We begin by proving that n > k. For, if $n \leq k$, then, by a theorem of Tchebicheff, there exists a prime p satisfying

$$n+k-1 > p \ge \frac{1}{2}(n+k) \ge n$$
;

thus p occurs in the left-hand side of (1) to the first power, which is impossible. Suppose next that n > k; then, by a theorem of Sylvester and Schur[†], the left-hand side of (1) is divisible by a prime p greater than k. Obviously only one factor, say n+i $(i \le k-1)$, can be divisible by p, and so, if (1) holds, $n+i \equiv 0 \pmod{p^l}$. Thus

$$n+i \ge p^l \ge (k+1)^l > k^l+2k+1, \quad i.e. \quad n > k^l.$$

We now write

$$n+i=a_ix_i^l$$
 $(i=0, 1, 2, ..., k-1),$

246

^{*} The proof is similar to the proof in (I) that $n > k^2$.

[†] P. Erdös, Journal London Math. Soc., 9 (1934), 282-288.

where the a's are not divisible by any l-th power and have all their prime factors less than k. As in (I), we show that the a's are all different. For otherwise we should have

$$k > a_i x_i^{l} - a_i x_j^{l} \ge la_i x_j^{l-1} > l(a_i x_j^{l})^{1/l} = l(n+j)^{1/l} > n^{1/l},$$

in obvious contradiction to the inequality proved above.

Since there are at most $[k/p^u]+1$ multiples of p^u on the left side of (1) and since the *a*'s are not divisible by *l*-th powers, it follows that

(4)
$$a_0 a_1 \dots a_{k-1} \leqslant \prod_{p < k} p^{\lfloor k/p \rfloor + \lfloor k/p^2 \rfloor + \dots + \lfloor k/p^{l-1} \rfloor + l-1} \leqslant \left(\prod_{p < k} p\right)^{l-1} k!$$

 $< (4^k)^{l-1} k!,$

since*

$$\prod_{p < k} p < 4^k.$$

From (4) it follows that at least $\frac{1}{2}k$ of the *a*'s do not exceed $4^{2\ell-2}k$, for otherwise we should have

$$a_0 a_1 \dots a_{k-1} \ge 1 \cdot 2 \dots [\frac{1}{2}k] (4^{2l-2}k)^{k-[\frac{1}{2}k]} > 4^{k(l-1)}k!.$$

Next we show that, for sufficiently large k, the x_i corresponding to those a_i which do not exceed $4^{2l-2}k$ are all different. For otherwise we should have

$$k > a_i x_i^{l} - a_i x_i^{l} \geqslant x_i^{l} \geqslant \frac{n}{a_i} \geqslant \frac{k^3}{k 4^{2l-2}} \geqslant k$$

when $k \ge 4^{l-1}$.

Now, by applying Lemma 1 with $m = 4^{2l-2}k$, $c_1 = 1/2 4^{2l-2}$, we deduce that there exist at least $\frac{1}{4}k$ pairs a_i , a_j with $a_i < k4^{2l-2}$, $a_j < k4^{2l-2}$, such that $(a_i, a_j) > c_2 k$, where c_2 depends on l but not on k. For each of these pairs we have

(5)
$$\frac{a_i}{(a_i, a_j)} x_i^{l} - \frac{a_j}{(a_i, a_j)} x_j^{l} < \frac{k}{(a_i, a_j)}.$$

The equations (5) are all of the form

(6)
$$Ax^{l}-By^{l}=C, A<\frac{1}{c_{2}}4^{2l-2}, B<\frac{1}{c_{2}}4^{2l-2}, C<\frac{1}{c_{2}}.$$

Thus the number of different equations (5) is less than

 $4^{4l-4}c_2^{-3}$.

^{*} P. Erdös, loc. cit.

P. Erdös

Hence there is an equation which occurs at least

$$D = kc_2^3/4^{4l-3}$$

times; and, since the x_i 's belonging to different *a*'s are all different, this equation has at least D solutions. But for sufficiently large k this contradicts Lemma 2. This completes the proof of Theorem 1.

THEOREM 2. Suppose that $n \ge 2k$; then, for $k \ge 2^l$,

(7)
$$\binom{n}{k} = y^l$$

is impossible.

Proof. Write

$$n-i=a_i x_i^l$$
 $(i=1, 2, ..., k-1),$

where the *a*'s are not divisible by any *l*-th power and have only prime factors not exceeding k. We can show just as in the first part of the paper that the *a*'s are all different. If (7) holds, we evidently have

(8)
$$\frac{a_0 a_1 \dots a_{k-1}}{k!} = \frac{w^l}{v^l}.$$

We now show that

 $a_0 a_1 \dots a_{k-1} \leqslant k!,$ $a_0 a_1 \dots a_{k-1} | k!.$

and in fact

Let p be any prime; let ν_p and μ_p be defined by*

 $p^{\nu_p} \| k!, p^{\mu_p} \| a_0 a_1 \dots a_{k-1}.$

It is sufficient to show that $\nu_p \ge \mu_p$ for every p. Evidently

$$\begin{split} \nu_p &= \sum_{l=1}^{\infty} \left[\frac{k}{p^l} \right], \quad \mu_p \leqslant \left[\frac{k}{p} \right] + \left[\frac{k}{p^2} \right] + \ldots + \left[\frac{k}{p^{l-1}} \right] + l - 1. \\ \mu_p - \nu_p \leqslant l - 1. \end{split}$$

Thus

On the other hand it follows from (8) that

$$\mu_p - \nu_p \equiv 0 \pmod{l};$$

this proves that $\nu_p \ge \mu_p$.

For $k \ge 2^l$, we have

$$a_0 a_1 \dots a_{k-1} \ge 1 \cdot 2 \dots (2^l - 1)(2^l + 1) \dots (k+1) > k!,$$

an obvious contradiction.

* $p^a \parallel m$ stands for $p^a \mid m$, $p^{a+1} + m$.

248

THEOREM 3. Suppose that $n \ge 2k$; then

$$\binom{n}{k} = x^3$$

is impossible.

Proof. We use the same notation as in Theorem 2. In the previous proof we showed that

$$a_0 a_1 \dots a_{k-1} \leqslant k!,$$

and, since the *a*'s are all different, this means that the *a*'s are the integers 1, 2, ..., k in some order. Suppose first that k is even. Consider

$$n-i = \frac{1}{2}kx^3$$
 and $n-j = ky^3$ $(i, j < k);$

then

$$2(j-i)/k = x^3 - 2y^3 = \pm 1$$
,

which is impossible*.

Suppose next that k is odd. Here we obtain

$$2(j-i)/(k-1) = x^3 - 2y^3 = \pm 1$$
 or ± 2 .

The first case is impossible. The second leads to

$$x^3 = 2(y^3 \pm 1),$$

 $y^3 \pm 1 = 4u^3 \quad (u = \frac{1}{2}x),$

i.e.

which is also impossible[†]. This proves Theorem 3. If we could show that the equations

$$x^l \pm 1 = 2y^l$$
 and $x^l \pm 1 = 2^{l-1}y^l$

are both impossible for every $l \ge 3$, we could immediately deduce that

$${n \choose k} = y^l, \quad l \geqslant 3, \quad n \geqslant 2k$$

is impossible.

Institute for Advanced Study, Princeton, N.J., U.S.A.

* Dickson, History of the theory of numbers, 2 (1920), 574-575.

† Dickson, ibid.

Printed by C. F. Hodgson & Son, Ltd., Newton St., London, W.C.S.