ON THE SMOOTHNESS PROPERTIES OF A FAMILY OF
BERNOULLI CONVOLUTIONS.*

By PAUL ERDŐS.

Let $L(u, a), -\infty < u < +\infty$ denote the Fourier-Stieltjes transform,

$$
\int_{-\infty}^{\infty} e^{iux}d\sigma(x),
$$
of a distribution function $\sigma(x), -\infty < x < +\infty$. Thus if $\beta(x)$ is the distribution function which is 0, $\frac{1}{2}, 1$ according as $x \leq -1, -1 < x \leq 1, 1 < x$, then $L(u, \beta) = \cos u$; and so, if b is a positive constant, $\cos (u/b)$ is the transform of the distribution function $\beta(bx)$. Hence, if a is a positive constant, the infinite convolution

$$
\sigma_a(x) = \beta(ax) * \beta(a^2x) * \beta(a^3x) * \ldots
$$
is convergent if and only if $a > 1$; its Fourier-Stieltjes transform being

$$
L(u, \sigma_a) = \prod_{n=1}^{\infty} \cos \left(\frac{u}{a^n}\right), \quad (a > 1).
$$

It is known that the distribution function σ_a is continuous for every $a > 1$ and, in fact, is either absolutely continuous or purely singular, depending on the value of a. In this direction it is known that the set of points x in the neighborhood of which $\sigma_a(x)$ is not constant is either the interval $x \leq a/(a - 1)$ or a nowhere dense perfect set of measure zero contained in this interval according as $1 < a \leq 2$ or $2 < a$. While this implies that $\sigma_a(x)$ is singular if $2 < a$ it does not imply that $\sigma_a(x)$ is absolutely continuous if $a < 2$. In fact it has recently been shown that there exist certain algebraic irrationalities $a < 2$ for which $L(u, \sigma_a)$ does not tend to zero with $1/u$ and so σ_a cannot be absolutely continuous. (It was conjectured, loc. cit., that such values of a are clustering at $a = 1 + \epsilon$ which would imply that they lie dense in the interval $1 < a < 2$). On the other hand it is known that those $a < 2$

* Received July 30, 1939.

for which \(\sigma_a \) is absolutely continuous are certainly clustering at \(a = 1 + 0 \), since if \(a = 2^{1/m} \), where \(m \) is a positive integer, then \(\sigma_a \) has a continuous derivative of order \(m - 1 \).

The object of the present paper is to show that the successive smoothing of \(\sigma_a \) can be considered as the general case when \(a \to 1 + 0 \). In fact it will be shown that there exists, for every positive integer \(m \), a positive \(\eta(m) \) such that the set of those points \(a \) of the interval \(1 < a < 1 + \eta(m) \) for which \(\sigma_a \) does not possess a continuous derivative of order \(m - 1 \) is a set of measure zero. To this end it is sufficient to prove that there exists, for every positive integer \(m \), a positive \(\delta(m) \) such that the set of those points \(a \) of the interval \(1 < a < 1 + \delta(m) \) for which

\[
L(u, \sigma_a) = o\left(\left| u \right|^{-m}\right), \quad u \to \infty,
\]

does not hold is a set of measure zero.

Let \(c_1, c_2, \ldots, c_N \) be \(N \) positive integers which satisfy the following conditions:

(i) \(c_1 \leq 2 \);
(ii) \(c_i < c_{i+1} \),
(iii) \(c_{i+1} < 3c_i \),
(iv) there exists an \(\alpha \) such that \(2^i < \alpha < 2 \) and \(|c_{i+1} - \alpha c_i| < 2 \),

\[
\text{(i) } (i = 1, 2, \ldots, N - 1); \quad \text{(ii) } (i = 1, 2, \ldots, N - 1); \quad \text{(iii) } (i = 1, 2, \ldots, N - 1).\]

Lemma 1. There exist two positive absolute constants \(\gamma_1, \gamma_2 \) such that if \(M \) is any fixed number \(> \gamma_2 \), there are less than \(\lceil M^{1/4} \rceil \) different sequences \(c_1, c_2, \ldots, c_N \) satisfying the requirements (i)-(iv), the inequality \(c_N \leq M \), and the condition that the number of those indices \(i \) \((i = 1, 2, \ldots, N)\) which satisfy \(|c_{i+1} - \alpha c_i| > \gamma_0 \) is less than \(\gamma_1 \log M \).

Proof. Suppose that \(|c_{i+1} - \alpha c_i| \leq \gamma_0 \) and \(|c_{i+2} - \alpha c_{i+1}| \leq \gamma_0 \) for a fixed \(i \). Then

\[
\left| \frac{c_{i+1}}{c_i} - \alpha \right| < \frac{1}{10c_i},
\]

hence

\[
\left| \frac{c^2_{i+1}}{c_i} - \alpha c_{i+1} \right| < \frac{c_{i+1}}{10c_i} < \frac{3}{10}
\]

by (iii). Consequently, since \(|c_{i+2} - \alpha c_{i+1}| < \gamma_0 \) by assumption,

\[
\left| \frac{c^2_{i+1}}{c_i} - c_{i+2} \right| < \frac{3}{10} + \frac{1}{10} < \frac{1}{2}
\]

and so \(c_{i+2} \) is uniquely determined as the nearest integer\(^5\) to \(c^2_{i+1}/c_i \).

Consequently if \(i_1, i_2, \ldots, i_t \) denote all those among the \(N \) indices \(i \) which satisfy the inequality \(|c_{i+1} - ac_i| > \frac{1}{20} \) then all indices \(i \) which are not of the form \(i_r + 1 \) or \(i_r + 2 \) for some \(r = 1, 2, \ldots, t \), are such that \(c_i \) is uniquely determined by \(c_{i-1} \) and \(c_{i-2} \). On the other hand, even if \(j \) is of the form \(i_r + 1 \) or \(i_r + 2 \), so that \(c_j \) is not uniquely determined by \(c_{j-1} \) and \(c_{j-2} \), then there are, by (iv), (or (i)), at most 4 choices for \(c_j \) after \(c_{j-1} \) has been determined. Hence there are at most \(4^t \) different sequences \(c_1, c_2, \ldots, c_N \) which have a given set of exceptional indices \(i_1, i_2, \ldots, i_t \).

Finally (ii) and (iv) together with the assumption \(a_N \leq M \) clearly imply that \(N < 5 \log M \) for sufficiently large \(M \), say for \(M > \gamma_2 \). Since the number of exceptional indices \(i_1, i_2, \ldots, i_t \) is less than \(\gamma_1 \log M \), by the hypothesis of Lemma 1, it is seen that the number of distinct possible choices for a set of exceptional indices cannot exceed

\[
\left(\left\lfloor \frac{5 \log M}{\gamma_1} \right\rfloor \right) + \cdots + \left(\left\lfloor \frac{5 \log M}{\gamma_1 \log M} \right\rfloor \right)
\]

and is therefore less than \(M^{1/8} \) if \(\gamma_1 \) is chosen sufficiently small. Since it was shown above that there are at most \(4^t \) sequences \(c_1, c_2, \ldots, c_N \) with a given set of exceptional indices, it follows that the number of distinct sequences \(c_1, c_2, \ldots, c_N \) which satisfy the requirements of Lemma 1 for a fixed \(M > \gamma_2 \) is less than

\[
M^{1/8} \cdot 4^t < M^{1/8} \cdot 4^{5 \gamma_1 \log M} < M^{1/8}
\]

if \(\gamma_1 \) is sufficiently small. This completes the proof of Lemma 1.

If \(a, \lambda \) are positive numbers let \(A_k = A_k(a, \lambda) \) and \(e_k = e_k(a, \lambda) \) be defined, for \(k = 1, 2, \ldots \), by placing

\[
\lambda a^k = A_k + e_k, \quad A_k \text{ integer, } -\frac{1}{2} < e_k \leq \frac{1}{2}.
\]

Lemma 2. There exists an absolute constant \(\gamma_2 \), which shall be chosen to be \(> \gamma_2 \), such that if \(M \) has a fixed value greater than \(\gamma_2 \), then the measure of the set \(\Gamma \) of those values \(a \) in the interval

\[
2^k < a < 2
\]

for which there exists in the interval

\[
1 < \lambda < 2
\]

\(a \lambda = \lambda(a) \) such that the inequalities

\[
\lambda a^k < M^2 \quad \text{and} \quad |e_k(a, \lambda)| > \frac{1}{2} a^k
\]

hold for at most \(\frac{1}{2} \gamma_1 \log M \) distinct values of \(k \), is less than \(M^{-1} \). It is under-
stood that \(e_k = e_k(a, \lambda) \) is defined as in (3), and that \(\gamma_1, \gamma_2 \) are the absolute constants occurring in Lemma 1.

Proof. Suppose, if possible, that Lemma 2 is false. Then there exist at least \([M^{1/4}]\) values of \(a \) in (4), say
\[
a_j, \quad (j = 1, 2, \ldots, [M^{1/4}]),
\]
which are in \(\Gamma \) and which are separated by \([M^{1/4}] - 1\) intervals each of which has a length not less than \(M^{-3/4} \); so that
\[
|a_j - a_k| \geq M^{-3/4}.
\]
Since \(a_j \) is in \(\Gamma \), there exists a \(\lambda = \lambda(a_j) \) in (5) such that
\[
e_k(a_j, \lambda(a_j)) < \frac{1}{2} \gamma_0
\]
holds for all but \(\frac{1}{2} \gamma_1 \log M \) values of \(k \) satisfying
\[
a_j^k \lambda(a_j) < M,
\]
where, according to (3)
\[
ea_k^j \lambda(a_j) = A_k(a_j, \lambda(a_j)) + e_k(a_j, \lambda(a_j)) = A_k^{(j)} + e_k^{(j)}, \text{ say}.
\]

It will be shown that

(I) The finite sequence of integers \(A_k^{(j)} \) belonging to a fixed \(j \) \((= 1, 2, \ldots, [M^{1/4}])\) satisfies the hypotheses of Lemma 1 if this sequence of integers is identified with the sequence of integers \(c_1, c_2, \ldots, c_N \) occurring there; and that

(II) The sequences \(A_k^{(j)} \) corresponding to different values of \(j \) are distinct. Since there are \([M^{1/4}] \) such sequences this will contradict Lemma 1 and so complete the proof of Lemma 2.

In order to prove (I) notice first that (i), (ii), (iii) are obviously satisfied for \(c_1 = A_k^{(j)} \). Furthermore, by (8)
\[
A_k^{(j)} + e_k^{(j)} = a_j(A_k^{(j)} + e_k^{(j)}),
\]
and so, by (3) and (4)
\[
|A_k^{(j)} - a_j A_k^{(j)}| = |a_j e_k^{(j)} - e_k^{(j)}| < 2;
\]
so that (iv) is also satisfied, with \(a = a_j \). The hypothesis (6.1) assures that the assumption \(c_N \leq M \) of Lemma 1 is satisfied. In order to verify the remaining assumption of Lemma 1 recall that there are at most \(\frac{1}{2} \gamma_1 \log M \) values of \(k \) satisfying (6.1), (6.2). Thus there are at most \(\gamma_1 \log M \) values of \(k \) such that (6.1), (6.2) are satisfied either for \(k = i \) or for \(k = i + 1 \). But if \(i \) has a value distinct from one of these \(\gamma_1 \log M \) values, so that
\[
|e_i^{(j)}| < \frac{1}{2} \gamma_0 \text{ and } e_{i+1}^{(j)} < \frac{1}{2} \gamma_0,
\]
then, by (4),
Thus there are at most $\gamma_1 \log M$ indices i for which
\[|A_{\Delta_1}^{(\nu)} - a_i A_{\Delta_1}^{(\nu)}| < \frac{1}{2} \]
This completes the proof of (1).

In order to prove (II), suppose, if possible, that (II) is false. Then there exists a pair of distinct indices j and k such that
\[A_{\Delta_1}^{(\nu)} = A_{\Delta_1}^{(k)} \]
for all $i = 1, 2, \cdots, N$. Thus, by (3),
\[|a_k \lambda(a_k) - a_j \lambda(a_j)| < 2 \]
holds, for all l such that $a_k \lambda(a_k) \leq M$. In particular (9) holds if l is an index for which
\[\frac{1}{4} M > a_k > \frac{1}{10} M. \]
Now it may be assumed that $a_k > a_j$ so that, by (7), $a_k \geq a_j + M^{-3/4}$. Then
\[a_k \lambda(a_k) \geq a_k \lambda(a_k)(a_j + M^{-3/4}) \]
and so, by (9),
\[a_k \lambda(a_k) \geq (a_j \lambda(a_j) - 2)(a_j + M^{-3/4}) = a_j \lambda(a_j) + a_j \lambda(a_j)M^{-3/4} - 2(a_j + M^{-3/4}). \]
Hence, by (5) and (10),
\[a_k \lambda(a_k) \geq a_j \lambda(a_j) + \frac{1}{10} M^{1/4} - 2 - 2(a_j + M^{-3/4}) \]
if M is sufficiently large, say $M > \gamma_3$. Thus
\[|a_k \lambda(a_k) - a_j \lambda(a_j)| \geq 3. \]
This contradicts (9) (since by (10) $a_k \lambda(a_k) < M$) where one could write $l + 1$ for l. This contradiction proves (II).

The proof of Lemma 2 is now complete.

Lemma 3. There exists, on the interval (4) a zero set Z which has the following property: if a is a point of (4) not contained in Z then there is a positive $\beta = \beta(a)$ such that if M is any fixed number larger than β and if λ is any number in (5), then there are at least $\frac{1}{2} \gamma_1 \log M$ values of k which satisfy both conditions (6.1), (6.2).

Proof. For any positive integer h let Γ_h denote the set of points a on the interval (4) such that (6.1), (6.2) hold (for some $\lambda = \lambda(a)$ in (5)) for less than $\frac{1}{2} \gamma_1 \log M$ values of k if $M = 2^h$. Then, by Lemma 2,
\[\text{meas } \Gamma_h < 2^{-3h} \text{ if } 2^h > \gamma_3. \]
Thus if \(\Gamma_\mu \) denotes for any fixed \(\mu > \gamma_3 \) the \(a \)-set

\[
\Gamma = \Gamma_\mu = \sum_{\alpha > \mu} \Gamma_\alpha \quad \text{then meas} \Gamma_\mu < \frac{1}{4} \gamma_\mu^{-3}.
\]

It is clear from the definition of \(\Gamma \), that if \(a \) is not in \(\Gamma_\mu \) and if \(M > \mu \), then, even if \(M \) is not of the form \(2^h \) for some \(h \), there are still at least \(\frac{1}{4} \gamma_1 \log M \) values of \(k \) satisfying (6.1), (6.2) for any value of \(\lambda \) in (5). Thus if \(a \) is not in \(\Gamma_\mu \) then there is a \(\beta = \beta(a) \) satisfying the requirements of Lemma 3; in fact one can choose \(\beta = \mu \). Then the set of points \(a \) in (4) such that there does not exist a \(\beta = \beta(a) \) satisfying the requirements of Lemma 3 is contained in \(\Gamma_\mu \) for every positive \(\mu \). Thus by (11), \(Z \) is a zero set. This completes the proof of Lemma 3.

Lemma 4. For every \(q > 0 \) there exists a \(p = p(q) > 1 \) and a zero set \(Z = Z_q \) of \(a \)-values contained in the interval

\[
1 < a < p(q)
\]

with the following properties: if \(a \) is a point of (12) not contained in \(Z_q \) then there exists an \(a = a(a) > 0 \) such that if \(M \) is any fixed number greater than \(a \), and if \(\lambda \) is any point of the interval (5), then there are at least \(q \log M \) values of \(k \) satisfying (6.1), (6.2).

Proof. Let \(a \) be a point in the interval \(1 < a < 2^3 \) such that no integral power of \(a \) is a point of the zero set \(Z \) occurring in Lemma 3. Let \(p_1, p_2, \ldots, p_r \) be those prime numbers such that

\[
2^3 < a^{p_1} < a^{p_2} < \cdots < a^{p_r} < 2.
\]

Now if \(x \) is such that \(a^x = 2 \) then, by the elementary inequalities of Chebyshev, there are two absolute constants \(\gamma_4, \gamma_5 \) such that

\[
\gamma_4 \frac{x}{\log x} > r > \gamma_5 \frac{x}{\log x}.
\]

Since \(a^{p_j} (j = 1, 2, \ldots, r) \) is in the interval (4) and not a point of \(Z \), there are, by Lemma 3, for every \(\lambda \) in (5), at least \(\frac{1}{4} \gamma_1 \log M \) values of \(k \) satisfying

\[
|\lambda a^{p_j^k}| < M, \quad (14.1) \quad |\delta_0(a^{p_j}) \lambda| > \gamma_0
\]

provided \(M > \beta(a^{p_j}) \). Thus, if \(M > \max_{1 \leq i \leq r} \beta(a^{p_i}) \), there are at least \(\frac{1}{4} \gamma_1 \log M \) values of \(k \) satisfying (14.1), (14.2) for each \(i \) (\(i = 1, 2, \ldots, r \)). But there are at most \(\frac{x \log M}{p_i p_j \log 2} \) values of \(k \) such that

\[
(a^{p_i p_j})^k = (2^{p_i p_j /x})^k < \frac{1}{\lambda} M < M.
\]

Thus there are at least
values of \(k \) satisfying (6.1) and (6.2). Then by (13) the number of values \(k \) which satisfy (6.1) and (6.2) is not less than

\[
\frac{1}{2} r \gamma_1 \log M - \sum_{1 \leq \xi \leq M} \frac{\log M}{p_1(p, \log 2)}
\]

But this expression can be made greater than \(q \log M \) if \(x \) is chosen sufficiently large, i.e., if \(a \) is chosen sufficiently small, say \(a < \rho(q) \). This completes the proof of Lemma 4 since \(Z_q \) may be defined to be the zero set of points \(a \) in the interval (12), some integral power of which is a point of \(Z \).

Theorem. For every positive integer \(m \), there exists a positive \(\delta = \delta(m) \) such that the set of points \(a \) of the interval \(1 < a < 1 + \delta(n) \) for which

\[
L(u, \sigma_a) = O(1/|u|^{-m}), \quad u \to \infty,
\]

does not hold, is a set of measure zero.

Proof. According to (1)

\[
L(u, \sigma_a) = \prod_{n=1}^{\infty} \cos (u/n^a), \quad (a > 1).
\]

Thus, if \(u \) is in the interval \(a^k < u \leq a^{k+1} \)

\[
L(u, \sigma_a) < \prod_{r=1}^{k} \cos (a^r(u/a^k)).
\]

Now let \(\lambda = u/a^k \) so that \(1 < \lambda < 2 \). Then

\[
L(u, \sigma_a) < \prod_{r=1}^{k} |\cos (\lambda a^r)| = \prod_{\lambda a^r \leq u} |\cos (\lambda a^r)|.
\]

By Lemma 4, with \(M = u \), if \(a \) is chosen in the interval (12) and not in \(Z_q \) and if \(u > \alpha(a) \) there are at least \(q \log u \) factors in this last product which are less than \(\cos \pi/30 \) so that

\[
|L(u, \sigma_a)| < (\cos \pi/30)^{q \log u}, \quad u > \alpha(a).
\]

Since, according to Lemma 4, \(q > 0 \) can be chosen arbitrarily this completes the proof of the theorem.

Institute for Advanced Study.