NOTE ON THE PRODUCT OF CONSECUTIVE INTEGERS (II)
P. Ernos*.
| Eetracied from the Journal of the London Mathematical Society, Vol. 14, 1939.]

In a previous paperf, I proved that a product of consecutive positive
integers is never a square. In part I of the present paper, I show that, for
every [ > 2, there exists a &, = k,([), such that, for & =k,

(1) n(n+1)... (nt+k—1)=1¢

is impossible. From the well-known theorem of Thue and Siegel it follows
that, for fixed %, equation (1) has only a finite number of solutions; thus
there is only a finite number of cases in which a product of consecutive
integers is an I-th power.

In the second part of this paper I show that, for k& = 2!,

(2) () =¥ (n>2k)
is impossible. The condition n = 2% involves no loss of generality, since

n n ; r A it -
( T ) - (n—- ) It is obvious that (Q)my is possible; for example,

(g) =62, (5;] ) = 35%; but it is very probable that (2) has no solutions if

I>2. 1 have proved this only for I=3.

We need two lemmas.

LemMA 1. Let ¢ be a fixed positive number.  Let m be sufficiently large,
and let 0 <a, <a,<...<a,<<m be a sequence of integers with r > c,;m.
Then there exists a positive number c,, depending only on c,, such that there
are at least Ytoym pairs a;, a; for which (o, a;) > cym.

Proof. Denote by by, by, ..., b, all integers greater than c,m and not
greater than m having every proper divisor less than or equal to c¢,m.
Obviously every integer lying between cy,m and m has a divisor among the
b's. Hence there are at least

r—CyM—8 > (C;—€,y) M—S

¥ Received 24 February, 1939; read 23 March, 1930.
t P. Erdés, Journal London Math. Soc., 4 (1939), 194-198. I refer to this paper as
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pairs a;, a; for which (a;, a;) is divisible by a b, i.e. is greater than ¢om. Thus
to prove the lemma it is sufficient to show that, for sufficiently small ¢,,

(3) 8 < (deg—cp)m.

To prove (3) we split the b’s into two classes. In the first class we put
the #’s less than c,!m, and in the second class the other b’s. It is evident
that every prime factor of any b of the second class is greater than 1/c,?;
thus, if we choose ¢, sufficiently small, the number of &’s of the second class
is less than }c, m for sufficiently large m. Also the number of b’s of the
first class is at most c,m. Hence

s < leymtextm < (de,—cy)m,
for sufficiently small ¢,. This proves the lemma.
LeMma 2. The number of solutions of
Ad— By =0,
where 1> 2 and A, B, C are given posilive integers, is finite.

Proof. Lemma 2 is a special case of the well-known theorem of Thue
and Siegel.

TaEOREM 1. For k> ky(l), (1) has no solutions.

Proof. First we show that, if (1) has a solution, then* n >4. We
begin by proving that n>#k. For, if » <k, then, by a theorem of
Tchebicheff, there exists a prime p satisfying

ntk—1>=>p=intk) =n;

thus p occurs in the left-hand side of (1) to the first power, which is
impossible. Suppose next that n > %; then, by a theorem of Sylvester
and Schurft, the left-hand side of (1) is divisible by a prime p greater than £.
Obviously only one factor, say n--¢ (i <<k—1), can be divisible by p, and
so, if (1) holds, n+i=0 (mod p*). Thus

n+i = = (k41> FH2k+1, e n>E
We now write

ntt=ex! (1=0,1,2, .., k—1),

* The proof is similar to the proof in (I) that n > &%
1 P. Erdos, Jowrnal London Math. Soc., 9 (1934), 282-288,
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where the a’s are not divisible by any /-th power and have all their prime
factors less than k. As in (I), we show that the a's are all different. For
otherwise we should have

k> axi—anf 2 lawi? > Uaa /) = Unt-j) > 2l

in obvious contradiction to the inequality proved above.
Since there are at most [£/p"]-1 multiples of p* on the left side of (1)
and since the a’s are not divisible by I-th powers. it follows that

: ; 11
(4) Bl o By & JL BRI e A G -1 ( 1T P) k!
: p<k pek
< (451k),
gince* IT p <4
p=k

From (4} it follows that at least 1% of the a's do not exceed 4%-2f, for
otherwise we should have

UGy oo By = 1.2, [RE](4%-2k)F T3] > gRE-D E),

Next we show that, for sufficiently large %, the z; corresponding to those
a; which do not exceed 4¥—2f are all different. For otherwise we should

have

i &
E>aonf—axizatz—2>

G = =t

when k£ = 41,

Now, by applying Lemma 1 with m = 4¥-2k, ¢, = 1/24%2, we deduce
that there exist at least 1k pairs a;, a; with ¢; < k4%-2, a; < k4%-2, such that
(a;, a;) > ¢y k., where c, depends on / but not on k. For each of these pairs
we have

(5) e x;__ﬁ_x_z{_k_‘
(ay, a;) ™" (a, a;)7 7 (a4 a;)
The equations (5) are all of the form
6) Ad—By=¢, A<tagre polyme ol
Co Cy Ca

Thus the number of different equations (5) is less than

4“—4 053'

* P, Erdos, loc. cil.



248 P. Ernos

Hence there is an equation which occurs at least
D = fe {443

times; and, since the 2,'s belonging to different @’s are all different, this
equation has at least 1) solutions. But for sufficiently large & this contra-
dicts Lemma 2. This completes the proof of Theorem 1.

II.
THEOREM 2. Suppose that n = 2k ; then, for k= 2!,

n
g (k) =¥
s impossible.
Proof. Write
n—it = a.,.xl.'r (f,—_- ]_; 2, S k'—l)‘

where the a’s are not divisible by any {-th power and have only prime factors
not exceeding . We can show just as in the first part of the paper that the
a’s are all different. 1If (7) holds, we evidently have

I
{8 A

We now show that
Aoy ... g <KL

and in fact Aoy ...

Let p be any prime; let v, and g, be defined by*
prlkl, prellage, ... apy.

It is sufficient to show that v, = ., for every p. Evidently

wm 5[5} me[L [

Thus T s o B
On the other hand it follows from (8) that
pp—v,=0 (modl);
this proves that v, = p,.
For & = 2!, we have
Aoy ..o @ =1.2 0 2—=1)(241) ... (k+1)> k!,

an obvious contradiction.

* pa|lm stands for p2lm, p*+1+m.
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TreEORENM 3. Suppose that n = 2k; then

L P
) (k) ==
18 impossible.
Proof. We use the same notation as in Theorem 2. In the previous
proof we showed that

@y @By .oe By K,

and, since the a’s are all different, this means that the a’s are the integers
1,2, ..., kin some order. Suppose first that & is even. Consider

n—i=%kx* and n—j=ky3 ( j<k);
then 2(j—i)/k=23—2y3 = L1,

which is impossible*,
Suppose next that k is odd. Here we obtain

2(j—i)/(k—1) =a3—2y3 = +1 or +2.
The first case is impossible. The second leads to
2* = 2(y°+1),
Le. PEl=4u®  (u=a),

which is also impossiblet. This proves Theorem 3. If we could show
that the equations

d+1=2¢ and o41=21y

are both impossible for every ! = 3, we could immediately deduce that

(:)=y, [>3, n>2%

is impossible.
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