Let $i \leq k \leq l$ be any integers. A theorem of Ramsey states that there exists a function $f(i, k, l)$ such that if $n \geq f(i, k, l)$, and if we select, from each combination of order k of n elements, a combination of order i, then there exists a combination of order l all of whose combinations of order i have been selected.

All the proofs give very bad estimates for $f(i, k, l)$. If $i = 2$ the theorem of Ramsey can be formulated as theorem about graphs: Let $n \geq \varphi(k, l)$, and consider any graph having n points; then either the number of independent points is $\geq k$ or the graph contains a complete graph of order l.

Szekeres' proof gives $\varphi(k, l) \leq \left(k + l - \frac{2}{l} \right)$. This is probably very far from the best possible value. We do not even know whether or not $\lim \varphi(3, l) < \infty$ is true. Perhaps even the following stronger result holds: There exists an integer c (independent of n) such that, given a graph without a triangle, we can number its vertices with the integers $1, 2, \ldots, c$, in such a way that no two vertices numbered with the same integer are connected. It is easy to see that $c \geq 4$.

Ramsey also proved that if G is an infinite graph, then either G
contains an infinite set of independent points or \(G \) contains an infinite complete graph.

If the number of vertices of \(G \) is not countable, Duschnik, Miller and I proved the following theorem 4: Let the power of the points of \(G \) be \(m \); then either \(G \) contains an infinite complete graph, or \(G \) contains a set of \(m \) independent points. We can also state this theorem as follows: If we split the complete graph of \(m \) points into two subgraphs \(G_1 \) and \(G_2 \), then if \(G_1 \) does not contain an infinite complete graph, \(G_2 \) contains a set of \(m \) independent points.

In the present note we prove the following results:

Theorem I: Let \(a \) and \(b \) be infinite cardinals such that \(b > a^a \). If we split the complete graph of power \(b \) into a sum of \(a \) subgraphs at least one of them contains a complete graph of power \(> a \).

In particular: If \(b > c \) (the power of the continuum) and we split the complete graph of power \(b \) into a countable sum of subgraphs; at least one subgraph contains a non denumerable complete graph.

Theorem I is best possible. As a matter of fact, if \(b = a^a = 2^a \) we can split the complete graph of power \(b \) into the sum of subgraphs, such that no one of them contains a triangle. For the sake of simplicity we show this only in the case \(b = c = 2^{2^a} \). We write

\[
G = \sum_{k=1}^{\infty} G_k
\]

where \(G \) is a graph connecting every two points of the interval \((0, 1)\), and the edges of \(G_k \) connect two points \(x \) and \(y \) if \(\frac{1}{2^{k-1}} > y - x = \frac{1}{2^k} \).

Clearly none of the \(G_k \)'s contains any triangles.

Let us now assume that the generalized continuum hypothesis is true, i.e. \(2^x = \aleph_{x+1} \). Let \(m = \aleph_{x+2} \), and let \(G \) be the complete graph containing \(m \) points, then we prove

Theorem II: Put \(G = G_1 + G_2 \); if \(G_1 \) does not contain a complete graph of power \(m \), then \(G_2 \) contains a complete graph of power \(\aleph_{x+1} \). From theorem I it would only follow that either \(G_1 \) or \(G_2 \) contains a complete graph of power \(\aleph_{x+1} \). By using results of paper of Sierpinski 5 it is not difficult to find a decomposition \(G = G_1 + G_2 \) such that

neither G_1 nor G_2 contains a complete graph of power α, which shows that theorem II can not be improved. (We have to assume that α is accessible).

Tukey and I have shown by using a result of Sierpinski 6 that the complete graph of power \aleph_β can be decomposed into the countable sum of trees. Without assuming the continuum hypothesis we can not decide whether this also holds for the complete graph of power \aleph_α.

Proof of theorem I. Let G be the complete graph of power β; write

$$G = \sum \alpha G_{\alpha}, \quad \alpha < \Omega_\alpha,$$

where Ω_α denotes the least ordinal corresponding to the power α.

Let p be any point of G. We split the remaining points of G into a classes $Q_{\alpha}, \alpha_1 < \Omega_\alpha$, by the rule: a point q is in Q_{α} if the line pq is in G_{α}. Take now an arbitrary point $p_{\alpha_1} \in Q_{\alpha_1}, (\alpha_1 = 1, 2, \ldots, \alpha_1 < \Omega_\alpha)$ and split the remaining points of Q_{α_1} into classes $Q_{\alpha_1, \alpha_2}, \alpha_2 < \Omega_\alpha$, by the rule: q belongs to Q_{α_1, α_2} if the line $p_{\alpha_1}q$ belongs to G_{α_2}. Next we take an arbitrary point $p_{\alpha_2} \in Q_{\alpha_1, \alpha_2}$ and split the remaining points of Q_{α_1, α_2} into classes $Q_{\alpha_1, \alpha_2, \alpha_3}, \alpha_3 < \Omega_\alpha$ etc. If α is not a limit ordinal we define the classes $Q_{\alpha_1, \alpha_2, \ldots, \alpha_k}$ in the obvious way from the classes $Q_{\alpha_1, \alpha_2, \ldots, \alpha_{k-1}}, \alpha_k < \Omega_\alpha$. If α is a limit ordinal, we define the classes $Q_{\alpha_1, \alpha_2, \ldots, \alpha_i} (i < \alpha)$ as $\Pi Q_{\alpha_1, \alpha_2, \ldots, \alpha_i}$. Our construction can stop only if for some α all the classes $Q_{\alpha_1, \alpha_2, \ldots, \alpha_i}$ become empty; in other words if all the points of G become $p_{\alpha_1, \alpha_2, \ldots, \alpha_i}$'s $(i < \alpha)$. Denote now by α^+ the smallest power $> \alpha$, and by Ω_α, the smallest ordinal belonging to α^+. We shall prove that not all the sets $Q_{\alpha_1, \alpha_2, \ldots, \alpha_i} (i < \Omega_{\alpha^+})$ can be empty. Clearly the power of the points $p_{\alpha_1, \alpha_2, \ldots, \alpha_i} (i < \Omega_{\alpha^+})$ does not exceed $\alpha^+ \cdot \alpha^\alpha = \alpha^\alpha (i.e. \alpha^\alpha > \alpha^+)$. But the power of the points of G is by assumption $> \alpha^\alpha$; thus not all the points of G are $p_{\alpha_1, \alpha_2, \ldots, \alpha_i}$'s $(i < \Omega_{\alpha^+})$. Let α be such a point, and consider the sets $Q_{\alpha_1, \alpha_2, \ldots, \alpha_i} (i < \Omega_{\alpha^+})$ with $r \subseteq Q_{\alpha_1, \alpha_2, \ldots, \alpha_i}$. Clearly $r = \Pi Q_{\alpha_1, \alpha_2, \ldots, \alpha_i} (i < \Omega_{\alpha^+})$ is non empty. If α is not a limit ordinal, x_i runs at most through α values $(x_i < \Omega_\alpha)$ thus there must be an index j $(j < \Omega_\alpha)$ which occurs in $Q_{\alpha_1, \alpha_2, \ldots, \alpha^+_j}$ times. Clearly G_j contains a complete graph of power α^+. For let $j = x_i = x_i = \ldots x_i = \ldots$, and consider the points $p_{x_1, x_2, \ldots, x_i}$. It is clear from our construction that the complete graph determined by these points is in G_j, this completes the proof of theorem I.

6 W. Sierpinski, *ibid.*
Proof of theorem II. We state theorem II as follows: Let G be a graph containing \aleph_{x+2} points. Then if each set of independent points has power $< \aleph_{x+2}$, our graph contains a complete graph of power \aleph_{x+1}.

Let p_1, p_2, \ldots, p_n be a complete set of independent points $(x_1 < \Omega \aleph_{x+1})$. Clearly every other point of G is connected with at least one of the p's. The point q of G will belong to class Q_{p_i} if p_i is the p with smallest index with which q is connected. In each Q_{p_i}, consider now a maximal system of independent points. Thus we obtain the points $p_{1i}, p_{2i}, \ldots, p_{ni}, \ldots$ and we split the remaining points of Q_{p_i} into classes as before; the point $q \in Q_{p_i}$ belongs to $Q_{p_{ai}}$, if p_{ai} is the point of lowest index with which q is connected. We can continue this process as in the proof of theorem I. We claim that this process can not stop in \aleph_{x+1} steps, in other words, the sets $Q_{p_{ai}}, Q_{p_{bi}}, \ldots, \subseteq Q_{p_{ci}}, \ldots, j < \Omega \aleph_{x+1}$, cannot all be empty. For if these sets were all empty, all points of G would be $p_{ai}, p_{bi}, \ldots, p_{ci}$ for some $j < \Omega \aleph_{x+1}$. But the number of these points does not exceed $\aleph_{x+1} \aleph_{x+1} = \aleph_{x+1}$, by the generalized hypothesis of the continuum.

Consider, then, a sequence of sets $Q_{p_{1i}}, Q_{p_{2i}}, Q_{p_{3i}}, \ldots, Q_{p_{ni}}, \ldots, j < \Omega \aleph_{x+1}$ whose intersection is non empty. Clearly our graph contains the complete graph determined by the points $p_{1i}, p_{2i}, \ldots, p_{ni}, j < \Omega x + 1$ and this completes the proof of theorem II.

I do not know whether theorem II remains true if the power of the points of G is \aleph_{x+1}, where \aleph_x is a limit cardinal.

If the power of the points of G is a limit cardinal e.g. \aleph_x, the theorem is certainly false. Let M be the set of points of G and write $M = \sum_{i=1}^{\infty} M_i$ where the power of M is \aleph_x. We define G as follows: Two points of G are connected if and only if they belong to the same M_i. Then clearly G does not contain a complete graph of power M, and every system of independent points is countable.

In general, let m be a limit cardinal, which is the sum of \aleph_k sets of power $< m$, but not the sum of fewer than \aleph_k such sets. Then we can construct a graph G the power of whose points is m, such that G does not contain a complete graph of power m, and every set of independent points has power $< \aleph_k$. On the other hand, perhaps the following result holds: If such a graph G does not contain a complete graph of power m, then it contains a set of independent points of power \aleph_{k-1}.

Let A be a set of power m, and let $n < m$. To every point $x \in A$, we
correspond a subset \(f(x) \) of \(A \) such that \(x \in f(x) \), and the power of \(f(x) \) is \(< n \). A subset \(B \) of \(A \) is called independent if \(B - f(B) \) is empty. If we assume the generalized continuum hypothesis we can prove that there always exists an independent set of power \(m \). This result has been proved previously, without using the continuum hypothesis, in the cases: (I) \(m \) is not a limit cardinal; (II) \(m \) is a countable sum of smaller cardinals.