ON THE SMOOTHNESS OF THE ASYMPTOTIC DISTRIBUTION
OF ADDITIVE ARITHMETICAL FUNCTIONS.*

By Patn Erpos.

Introduction. Starting with any given sequence a, g, = *,dp,- - - Of
real numbers, define a sequence fi, 2, fs, " - by placing fu = Za,, where the
summation runs through all prime divisors p of n (in particular, f, =0).
Clearly, fuun= fu -+ fm whenever (n,m) —1.

Put a*, —ap or a*p =1 according as — 1 < @, < 1 does or does not hold.
It is known® that the additive function f, of n possesses an asymptotic
distribution function ¢(z),— % < # < -+ o, if and only if the series

(1) 322 ana EE;—)- are convergent,

in which case the Fourier-Stieltjes transform.
(2) L(u) -—=J elvide (), —w < U<+ »

is represented for every real u by the convergent product

(3) L(u)=n(1_1—ex§(u:p-u)).
The velation (8) and a general theorem of P. Lévy imply* that the
distribution function o(z) is continuous for — o <z < + o if and only if

1
(4) aio P 0.
It will always be assumed that (1) and (4) are satisfied.

It follows from a general theorem of Jessen and Wintner® that the
monotone continuous function o(z) either is absolutely continuous or purely
singular for — o« < #'< -+ =. The object of the present note is to show
that either of these cases can actually occur for additive arithmetical functions

in of simple type.

* Received March 23, 1939.
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In particular, the result of § 1 will imply that if

) _ (—1)30
G “ = Tloglog p)**’

(p > e),

then there exists a transcendental entire function ¢(2) = ¢ (2 + iy) which
reduces for ¥y =0 to the distribution function of f.. On the other hand, the
vesult of § 3 will show that if

n
(6) f-n e log m’}" 5

where ¢(n) is Kuler’s function, then the distribution funection of f» is not
ghzolutely continuous.

1. The method of this §1 is, in contrast to that of §3, not of an ele-
mentary nature, and consists of an adaptation of a method applied by Wintner
to Bernoulli convelutions and the corresponding distribution functions occurring
in the theory of the Riemann zeta function.* This method consists in esti-
mating the product (3) for large |« | by the following approach: Since each
of the factors of (3) has, for every u, an absolute value not exceeding 1, it is
clear that
(1) Lws m - imemlet)

Alu <p<Blu) P |

holds for arbitrary positive functions 4 (%), B(u) of w. And the method
consists in choosing A (u), B(u), if possible, in such a way as to assure that
(8) L(u) =0(exp—Clul?), u—>=* w0,

holds for some pair of positive constants ¢, C. If (2) satisfies (8), then o(z)
has for every « derivatives of arbitrary high order; while if (8) holds for
¢=1 and some (' > 0, then o(2) is regular analytic and bounded in every
strip | §z | < const. < (' about the real axis of the complex z-plane.® In par-
ticular, o () is an entire function if (8) holds for some ¢ > 1 and for some
C > 0.

Suppose that |, | is monotone in p, and define the range of p-values
over which the product (7) iz extended by

(9) A(u) <p<B(u): 3r<4|au| < in
Then each factor of the product on the right of (7) is less than 1 —1/p;
so that L(u) < II'(1—1/p), where p runs, for every fixed u, over the
range (9).

* A, Wintner, Bulletin of the American Mathematical Society, vol. 41 (1935), pp.

137-138; American Journal of Mathematics, vol. 61 (1939), pp. 231-236.
% A, Wintner, American Journal of Mathematics, vol. 56 (1934), p. 659.
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Hence, by Mertens’ elementary result II (1 —1/p) ~ e /logt,
pe i

log A (w)

(10) L{u) EO(logB(u_)

), U—> + oo,

where 4 (w), B(u) are defined by (9).

For instanee, if a; is given by (5), then (8) is catisfied by a ¢ > 1 and a
("> 0. In fact, if the exponent % of the denominator of (5) is replaced by
an arbitrary 2 > 4, then (10) and (9) clearly imply that (5) is satisfied by
e=1/x and ' > 0. Hence, o(2) iz an entire funetion if } < o < 1; it is
regular analytic at least in a strip | Jz | < const. if @ =1 and it has, at least,
derivatives of arbitrarily high order for every u if @ > 1. It may be men-
tioned that if = > 1, the distribution function o(2) has derivatives of arbi-
trarily high order also when one omits in (5) the factor (— 1)@} ; in which
cage o(z) cannot be regular analytic along the real axis, since o(xz) = 0 for
every @ < 0.

2. Let a, = 27. Then it is readily verified from (3) that L(2"x) tends,
as m — £, to a positive limit; so that

(11) L(u)—0, U—> =+ o0,

does not hold. It follows, therefore, from the extension of the Riemann-
Lebesgue lemma to (2), that the distribution function e(z) is singular.

Of course, (11) only is a necessary condition for the absolute continuity
of o(2) ; in fact.® not even L(u) = O(u?*), where e > 0 is arbitrarily small,
is capable of assuring the absolute continuity of o (z).

On the other hand, it is clear from Plancherel’s theorem that if
L(u) = O(uw?**) holds for some e > 0, then o(x) must be absolutely con-
tinuous. This estimate of L(u) is satisfied in case ¢y =— 1/log p. In order
{o see this, one merely needs a slight improvement on the erude step (7) and
repeated application of Mertens” asymptotic formula, used in §1.

3. In contrast to the result of § 1, it will now be shown that if
(1?) p=0(p°), p-—>=,

holds for some ¢ > 0, then ¢(x) is singular.

In the proof two elementary facts will be needed:

(I) Choosing a fixed large N, write every positive integer m in the
form m = m’'m”, where m’ is composed of primes = N, and m” of primes
> N. Then the density of those m which satisfy the inequality m’ < Neis
exceeds a positive lower bound « which depends on ¢ > 0 but not on N.

In fact, the density of the positive integers which are not divisible by

5 Cf, N. Wiener, and A. Wintner, American Journal of Wathematics, vol, 60 (1938),
pp. 813-522.
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any prime = N is II(1 —1/p), where p = N (sieve of Eratosthenes). Thus,
it is readily seen that the density of the integers m — m'm” for which
m’ < N/t 1g

1
2 o I (1 o E)_
mt e Nedt e P=N p

Hence, (I) follows from II (1—1/p) ~e™/log N.
p=N

(II) For a fixed large N and for k=1,2,- - -, put g = Sa,, where
the summation runs through those prime divisors p of k¥ which do not exceed
N, and the g, satisfy (12). Let fi be defined, as in the Introduction, by the
sum 3a,, where g rung through the prime divisors ¢ of k. Then there exists
a b > 0 which is independent of N and has the property that the density of
those positive integers k which satisfy the inequality | fi — gx | > N~/2 cannot
exceed BN,

In fact, it iz clear that, for an arbitrary =,

3 fomgu| = 3 I'ft-y|=0(-n2 1)<"‘4,
o T p>N PN p1+c Ne

where b is a constant. Thus, the density of those positive integers & which
satisfy both inequalities & =n, |fc— g« | > N*2 cannot be greater than
bnN-9/2,  This clearly implies (II).

It is now easy to show 7 that o(x) is singular on the assumption (12).
In fact, let N be large. Consider the a-intervals

fn—N-2 <2< fu+ N2, where m=1,2,- -+, [N4].

It follows from (I) and (II) that the density of those positive integers & for
which @ =f; lies in one of these [N¢*] intervals cannot be less than
« — bN-¢% and exceeds, therefore, a fixed lower hound C' > 0 for all suffi-
clently large N. And the sum of the lengths of these [N¢*] intervals is
majorized by N-¢/*. Hence, on letting ¥ — =, one sees from the definition
of o(z) as the asymptotic distribution function of f., that o(z) cannot be
absolutely continuous.

Since (12) implies (4), it follows from the general theorem of Jessen
and Wintner, referred to in the Introduction, that e(z) is purely singular.
It may be mentioned that, in the particular case (12), a direct and elementary
digcussion could also assure that o(z) does not possess an absolutely continuous
component.

THE INSTITUTE FOR ADVANCED STUDY.
* For a similar argument, ¢f. E. R. van Kampen and A. Wintner, Journal of the

London Mathematical Society, vol. 12 (1937), pp. 243-244; also P. Hartman and R.
Kershner, American Journel of Mathematics, vol, 59 (1937), pp. 509-822.




