## ON THE SMOOTHNESS OF THE ASYMPTOTIC DISTRIBUTION OF ADDITIVE ARITHMETICAL FUNCTIONS.\*

By PAUL ERDÖS.

**Introduction.** Starting with any given sequence  $a_2, a_3, \dots, a_p, \dots$  of real numbers, define a sequence  $f_1, f_2, f_3, \dots$  by placing  $f_n = \sum a_p$ , where the summation runs through all prime divisors p of n (in particular,  $f_1 = 0$ ). Clearly,  $f_{n+m} = f_n + f_m$  whenever (n, m) = 1.

Put  $a^*_p = a_p$  or  $a^*_p = 1$  according as  $-1 < a_p < 1$  does or does not hold. It is known<sup>1</sup> that the additive function  $f_n$  of n possesses an asymptotic distribution function  $\sigma(x), -\infty < x < +\infty$ , if and only if the series

(1) 
$$\Sigma \frac{a^{+}_{p}}{p}$$
 and  $\Sigma \frac{(a^{+}_{p})^{2}}{p}$  are convergent,

in which case the Fourier-Stieltjes transform.

(2) 
$$L(u) = \int_{-\infty}^{+\infty} e^{iux} d\sigma(x), \quad -\infty < u < +\infty$$

is represented for every real u by the convergent product

(3) 
$$L(u) = \Pi\left(1 - \frac{1 - \exp(ia_p u)}{p}\right).$$

The relation (3) and a general theorem of P. Lévy imply<sup>2</sup> that the distribution function  $\sigma(x)$  is continuous for  $-\infty < x < +\infty$  if and only if

(4) 
$$\sum_{a_p \neq 0} \frac{1}{p} = \infty.$$

It will always be assumed that (1) and (4) are satisfied.

It follows from a general theorem of Jessen and Wintner<sup>3</sup> that the monotone continuous function  $\sigma(x)$  either is absolutely continuous or purely singular for  $-\infty < x < +\infty$ . The object of the present note is to show that either of these cases can actually occur for additive arithmetical functions  $j_n$  of simple type.

<sup>\*</sup> Received March 23, 1939.

<sup>&</sup>lt;sup>1</sup> P. Erdös and A. Wintner, American Journal of Mathematics, vol. 61 (1939), pp. 713-721.

<sup>&</sup>lt;sup>2</sup> P. Lévy, Studia Mathematica, vol. 3 (1931), p. 150; cf. loc. cit.<sup>1</sup>

<sup>&</sup>lt;sup>3</sup> B. Jessen and A. Wintner, Transactions of the American Mathematical Society, vol. 39 (1935), p. 86; cf. loc. cit.<sup>1</sup>.

In particular, the result of §1 will imply that if

(5) 
$$a_p = \frac{(-1)^{\frac{1}{2}(p-1)}}{(\log \log p)^{3/4}}, \quad (p > e^e),$$

then there exists a transcendental entire function  $\sigma(z) = \sigma(x + iy)$  which reduces for y = 0 to the distribution function of  $f_n$ . On the other hand, the result of § 3 will show that if

(6) 
$$f_n = \log \frac{n}{\phi(n)},$$

where  $\phi(n)$  is Euler's function, then the distribution function of  $f_n$  is not absolutely continuous.

1. The method of this §1 is, in contrast to that of §3, not of an elementary nature, and consists of an adaptation of a method applied by Wintner to Bernoulli convolutions and the corresponding distribution functions occurring in the theory of the Riemann zeta function.<sup>4</sup> This method consists in estimating the product (3) for large |u| by the following approach: Since each of the factors of (3) has, for every u, an absolute value not exceeding 1, it is clear that

(7) 
$$L(u) \leq \prod_{A(u)$$

holds for arbitrary positive functions A(u), B(u) of u. And the method consists in choosing A(u), B(u), if possible, in such a way as to assure that

(8) 
$$L(u) = O(\exp - C | u |^{c}), \quad u \to \pm \infty,$$

holds for some pair of positive constants c, C. If (2) satisfies (8), then  $\sigma(x)$  has for every x derivatives of arbitrary high order; while if (8) holds for c = 1 and some C > 0, then  $\sigma(x)$  is regular analytic and bounded in every strip  $|\Im x| < \text{const.} < C$  about the real axis of the complex x-plane.<sup>5</sup> In particular,  $\sigma(x)$  is an entire function if (8) holds for some c > 1 and for some C > 0.

Suppose that  $|a_p|$  is monotone in p, and define the range of p-values over which the product (7) is extended by

(9) 
$$A(u)$$

Then each factor of the product on the right of (7) is less than 1 - 1/p; so that  $L(u) < \Pi'(1 - 1/p)$ , where p runs, for every fixed u, over the range (9).

<sup>&</sup>lt;sup>4</sup> A. Wintner, Bulletin of the American Mathematical Society, vol. 41 (1935), pp. 137-138; American Journal of Mathematics, vol. 61 (1939), pp. 231-236.

<sup>&</sup>lt;sup>5</sup> A. Wintner, American Journal of Mathematics, vol. 56 (1934), p. 659.

Hence, by Mertens' elementary result  $\prod_{p < t} (1 - 1/p) \sim e^{-\gamma} / \log t$ ,

(10) 
$$L(u) = O\left(\frac{\log A(u)}{\log B(u)}\right), \quad u \to \pm \infty,$$

where A(u), B(u) are defined by (9).

For instance, if  $a_p$  is given by (5), then (8) is satisfied by a c > 1 and a  $\ell' > 0$ . In fact, if the exponent  $\frac{3}{4}$  of the denominator of (5) is replaced by an arbitrary  $\alpha > \frac{1}{2}$ , then (10) and (9) clearly imply that (5) is satisfied by  $c = 1/\alpha$  and C > 0. Hence,  $\sigma(x)$  is an entire function if  $\frac{1}{2} < \alpha < 1$ ; it is regular analytic at least in a strip  $|\Im x| < \text{const.}$  if  $\alpha = 1$ ; and it has, at least, derivatives of arbitrarily high order for every u if  $\alpha > 1$ . It may be mentioned that if  $\alpha > 1$ , the distribution function  $\sigma(x)$  has derivatives of arbitrarily high order analytic along the real axis, since  $\sigma(x) = 0$  for every x < 0.

2. Let  $a_p = 2^{-p}$ . Then it is readily verified from (3) that  $L(2^m \pi)$  tends, as  $m \to \infty$ , to a positive limit; so that

(11) 
$$L(u) \to 0, \quad u \to \pm \infty,$$

does not hold. It follows, therefore, from the extension of the Riemann-Lebesgue lemma to (2), that the distribution function  $\sigma(x)$  is singular.

Of course, (11) only is a necessary condition for the absolute continuity of  $\sigma(x)$ ; in fact,<sup>6</sup> not even  $L(u) = O(u^{-\frac{1}{2}+\epsilon})$ , where  $\epsilon > 0$  is arbitrarily small, is capable of assuring the absolute continuity of  $\sigma(x)$ .

On the other hand, it is clear from Plancherel's theorem that if  $L(u) = O(u^{-\frac{1}{2}-\epsilon})$  holds for some  $\epsilon > 0$ , then  $\sigma(x)$  must be absolutely continuous. This estimate of L(u) is satisfied in case  $a_p = 1/\log p$ . In order to see this, one merely needs a slight improvement on the crude step (7) and repeated application of Mertens' asymptotic formula, used in § 1.

3. In contrast to the result of §1, it will now be shown that if

(12) 
$$a_p = O(p^{-c}), \quad p \to \infty,$$

holds for some c > 0, then  $\sigma(x)$  is singular.

In the proof two elementary facts will be needed:

(I) Choosing a fixed large N, write every positive integer m in the form m = m'm'', where m' is composed of primes  $\leq N$ , and m'' of primes > N. Then the density of those m which satisfy the inequality  $m' < N^{c/4}$  exceeds a positive lower bound a which depends on c > 0 but not on N.

In fact, the density of the positive integers which are not divisible by

724

<sup>&</sup>lt;sup>6</sup> Cf. N. Wiener, and A. Wintner, American Journal of Mathematics, vol. 60 (1938), pp. 513-522.

any prime  $\leq N$  is  $\Pi(1-1/p)$ , where  $p \leq N$  (sieve of Eratosthenes). Thus, it is readily seen that the density of the integers m = m'm'' for which  $m' < N^{c/4}$  is

$$\sum_{m' < N^{c/4}} \frac{1}{m'} \prod_{p \leq N} \left(1 - \frac{1}{p}\right).$$

Hence, (I) follows from  $\prod_{p \leq N} (1 - 1/p) \sim e^{-\gamma} / \log N$ .

(II) For a fixed large N and for  $k = 1, 2, \cdots$ , put  $g_k = \Sigma a_p$ , where the summation runs through those prime divisors p of k which do not exceed N, and the  $a_p$  satisfy (12). Let  $f_k$  be defined, as in the Introduction, by the sum  $\Sigma a_q$ , where q runs through the prime divisors q of k. Then there exists a b > 0 which is independent of N and has the property that the density of those positive integers k which satisfy the inequality  $|f_k - g_k| > N^{-c/2}$  cannot exceed  $bN^{-c/2}$ .

In fact, it is clear that, for an arbitrary n,

$$\sum_{k=1}^{n} |f_k - g_k| \leq \sum_{p > N} |a_p| = O\left(n \sum_{p > N} \frac{1}{p^{1+c}}\right) < \frac{bn}{N^c},$$

where b is a constant. Thus, the density of those positive integers k which satisfy both inequalities  $k \leq n$ ,  $|f_k - g_k| > N^{c/2}$  cannot be greater than  $bnN^{-c/2}$ . This clearly implies (II).

It is now easy to show  $\tau$  that  $\sigma(x)$  is singular on the assumption (12). In fact, let N be large. Consider the x-intervals

$$f_m - N^{-c/2} < x < f_m + N^{c/2}$$
, where  $m = 1, 2, \cdots, [N^{c/4}]$ .

It follows from (I) and (II) that the density of those positive integers k for which  $x = f_k$  lies in one of these  $[N^{c/4}]$  intervals cannot be less than  $a = bN^{-c/2}$  and exceeds, therefore, a fixed lower bound C > 0 for all sufficiently large N. And the sum of the lengths of these  $[N^{c/4}]$  intervals is majorized by  $N^{-c/4}$ . Hence, on letting  $N \to \infty$ , one sees from the definition of  $\sigma(x)$  as the asymptotic distribution function of  $f_n$ , that  $\sigma(x)$  cannot be absolutely continuous.

Since (12) implies (4), it follows from the general theorem of Jessen and Wintner, referred to in the Introduction, that  $\sigma(x)$  is purely singular. It may be mentioned that, in the particular case (12), a direct and elementary discussion could also assure that  $\sigma(x)$  does not possess an absolutely continuous component.

THE INSTITUTE FOR ADVANCED STUDY.

<sup>&</sup>lt;sup>7</sup> For a similar argument, cf. E. R. van Kampen and A. Wintner, *Journal of the* London Mathematical Society, vol. 12 (1937), pp. 243-244; also P. Hartman and R. Kershner, American Journal of Mathematics, vol. 59 (1937), pp. 809-822.