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ON HIGHLY COMPOSITE AND SIMILAR NUMBERS
BY

L. ALAOGLU AND P . ERDŐS

1 . Introduction. Ramanujan( 1 ) defined a number to be highly composite
if it has more divisors than any smaller number, and he used these numbers
to determine the maximum order of d(n) . He investigated the factorization
of the highly composite numbers, which is also of interest .

A number n is defined to be (1) highly abundant if \sigma(n) >\sigma(m) for all m <n,
(2) superabundant if \sigma(m)/m <\sigma(n)/n for all m <n, and (3) colossally abundant
if for some a>0, \sigma(n)/n^{1+\epsilon}\ge\sigma(m)/m^{1+\epsion} form<nand \sigma(n)/n^{1+\epsilon}>\sigma(m)/m^{1+\epsilon}
for m>n. We do not make any attempt to estimate the maximum order of
\sigma(n), since this has already been done with great accuracy( 2 ) . But we shall
give very precise results about the factorization of highly composite, super-
abundant, and colossally abundant numbers . In fact we prove that for super-
abundant numbers n=2^{k_2} p^{k_p},

where \delta = (\log \log p)^2/\log p \log q if q^c < \log p, and \delta = \log p/q^{1-\theta} \log q if q^{1-\theta}
> \log p. For highly composite numbers we prove that

where \delta = (\log \log p)^3/(\log p)^3 if q^c < \log p, and \delta =1 /q1-B \log p if q1-0 > \log p.
It is easy to see that these formulas determine k,, with an error of at most 1,
and in most cases uniquely . This considerably sharpens Ramanujan's results
for highly composite numbers(') .

The highly abundant numbers behave somewhat irregularly, but the ir-
regularities are few . On the average they behave as superabundant numbers .

The principal tool used in this paper is the result of Ingham( 4), which
states that the number of primes between q and q+cq^{\theta}is asymptotic
to cq^{\theta}/\log q,for any 6>48/77. Actually only the fact thatBis less than 1 is
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(1) Collected works of S . Ramanujan, p. 86 .
(2) S. Wigert, Sur quelques fonctions arithmetiques, Acta Math. vol . 37 (1914) pp. 114-140.
(a) Collected works, pp . 99 ff .
(') A. E. Ingham, On the difference of two consecutive primes, Quart. J . Math. Oxford Ser.

vol . 8 (1937) p . 255 .



used, so that all our-results could be obtained from Hoheisel's original value,
0 >32999/33000(l) .

In comparing the magnitudes of \sigma(n) and \sigma(n') it is clear from the multi-
plicative property of o-(n) that one need only consider the behavior of those
primes which divide the two numbers to different powers . The same is true
for d(n) and \sigma(n)/n .

We prove that the quotient of two consecutive superabundant numbers
tends to 1, and that the number of these numbers less than x is greater than
c \log x • \log \log x/(\log \log \log x) 2 . On the other hand it would be easy to prove
that the number of superabundant numbers is less than (\log x)° \log \log x . The
exponent could probably be reduced to c \log \log \log x .

For highly composite numbers we have the same upper limit, but we know
that the number of highly composite numbers exceeds (\log x){̂1+c}.It would be
interesting to know the exact order in both cases .

In the theory of colossally abundant numbers the most interesting ques-
tion is whether the quotient of two consecutive colossally abundant numbers
is a prime or not. This question leads to the following problem in Diophantine
analysis . If p and q are different primes, is it true that p^xandq^xare both rational
only if x is an integer?

For highly abundant numbers the results are less satisfactory. We do not
know whether there are infinitely many highly abundant numbers which are
not superabundant, nor do we know whether, if n=2^{k_2}\cdot 3^{k_3}q^{k_q}\cdotsis
highly abundant, then k_2\ge k_3 \ge\cdots . Other open questions are the exact
order of the largest prime factor of n, the exponent to which this prime di-
vides n, and the number of highly abundant numbers less than n .

There is a section devoted to a desultory discussion of other multiplicative
functions .

A table of highly abundant numbers less than 10' and a table of super-
abundant and colossally abundant numbers less than 10 18 are appended . The
highly abundant numbers were found by examining Glaisher's Number-divisor
tables(6) . The calculation of the superabundant numbers was materially aided
by the result proved in §2, that the exponent to which 2 divides the super-
abundant n determines the exponents of all other primes with an error of 1
at most .

S . Pillai, in his paper On o-_1(n) and 0(n), Proceedings of the Indian Acad-
emy of Sciences vol . 17 (1943) p . 70, refers to certain results which appear to
be connected with our work. We quote : "In the papers entitled `Highly
abundant numbers' and `Totient numbers' which are unpublished and formed
a part of my D . Sc. thesis, I proved the above results (concerning the maxi-

(b) G. Hoheisel, Primzahlprobleme in der Analysis, Berlin Math. Ges. Sitzungsber ., 1930,
pp. 550-558 .

(3) J. L. Glaisher, Number-divisor tables, British Association for the Advancement of Sci-
ence, Mathematical Tables, vol . 8 .



mum order of \sigma(n) and 4(n)) . But that proof depends on the properties of these
numbers . . . ." Pillars thesis is as yet inaccessible to us .

2 . Superabundant numbers . A number n is said to be superabundant if
\sigma(m)/m <\sigma(n)/n for all m <n .

THEOREM 1 . If n=2^{k_2} p^{k_p}, then k_2\ge k_3\ge \cdots \ge k_p.

If the theorem is not true, there exist two primes q and r such that q>r
and k_q>k_r. We put k_q=k, k_r=l . Then since n is superabundant, and n'=nr/q
<n, we must have

	

This inequality reduces to

(r^{l+2} - 1)/(r^{l+2} - r) < (q^{k+1} - 1)/(q^{k+1} - q).

As (x^n-1)/(x^n-x) is a decreasing function of x and n for x, n\ge2, a simple
calculation shows that our inequality is not satisfied .

THEOREM 2 . Let q<r, and set \beta= [k_q \log q/\log r]. Then k, has one of the
three values : \beta-1, \beta+l, \beta .

Suppose first that k_r=l\le\beta-2 . We let k_q=k, and define x by the inequal-
ity q^{x-1} <r<q^x.Thenk \ge x,for otherwiseq^k <r <r^{l+2}<q^k,which is impossible.
Now compare n with nr/g^x . Since \sigma(n) is multiplicative we restrict our atten-
tion to the factors r and q . Then since n is superabundant, we must have

(q^x - 1)r^{l+2} + r > (r - 1)q^{k+1} + q^x.

But

(q^x - 1)r^{l+2} + r \le (q^x - 1)r^{\beta} + q^x \le (rq - r - 1)r^{\beta} + q^x < (r - 1)q^{k+1} + q^x,

which is a contradiction .
If l were greater than \beta+1, we could compare g^kr^l with q^{k+x-1}r^{l-1}, and we

would obtain a contradiction by the same argument .

THEOREM 3 . If - p is the largest prime factor of n, then k_p=1, except when
n=4, 36.

Let q be the second largest prime factor of n, and suppose that k = k _p > 1 .
We put k,=1, and let r be the prime just greater than p. On comparing n with
nr/pq, we must have

1 + 1/r < [1 + (p - 1)/(p^{k+1} - p) ] [ 1 + (q - 1)/(q^{l+1} - q) ] .

But since l >= k Z 2, the right-hand side does not exceed

(1)

	

[1 + 1 /(p 2 + p) ] [ 1 + 11(9 2 + q) ],

which is less than (1+1/p^2)(1+1/q^2) . By Tchebichef's theorem, this is less
than 1+1/r if p \ge 11 . The numbers for which 3<p<11 can be checked by
using (1), and those for which p=2, 3 can be checked directly .



In order to prove sharper results several lemmas are needed . From here
on p always denotes the largest prime factor of n.

LEMMA 1 . q^{k_q} < 2^{k_2+2}.

This certainly holds if k_q\le\beta= [k_2 \log 2/\log q]. If k_q=\beta+1 and 2^{k_2+2} <q^{k_q}
a contradiction will be reached by comparing 2^{k_2+x}g^{\beta} with 2^{k_2+x}q^{\beta}, where
2^x<q<2^{x+1} .

LEMMA 2. If r>(\log p)^c, then k_r=o(r^{1/c}).

By Lemma 1, k, \log r < k2 if k2 is large, and by Theorems 2 and 3, k2 < 5109 p.
Hence k_r<5 \log p/\log r=o(r^{1/c}).

LEMMA 3 (INGHAM)(') . The number of primes in the interval (q, q+cq^{\theta}) is
asymptotic to cq^{\theta}/\log q, where \theta\ge5/8.

If Riemann's hypothesis is true any 9 > 1/2 can be used .

LEMMA 4 . If q is the greatest prime of exponent k, and if q ^{-1 > \log p, then all
primes between q and q+q^{\theta} have exponent k -1.

This is obviously true if k =1 . If k > 1 and the lemma is assumed to be
false for the prime r, a contradiction will be found on comparing s^jg^kr^lwith
s^{j-1}q^{k-1}r^{l+1},wherer isthe prime precedingq, k_8 =j,andk_r=l.It is only neces-
sary to note that j can be replaced by k and l by k-2 .

THEOREM 4. If q is either the greatest prime of exponent k or the least prime
of exponent k -1, and if q^{1-\theta} > \log p, then

q^k = (p \log p/\log q) [1 + O(\log p/q^{1-\theta} \log q)]

If q is the greatest prime of exponent k let q_1=q, and let q_2, \cdots ,q_xbe
the immediate predecessors of q. Let P_1, \cdots,P_ybe the immediate successors
of p . . The integer y is chosen large and x is chosen so that q_1 \cdots q_1
< P_1 \cdotsP_y < q_1 \cdotsq_x.Thenq_x^{x-1}< P_y^y,andq^x >p^y.If y = [q^{\theta}/\log p], then
by Lemmas 3 and 4 it follows that

y/x = \log q/\log p + O(\log q/x \log p) + O(1/1^{1_\theta} \log p) .

We now compare n_1= (q_1 \cdots q_x)^k with n_2 = (q_1 \cdots q_x)^{k-1}. P_1 \cdots P_y. Since
n_2<n_1, it follows that \sigma(n_2)/n_2<\sigma(n_1)/n_1 . This reduces to

From the choice of y all the P; can be replaced by p+cp^{\theta}, and the q; by
q-cq^{\theta}, so that

(') Ibid .



Hence on taking logarithms we find that

On combining this and the formulas for y and y/x, we find that

Similarly by raising the exponents of the first u successors of q by unity
and by dropping an appropriate number of the largest prime factors, the op-
posite inequality is found to hold . It is then possible to replace the k in the
error term by \log p/\log q, and to drop the first of the two error terms .

If q is the least prime of exponent k -1 the formula holds for the predeces-
sor r of q . By Lemma 3, r=q-O(q^{\theta}), so that

This expansion is valid, since k=o(q^{1-\theta}) by Lemma 3 .

THEOREM 5 . If k_q=k and q<(\log p)^{\alpha}, where a is a constant, then

Only the proof of the first part will be given in full, since the proof of the
second is almost the same . We choose the prime s to be the least of exponent
\beta-1, and r the greatest of exponent y . Both will be in the range of Theorem 4,
and once r is chosen, s is to be as large as possible consistent with s <rq . Then
since ns/rq < n, we must have

But \log [(x^{n+1}-1)/(x^{n+1}-x)]=x^{-n}+O(x^{- n-1}), so that by Theorem 4 we
have

If t is the least prime of exponent \beta-2, then rq <t. Hence



By Theorem 4,

But again by Theorem 4, \beta\sim\log p/\log s, \beta-1\sim\log p/\log t . Hence

Put r = (\log P)1 ; since r <s < rq and t <s^2, we have

If we take x>2/(1-B) we find that

By combining (2), (3) and (4) we get the first inequality of the theorem .
To prove the second part, n is compared with nqr/s, where now s is the

greatest prime of its exponent and r least. The argument is the same from this
point on .

It seems possible to decrease the error term to 0(1/(\log p)^c) where c is
any positive integer, by changing the exponents of more primes. As will be
seen in §3 the error term in Theorem 4 cannot be substantially improved,
but it is possible that the error term in both Theorems 4 and 5 can be im-
proved to 0(1/p^c) for some c>0. The proof of this would require a great deal
more than is known about the Diophantine properties of the logarithms of
primes .

By combining Theorems 4 and 5, the exponent of a prime can be uniquely
determined except in a few cases .

Let \delta denote the error term

Then

By Theorem 5, this holds if q^{1-\theta}< \logp.Ifq^{1-\theta}> \logp,then by Theorem 4 the
first inequality holds if q=q_0, where q_0 is the largest prime of exponent k .
But if q<q_0, the inequality must hold since (x^n-1)/(x^n-x) is a decreasing
function of x and n, for x, n=> 2 . The second inequality is proved in the same
way.

Let K_q+1 be the integral part and \theta_q the fractional part of
\log [(q^{1+1)/(q^{\epsilon}-1)]/\log q,where \epsilon=\log (1+1/p)/\logp.Then we must
have K_q+\theta_q-O(\delta) -1<k<K_q+\theta_q +O(\delta) .



By choosing p large, the error term, denoted by \epsilon_q, can be made less than
1/2. It is then easy to see that the following theorem is true .

THEOREM 6. (i) If \epsilon_q <\theta_q \le 1 -\epsilon_q, then k_q=K_q

The significance of this theorem will be seen in connection with the colos-
sally abundant numbers .

THEOREM 7 . p\sim\log n.

By Theorem 1 and the prime number theorem

On the other hand by Theorems 4 and S we have

It is easy to see by Theorem 2 that \lim_ p = \infty , which proves the theorem .

THEOREM 8. The quotient of two consecutive superabundant numbers tends

to 1 .

Take q1-8 > \log p, and q the greatest prime of exponent k . Choose r to be
the least prime of exponent k -a -1, where a is a constant. Then by using
Theorem 4 it is easy to see that

if a is large enough. Hence a superabundant number must lie between these
two numbers. But by Theorem 4

so that if q and r are of the order of (\log p) it will follow that r/q tends to 1 .

THEOREM 9 . The number of superabundant numbers less than x exceeds

In the proof of Theorem 8 it was shown that the ratio of two consecutive
superabundants n and n' is less than

1 + c(\log \log n)^2/\log n.

The result stated follows immediately from this .
3. Colossally abundant numbers. A number n is said to be colossally

abundant if, for some e > 0,



It is obvious that these numbers are superabundant .
If P does not divide n it is easily seen that

As the right-hand side is a decreasing function of P this inequality will hold
for all P if it holds for the prime P just greater than the largest prime factor
p of n.

If q<p, k_q=k, and x\ge0, then

\log [(q^{k+2+x} - 1)/( q^{k+2+x} - q) ] \le \epsilon \log q < \log [(q^{k+1-x} - 1)/(q^{k+1-x} - q) ].

It is easily seen that for a given positive \epsilon, these inequalities uniquely de-
termine a prime p and for each prime q an exponent k_q.Let n=\prod_qq^{k_q}.This
number is colossally abundant . For the inequalities show that if y divides n
and z is prime to y, \sigma(nz/y)/(nz/y)^{1+\epsilon} is less than\sigma(n)/n^{1+\epsilon}ifz<y,and it is
not greater than \sigma(n)/n^{1+\epsilon}if z>y.

THEOREM 10 . If n, is the colossally abundant number associated with \epsilon, and
if k_q(\epsilon) is the exponent of the prime q, then

k_q(\epsilon) = [\log \{ (q^{1+\epsilon} - 1)/(q^{\epsilon} - 1) \}/\log q] - 1.

This shows that the error term in Theorem 4 is nearly the best possible .
Here [x] denotes the greatest integer less than x .

The numbers n, and k_q(\epsilon) do not decrease as \epsilon decreases. Since
\log { (q^{1+\epsilon}-1)/(q^{\epsilon}-1)} /\logq isa continuous function of \epsilon, k_q(\epsilon)will increase
by steps of at most 1, and this will occur when \log \ { ( q^{1+\epsilon}-1)/(q^{\epsilon}-1) \}/\logq
is an integer . But this makes q^{\epsilon}rational. It is very likely thatq^xandp^xcan
not be rational at the same time except if x is an integer . This would show that
the quotient of two consecutive colossally abundant numbers is a prime. At
present we can not show this. Professor Siegel has communicated to us the
result that q^x, r^xands^xcan not be simultaneously rational except if x is an
integer. Hence the quotient of two consecutive colossally abundant numbers is
either a prime or the product of two distinct primes .

The following remark is of some interest : It follows from Theorems 4
and 5 thatfor large superabundant n, q^{k_q}<2^{k_2}forq > 11.For smallerqTheorem
10 shows this is not true .

4. Highly composite numbers . According to Ramanujan n is highly com-
posite if d(n) >d(m) for all m <n . As before p will denote the largest prime
factor of n . Ramanujan proved the following results (among others)(') .

(e) Collected works, pp . 86 ff .



(1) Except for the numbers 4 and 36 the exponent of p is unity .
(2) If n=2^{k_2} \cdots p^{k_p}, then k_2\ge k_3\ge \cdots \ge k_p.
(3) k_q=O(\log p) .

As in the case of superabundant numbers a lemma will be needed .

LEMMA 5 . If q is the greatest prime of exponent k and if q 1-e > \log p, then all
primes between q and q+q^{\theta} have exponent k -1 .

By Lemma 3, the number of primes between q and q+cq^{\theta} is asymptotically
cq^{\theta}/\log q, and by the third result quoted from Ramanujan, this will exceed k

if q1-e > \log p.
We now compare n with nr_1 \dots r_k/q_1\dots q_{k+1}, where the r_i are the primes

succeeding r_1, and q; the predecessors of q_1=q. We assume that r_1<q+q^ {\theta}, so
that r_k<q+3 q^{\theta}. Also we have q_{k+1}>q-q^{\theta}.Henceq_1 \dotsq_{k+1}>q^{k+1}(1-q^{\theta-1})^k
>q^k(1+3q^{\theta-1})^k>r_1 \dots r_k; for k is small compared with q1-B,and if p is large,

q > (1 +3q'-1) k/(1
It follows that n_1 <n, so that d(n_1) <d(n) . If the exponent of r ; is denoted

by l ; and the exponent of q_i by k_i, this condition reduces to

But if 11 <k-1, we find that

which is a contradiction .

THEOREM 11 . If q is the greatest prime of exponent k, and if q 1- B > \log p, then

\log (1 + 1/k) = \log q \log 2/\log p + O(1/q^{ 1-\theta}\log p).

Let q_1=q, and let q_2,\dots , q_x be the primes immediately preceding q
and all of exponent k. Let P 1 , • • • , P„ be the primes succeeding p . Then
n_0 =nP_1 \cdots P_y/q_1 \cdots q_x will be less than n, so that d(n_0) <d(n). Hence
(1+1/k)^x>2^y and \log (1+1 /k)> y \log 2/x .

We choose x so that

q_1\cdots q_{x-1}<P_1\cdots P_y<q_1\cdots q_x,

and y so that q_x>q-q^{\theta}, P_y<p+p^{\theta}. This will be so if y is of the order of
q^{\theta}/\log p. As in Theorem 4 we find that

y/x = \log q/\log p + O(\log q/x \log p) + O(1/q^{1 -\theta} \log p).

Combining these two estimates we find that

\log (1 + 1/k) > \log 2 \log q/\log p + 0(\log q/x \log p) + O(1/q^{1-\theta} \log p) .



From the choice of y, the second term can be included in the third .
The inequality in the other direction is proved in a similar fashion, raising

the exponents of primes succeeding q and dropping an appropriate number of
the largest prime factors .

THEOREM 12. If the exponent of q is k, and if q < ( \log p) where c is constant,
then

As in the case of the superabundant numbers, we first let r and s be two
large primes : r the greatest of exponent a and s the least of its exponent \beta-1 :

\beta is chosen so that the least prime t_1 of exponent \beta-a -1 is greater than rq,
and if t_2 is the least prime of exponent \beta-a,thent_2 < rq.Consequently we have

From Theorem 11 we find that

Hence if s is not too large, and \epsilon > 0,

We now take u to be the greatest exponent \gamma and v the least exponent
\gamma-b-1 . Then for b fixed, \log (v/u) is a function of the integer \gamma . By Theo-
rem 11 it is easily seen that \beta\sim\log p/\log2 \logr.Take r equal (\logp)x.Thenif

\gamma is as large as possible in the range of Theorem 11 we have \log (v/u)
<\log (qr/s), while if \gamma is as small as possible we have \log (v/u) >\log (qr/s) .
Hence there is a least value of \gamma such that \log (v/u) <\log (qr/s) . If u_1 and v_1
are the primes corresponding to the exponent \gamma -1 then \log (qr/s) < \log (u_1/v_1),
so that

But by Theorem 11

and

so that



It follows that

If we take u1-B> (\log p)2, then the first of these two terms will be the greater.
In this case

and as \log v/u must be asymptotic to \log (qr/s), we have

From this we deduce that

so that we must make x(c-\theta_0)^{1/2}/b^{1/2}>2/(1-\theta) . This can be done by taking
c = 3, b = 2 and x large enough .

We now have the following estimate :

The number nsv/gru is smaller than n and as n is highly composite we have

But by Theorem 11 and the estimate of gru/sv, we find that

By our choice of r and u the last two terms can be included in the first error
term. This proves the first inequality, and a similar argument proves the sec-
ond .

Let \epsilon_q be defined as follows :

and

THEOREM 13 . Let \Lambda_q and \theta_q be the integral and fractional parts of
12 1 09 _q 1 109 _p -11 - 1. Then :

This formula is given by Ramanujan for large q( 9) . It follows readily from
Theorems 11 and 12 .

(9) Collected works, pp. 99 ff.



This almost exact determination of the exponents k_q is remarkable, since
no ana\logue of Theorem 2 can be proved for the highly composite numbers .
In fact let us consider integers of the form p^a\cdot g^b.We can define highly com-
posite numbers in the obvious way, and it can be shown that the exponent
of p does not determine the exponent of q with a bounded error. In fact the
quotient of two consecutive highly composite numbers of this sequence tends
to 1 .

As in the case of the superabundants it would no doubt be possible to
improve the error term in Theorem 12 . Probably the error term could be
made O(1/\log p)^c)for every c. However the study of the superior highly com-
posite numbers shows that the error term in Theorem 11 can not be O(1/q^{1+\epsilon}).
On the other hand it is possible that the error terms of Theorems 11 and 12
are both O(p^{-c}) for some c > 0. To prove this would require again a great deal
more than is known about the Diophantine properties of the logarithms of
primes .

5 . Highly abundant numbers . A number n is said to be highly abundant
if \sigma(n) >\sigma(m) for all m <n . Obviously all superabundant numbers are highly
abundant, but the converse is not true . It is very likely that there are infi-
nitely many highly abundant numbers which are not superabundant but this
we cannot prove .

We define f (x) to be the maximum of \sigma(n)/n for all n \le x.

THEOREM 14. If k is any positive constant there exist two absolute constants
c _1 and c2 such that for all sufficiently large x

If x is large and f (x) =\sigma(n)/n, then n\sim x, by Theorem 8. If p_1, • • • , p, .
are the last r prime factors of n and k+2>r\ge k+1, then by Theorem 7
n_1=n/p_1 \cdots p_r\sim x/(\log x)^r,so that

It is known that \sigma(n)/n<c \log \log n({}^{10}), and if k is fixed then

1 - { pi/(p; + 1) } 1 - [\log x/(1 + \log x) ]^r k/\log x.

This proves one-half of the inequality .
By adding new prime factors to n the same argument gives the other half .

(10) S. Wigert. v.s .



THEOREM 15. If n is highly abundant, then

Let x be the greatest superabundant number such that x < n/\log n . Choose
r so that rx <n \le (r+1)x. Then

But, by Theorem 14, this exceedsf (n) - c_3 \log \log n/\log n.

THEOREM 16. If q^k is the highest power of q dividing the highly abundant
number n, then there exists an absolute constant c_4 such that q^{ k+1}>c_4\log n.

COROLLARY. Every prime q<c_4 \log n divides n .

To prove this theorem it is only necessary to consider the primes less than
\log n. By Theorems 14 and 15 we find that

But

and \sigma(n)/n>c \log \log n, which completes the proof .
From Theorems 4, 5, and 7 it is easy to see that if n is superabundant,

\epsilon>0, n>n(\epsilon), and q>Q(\epsilon), then

(5) (1 - \epsilon) \log n \log \log n/q \log q < q^{k_q} < (1 + \epsilon) \log n \log \log n/\log q.

Naturally this need not hold for the highly abundant numbers, but the excep-
tions will be proved to be few .

If q^{k_q} is the highestpower of q dividing the highly abundant number n
and if q^{k_q} falls outsidethe limits of(5),let x_q be the leastnon-negative integer
which must be added to or subtracted from k _q in order to bring the new power
of q between the two limits of (5) . The powers q^{x_q}will be referred to as the
defects of q. We shall prove that the product of all the defects of all primes q
is less than (\log n)

LEMMA 6. The number of primes greater than (1+\epsilon) \log n dividing n is
bounded by a number depending only on \epsilon .

If the lemma is false, there are arbitrarily large n and r such that there
are r primes p _1, • • • , p. all greater than (1+4\epsilon) \log n and all dividing n . As is
well known, the product of all primes less than (I+ 2,E) \log n is greater than
n^{1+\epsilon} for large n. We canthereforefind r-2 primes q_1,•.•q,_2less than
(1+2\epsilon) \log n which do not divide n, and an integer x such that



We compare n with n_1=nxQ/P. A simple calculation shows that

But xQ/P can be replaced by 1-1/(\log n)^2,q_iby(1 +2 \epsilon) \logn,andp;by
(1+4\epsilon) \log n.It is then easy to see that ifr islarge enough,\sigma(n_1) >\sigma(n). This
is a contradiction since n _1 <n.

LEMMA 7. If p divides n then p < ( \log n) 3 .

Suppose that the lemma is false . By Lemma 6 there is a prime q between
(1+\epsilon) \ lognand (1 +2 \epsilon) \lognwhich does not dividen.Ifxis defined by
xq<p\le (x+ 1)q, then n_1=nxq/p <n, and we can compare n and n_1 . It is easy
to see that

if n is large . But this is a contradiction .

THEOREM 17 . The products of the defects of all the primes is less thai
(\log n)^c where c=c_5(\epsilon).

We first consider the primes q for which q^{k_q} \logq>(1 +\epsilon) \logn \log \logn
By Lemma 7, if the product of the defects of these primes is not bounded
by (\log n) there are arbitrarily large numbers a and highly abundant num
bers n such that, for a suitable choice of y _q\le x_q,

Let b = [c - 2 ] . Then if n is large enough, by Lemma 6 we can find primes
p_1, • • , Pb between (1+\epsilon/4) \log nand (1+\epsilon/2) \lognno one of which divides
n. There is an integer x such that

and it is easy to see that 1>xP/Q>1-1/(\log n)^2. We now compare n with
n' = nxP/Q . It is easy to see that

where of course q runs through the primes described at the beginning of the
proof. We have the following estimates,

and



Hence a contradiction will be reached if c is too large .
We turn now to the primes for which q^{k_q+1} \log q < (1- \epsilon) \log n \log \log n .

Since k _q
\ge

0, we have q \logq < (1-\epsilon)\logn\log \logn, sothat ifn islarge enough
then q < ( 1- a/2) \log n. For these primes we shall prove the following stronger
result :

THEOREM 17' . If q runs through all primes such that q^{k_q+1} < (1 - \epsilon) \log n
• 	\log \log n/\log q, then \sum_qq^{x_q 1} \log q < c(\epsilon) \log \log n .

This is obviously much stronger than Theorem 17, since q^{ x_q-1} age x_q .
By Theorem 16 and the definition of x _q, we know that

and therefore we have \sum_{q<A}q^{x_q-1} \log q <A (1- e) \log \log n/c_4. We can conse-
quently restrict attention to the primes between A and (1- \epsilon/2) \log n . If the
theorem is not true, then there are arbitrarily large numbers a and highly
abundant n such that for appropriate y_q\le x_ q, we have

In order to show that this leads to a contradiction, we shall compare n with
nxQ/p_1 \cdots P_b,whereQ=\prod_qq^{y_q},and thepiare factors ofn.It is therefore
necessary to know that there are many prime factors of n near \log n .

LEMMA 8 . If b is any positive integer, then for sufficiently large n there are
more than b prime factors of n between (1- \epsilon) \log n and (1 + e) \log n .

Let l_q=k_q-x_q, z =x_q if q^{k_q} \log q>(1+\eta) \log n \log \log n, and l_q=k_q, z_q=0
otherwise ; E4 extends over all the primes less than (1-e) \log n, and \sum_q''
extends over all larger prime factors of n . Then by the part of Theorem 17
that has lust been proved . we have

Hence if \eta= \epsilon/4, and n is large, it follows from the prime number theo-
rem that \sum_q''l_q \logq >(\epsilon/2) \logn.In this \sumq >(I-\epsilon) \logn,and
q^{l_q}<(1+\eta) \log n \log \log n, so that if n is large enough we must have 1 _q=0
or 1 . Hence we have \prod_q''q>n^{\epsilon/2}.There are only c(\epsilon) primes above (I á-\epsilon) \logn
which divide n and these are all less than (\log n) 3 , so that if n is large enough
there must be arbitrarily many prime factors of n between (I -,E) \log n and
(1+\epsilon) \log n .

Now we return to the proof of our theorem . By Lemma 8 we can find



b= [c+3] \ge c+2 prime factors pi,	, pb of n between (1-3E/4) \log n and
(1+3\epsilon/4) \log n, and an integer x such that xQ < P = p_1\cdots p_b \le (x+ 1) Q.
We compare n with n_1 =nxP/Q, and it is easy to see that

If A =8/e, we have the following estimates :

But if these are combined with the equations b = [c+3] and \sum_qq^{yq-1} \logq
=c \log \log n, it is easy to see that for sufficiently large c a contradiction will
result .

COROLLARY . There are less than c(e) \log \log n/\log \log \log n primes q which
do not satisfy the inequality :

(1 - \epsilon) \log n \log \log n/q \log q < q^{k_q} < (1 + \epsilon) \log n \log \log n/\log q.

The proof of this corollary is immediate, by using the prime number theo-
rem . It shows that only a finite number of highly abundant numbers can be
highly composite.

THEOREM 18 . For large x the number of highly abundant numbers less than x
is greater than (1- e) (\log x)2, for every r; > 0.

Let n be highly abundant . The greatest prime factor p of n is greater than
(1-E) \log n, so that the number n'=n(p+1)/p exceeds n and \sigma(n)
> (p+1)\sigma(n/p) \ge\sigma(n) .Therefore there must be a highly abundant number
between these two, and the ratio n_1/n of two consecutive highly abundant
numbers is less than 1+1/(1-e) \log n . The theorem follows immediately .

By using Theorem 17 it is possible to prove that the number of highly
abundant numbers less than x is less than (\log x)^{c \log \logx}.This result can no
doubt be improved .

An immediate consequence of Theorems 16 and 17 is the following result,
which complements Lemma 6 .

The number of primes less than (1- E) \log n which do not divide n is bounded
by a number depending only on E .



THEOREM 19 . The largest prime factor of the highly abundant number n is
less than c \log n(\log \log n)^3.

Suppose the theorem to be false . By the corollary to Theorem 15 there is
a constant c such that the least prime q satisfying (5) with a=1/2 is less
than c \log \log n. Let xq < p \le (x+1)q, p >d \ log n(\log \log n)^3, and comparen
with n_1 = nxq/p.Then we have

But this is greater than 1 if d is too large .
It is very likely that this result is far from the best possible . It would be

interesting to know whether the largest prime factor is asymptotic to \log n, or
even less than c \log n .

THEOREM 20. If p is the largest prime factor of the highly abundant number
n > 216, then the exponent of p is less than 3 .

Suppose that p k divides n and that p \ge 5, k \ge 3. Replace p_2 by 24x =p2-1.
Then a simple calculation shows that

This will be greater than 1 if p^2 \ge 46\cdot 2 ^{k_2}/7, or if p^2 \ge11\cdot 3^k3. Hence the theo-
rem is true unless perhaps p2 <46 .2k$/7 and p 2 < 11 .3 k8 .

Since p \ge 5, thenk_2\ge2, andk3 \ge1. Thereforewe can replace 12p^2byxp_1,
where p_1 is just greater than p and xp_1 < 12p^2<(x+1)p_1.Therefore the fol-
lowing inequality holds :

By Tchebichef's theorem and the estimates for x and p 2, the right-hand side
exceeds

This is greater than 1 if p >= 67, which is a contradiction . Thus the theorem is
proved for all p >= 67, and direct calculations and our tables show that 216 is
the largest exceptional n .

We can prove without difficulty that 7200 is the largest highly abundant



number such that all its prime factors occur to powers greater than 1. Also
16 is the only highly abundant number where the largest prime factor occurs
with exponent 4, and it never occurs with exponent 5 or more .

At present we cannot prove that, except for a finite number of cases, the
exponent of the largest prime factor is unity . However, it is possible to do this
if the following strong assumption about the distribution of primes is true :
in the arithmetic progression ax +b, if n is large, there is a prime with x between
n and n+n^{1/2-\epsilon}

Nor can we prove that if n= 2^{k_2} \cdotsp^{k_p},then k_2\ge\cdots\gek_p.In fact, it
seems quite likely that if n is superabundant, then np_1/p is highly abundant,
where p1 is the prime just greater than p .

6. Some general remarks. The functions \phi and \sigma lead to a few other prob-
lems, but these seem to be of a much more trivial nature .

(1) If n is such that for all m<n, \sigma(m)/m>\sigma(n)/n, then n is a prime .
If n is not a prime it has a factor less than or equal to n^{1/2}, and then

\sigma(n)/n\ge1+1/n^{1/2}. There is always a prime p between n^{1/2} and n, and clearly

\sigma(p)/p=1+1/p\le 1+1/n^{1/2}.
(2) If \phi (n) /n > \phi (m) /m for all m <n, then m is a prime .
The proof is the same as for (1) .
(3) Let n be such that \phi(n) \ge\phi(m) for all m <n and n greater than 4.Then if

we assume that there is always a prime between x and x-x^{1/2}+1, n must be a
prime.

If n is not a prime it has a prime factor less than or equal to n^{1/2}, and if
n-n^{1/2}+1 <p<n, then

(4) If n is such that \sigma(n) <\sigma(m) for m <n and if there is a prime p between
n and n+n^{1/2} - 2, then n =p .

The proof is the same as in (4) .
(5) If n is such that \phi(n)/n<\phi(m)/m for all m<n, then n=2\cdot 3 \cdots p.

(The proof is obvious .)
(6) Let n be such that \phi(n) <\phi(m) for allm>n.These numbers are not

trivial, but they seem to have a simpler structure than the highly abundant
numbers. It is easy to see that the quotient of two consecutive numbers of
this type tends to 1 .

(7) Put \sigma r(n)=\sum_{d/n}d^r. If r>0, the numbers n for which \sigma_r(m)<\sigma_r(n)
for m < n are ana\logues of the highly abundant numbers, while if r < 0 we
get the ana\logues of the superabundant numbers. These numbers satisfy con-
ditions similar to the highly abundant and superabundant numbers . If r=0
we get the highly composite numbers .

The highly composite numbers can be characterized as follows : n is highly
composite if and only if for some \epsilon > 0, all - \epsilon < r < 0, and for all m < n,

\sigma_r(m) <\sigma_r(n).The proof is simple.



In case r > 0 is used, we get the numbers n such that for all m < n,
d(n)\ge d(m). We do not know whether there are infinitely many such num-
bers which are not highly composite . A similar problem arises for the func-
tions \sigma_r(n).

(8) If f(n) is an increasing function we can consider numbers n such that
f(n) >f(m) for all m <n . Roughly speaking, the number of "highly abundant"
numbers becomes greater if the rate of growth of f (n) increases . In connection
with this, the following results are true(11) :

(a) for 2^nd(n), the density of "highly abundants" is zero ;
(b) for 2^n\sigma(n), the density exists, is positive, and is different from 1;
(c) for 2^n\nu(n), where \nu(n) is the number of prime divisors of n, the density

is 1 .
(9) "Highly abundant" numbers can be defined for a general additive

function f (n) . It seems very difficult to get any general results . If f (n) \neq c \ logn,
then the "highly abundant" numbers have density 0 .

The proof of this is difficult and will be discussed elsewhere .
Iff (p") = p", then the "highly abundants" are the primes and their powers .

In general it is not true that the quotient of two consecutive "highly abun-
dants" tends to 1 ; if f(pa) =1, then the "highly abundants" are the powers of 2 .
Another example is f (p") = 2-p" .

7 . Tables. The table for highly abundant numbers was obtained from
Glaisher's table of \sigma (n) to 10,000(12).The superabundant numbers where com-
puted by first limiting the numbers to be considered by preliminary com-
putations, and then by the calculation of \sigma(n)/n. We give a sample of this
preliminary computation .

The least superabundant number divisible by 2 11 must be divisible by
3^6,5^4, 7^3,11^2, \cdots ,19^2,23, \cdots,227. If 3^5or a lower power were to occur,
we compare 2^{11}.3^5with 2^9\cdots3^6.Similarly, in checking the power of 5 we drop
a factor of 6 and add the factor 5, and for the other primes : add 7 and drop 10,
add 19 and drop 20, add 227 and drop 228. This number exceeds 3 .10 100

The colossally abundant numbers were determined directly from the defi-
nition, by computing the critical values of e . For example, the first colos-
sally abundant number divisible by 2 11 occurs for e=\log (4095/4094)/\Iog 2
=0.00035232, and its factorization is 2 ^{11}\cdot3^6\cdot5^4\cdot7^3\cdot11^2\cdots 29^2\cdots 461.

It can be shown that 210 is the greatest highly abundant number in which
2 occurs with exponent 1 . As we remarked before 7200 is the greatest highly
abundant number all prime factors of which have exponents greater than 1,
so that 7200 is the greatest for which \sigma (n) isodd. It would be easy to see

(11) For the method of proof, see P . Erdős and M. Kac, The Gaussian law of errors in the
theory of additive number theoretic functions, Amer. J . Math . vol . 52 (1940) pp . 738-742 and
P. Erdős, On a problem of Chowla, Proc. Cambridge Philos . Soc. vol . 32 (1936) pp. 530-540.

(12) Ibid .



that neither n ! nor the least . common multiple of the first n integers can be
highly abundant infinitely often . Also if n is highly abundant then \sigma(n)can
not be highly abundant infinitely often . The reason for this is that\sigma(n) is
divisible by an excessively high power of 2 .

As far as the table of superabundants extends there are numbers n and 2n
with no superabundant between them . Theorem 8 shows that this occurs only
a finite number of times .

An inspection of the tables suggests the following conjecture : if n is super-
abundant then there are two primes p and q such that both np and n/q are
superabundant . The same seems to be true for highly abundant and highly
composite numbers .

HIGHLY ABUNDANT NUMBERS LESS THAN 104

n Factors \sigma(n) n Factors \sigma(n) n Factors \sigma(n)

2 2 3 288 V . 32 819 2520 2^3\cdot3^2\cdot5\cdot7 9360
3 3 4 300 2^2\cdot3\cdot5^2 868 2880 26 .3 2 .5 9906
4 2 2 7 336 2 992 3024 2 4 .3 1 .7 9920
6 2\cdot3 12 360 2^3\cdot3^2\cdot5 1170 3120 2 4 .3 .513 10416
8 23 15 420 2^2\cdot3\cdot5\cdot7 1344 3240 2 3 .3 4 .5 10890

10 2 .5 18 480 2^5\cdot3\cdot5 1512 3360 2^5\cdot3\cdot5\cdot7 12096
12 22 .3 28 504 2^3\cdot3^2\cdot7 1560 3600 24 .3 2 .5 2 12493
16 24 31 540 2^2\cdot3^2\cdot5 1680 3780 2^2\cdot3^3\cdot5\cdot7 13440
18 2\cdot3^2 39 600 23 3 .5 2 1860 3960 2^3\cdot3^2\cdot5\cdot11 14040
20 2 2 .5 42 630 2 .32 .5 .7 1872 4200 2 3 .3 .5 2 .7 14880
24 2^3\cdot3 60 660 2̂2\cdot3\cdot5\cdot112016 4320 2^5\cdot3^3\cdot5 15120
30 2\cdot3\cdot5 72 720 24 32 .5 2418 4620 2^2\cdot3\cdot5\cdot7\cdot11 16120
36 2^2\cdot3^2 91 840 2^3\cdot3\cdot5\cdot7 2880 4680 2^3\cdot3^2\cdot5\cdot13 16380
42 2\cdot3\cdot7 96 960 2^6\cdot3\cdot5 3048 5040 2^4\cdot3^2\cdot5\cdot7 19344
48 2^4\cdot3 124 1008 2^4\cdot3^2\cdot7 3224 5760 2^7 3^2\cdot5 19890
60 2^2\cdot3\cdot5 168 1080 23 .3 .5 3600 5880 2 3 .3 .5 .7 2 20520
72 2^3\cdot3^2 195 1200 2^4\cdot3\cdot5^2 3844 6120 2^3\cdot3^2\cdot5\cdot17 21060
84 2 224 1260 2^2\cdot3^2\cdot5\cdot7 4368 6240 2 5 . 3 . 5 . 13 21168
90 2\cdot3^2\cdot5 234 1440 25 .3 2 .5 4914 6300 2^2\cdot3^2\cdot5^2\cdot7 22568
96 2^5\cdot3252 1560 2^3\cdot3\cdot5\cdot135040 6720 2^6\cdot3\cdot5\cdot7 24384

108 2 2 .3 3 280 1620 22 5082 7200 2^5\cdot3^ 2\cdot5^2 25389
120 2^3\cdot3\cdot5 360 1680 2^4\cdot3\cdot5\cdot7 5952 7560 2^3\cdot3^3\cdot5\cdot7 28800
144 2 4 .3 2 403 1800 23 6045 7920 2^4\cdot3^2\cdot5\cdot11 29016
168 2^3\cdot3\cdot7 480 1980 2^2\cdot3^2\cdot5\cdot11 6552 8400 24 .3 .5 2 .7 30752
180 2^2\cdot3^2\cdot5 546 2100 2^2\cdot3\cdot5^2\cdot7 6944 8820 2^2\cdot3^2\cdot5\cdot7^2 31122
210 2\cdot3\cdot5\cdot7 576 2280 2^3\cdot3\cdot5\cdot19 7200 9240 2^3\cdot3\cdot5\cdot7\cdot11 34560
216 2^3\cdot3^3 600 2340 2^2\cdot3^2\cdot5\cdot13 7644 10080 25 .3 2 .5 .7 39312
240 24 .3 .5 744 2400 2^5\cdot3\cdot5^2 7812



SUPERABUNDANT NUMBERS LESS THAN 10 1s

(13) Colossally abundant .
(14) This is the first superabundant which is not highly composite .

Factorization of n \sigma(n)/n Factorization of n \sigma(n)/n

2 1.500(13) 2^5\cdot3^2\cdot5^2\cdot7\cdot11\cdot13 4 .855 (18 )
22 1 .750 2^4\cdot3^2\cdot5\cdot7\cdot11\cdot13\cdot17 4 .896
2 . 3 2 .000(13) 24 .32 .5 2 .7 .11 . 13 . 17 4 .933
22 . 3 2 .333(13) 21 .31 -5 .7 . 11 . 13 . 17 4 .975
23 .3 2 .500 2^5\cdot3^2\cdot5^2\cdot7\cdot11\cdot13\cdot17 5 .013
2 2 .32 2 .527 21 .33 5 .7 . 11 . 13 . 17 5 .015
2 4 .3 2 .583 2^4\cdot3^3\cdot2\cdot7\cdot11\cdot13\cdot17 5 .059
2 2 .3 5 2 .800( 13 ) 2^5\cdot3^3\cdot5^2\cdot7\cdot11\cdot13\cdot17 5 .141( 13 )

2^3\cdot3\cdot5 3 .000 ( 13 ) 2^4\cdot3^3\cdot5\cdot711\cdot13\cdot17\cdot19 5 .154

2 3 .033 2 1 -3 1 -5 2 .7 .11 . 13 . 17 5 .182
2 4 .3 .5 3 .100 2^5\cdot3^4\cdot5^2\cdot7\cdot11\cdot13\cdot17 5 .184
2 8 .3 2 .5 3 .250 (13) 2 4 .3 2 . 5 2 . 7 .11 . . . 19 5 .193 (14)

2 4 .3 2 .5 3 .358 2 1 .3 3 .5 .711 . . .19 5 .237
2 3 . 3 . 5 . 7 3 .428 2 1 .3 2 .5 2 .711 . . .19 5 .276
2 2 .32 .5 . 7 3 .466 2 8 .3 3 .5 . 7 . 11 . . .19 5 .279
2^4\cdot3\cdot5\cdot7 3 .542 2 4 .3 1 -5 2 . 7 . 11 . . .19 5 .326
21 -32 . 5 . 7 3 .714( 13 ) 2 1 .3 1 -5 2 . 7 . 11 . . .19 5 .412( 13 )

2 4 . 32 . 3 .838( 13 ) 2^6\cdot3^3\cdot5^2\cdot7\cdot11\cdot19 5 .455
2^5\cdot3^2\cdot5\cdot7 3 .900 2^5\cdot3^4\cdot57\cdot11\cdots19 5 .457
24 .33 .5 .7 3 .936 27 .3 8 -5 2 .7 .11 . . .19 5 .476
24 .32 .52 .7 3 .966 2^6\cdot3^4\cdot2\cdot7\cdot11\cdots19 5 .500

2

	

7 .11 4 .051 2^5\cdot3^3\cdot5^2\cdot7^2\cdot11\cdots19 5 .508
24 .32 .57 . 11 4 .187(13) 2431 -5 2 .7 . 11 . . .23 5 .557
2^5\cdot3^2\cdot5\cdot7\cdot11 4 .254 2^5\cdot3^3\cdot5^2\cdot7\cdot11\cdots 23 5 .647 (13)

24 .31 .5 .7 . 11 4 .294 2^6\cdot3^3\cdot5^2\cdot7\cdot11\cdots23 5 .692 (13)

24 .32.51 . 7 . 11 4 .326 21 .34 .51. 7 . 11 . . .23 5 .694
2^5\cdot3^3\cdot5\cdot7\cdot11 4 .368 27 .33 52 .7 .11 . . . 23 5 .714
2^5\cdot3^2\cdot5^2\cdot7\cdot11 4 .396 2^6\cdot3^4\cdot5^2\cdot7\cdot11\cdots23 5 .739
2^6\cdot3^2\cdot5\cdot7\cdot11 4 .398 21 33 . 52 . 7 2 . 11 .

	

.23 5 .748
24 • .32 .5 .7 .11 . 13 4 .509 ( 13 ) 2^7\cdot3^4\cdot5^2\cdot7\cdot11\cdots 23 5 .762

2̂5\cdot3^2\cdot5\cdot7\cdot11\cdot13 4 .581(13 ) 28 31 -5 2 .7 2 .11 . . .23 5 .793
24 33 .5 .7 . 11 . 13 4 .624 2^5\cdot3^4\cdot5^2\cdot7^2\cdot11\cdots23 5 .796
24 .3-52 .7 . 11 . 13 4 .659 2^7\cdot3^3\cdot5^2\cdot7^2\cdot11\cdots23 5 .816

25̂\cdot3^3\cdot5\cdot7\cdot11\cdot13 4 .699(11) 2^5\cdot3^3\cdot5^2\cdot7\cdot11\cdots29 5 .84225
2^5\cdot3^25^2\cdot7\cdot11\cdot13 4 .734 26 .34 .52 . 7 2 .11 . • • 23 5 .84226

28 . 33 .5 .7 . 11 . 13 4 .736 2^6\cdot3^3\cdot5^2\cdot7\cdot11\cdots29 5 .888(11)
2^4\cdot3^2\cdot5^2\cdot7\cdot11\cdot13 4 .778 2^5\cdot3^4\cdot5^2\cdot7\cdot1129 5 .890
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Factorization of n	\sigma(n)/n	 Factorization of n	\sigma(n)/n
27 .33 .52 .7 .11 • • • 29

	

5.911

	

27.33 .52 .7 2 .11 • • • 31

	

6.211
28 .3 4 .5 2 .7 .11 . . . 29

	

5.937

	

26-31- 52 - 7 1 -11 . . . 31

	

6.238(18)
2 1 - 3 1 -5 2 -7 1 -11 . . .29

	

5.946

	

26 -31 . 5 2 . 7-11 . . .37

	

6.242
27 . 34 .52 .7 .11 . . . 29

	

5.961

	

27 . 34 .52 .72 .11 . . . 31

	

6.263
26 - 3 3 -5 1 -7 1 -11 . . .29

	

5.993

	

2 7 .31 .52 .7 .11 . . .37

	

6.267
25-31- 52-72 . 11 . . .29

	

5.996

	

29-34 .52-72 . 11 . . .31

	

6.275
27 .33-52-72 . 11 . . . 29

	

6.017

	

28 .34 53 .7 2 .11 . . . 31

	

6.278
25 .31 .5 2 .7 .11 . . .31

	

6.030

	

28 .34 .52 .7 .11 . . .37

	

6.294
26 -34 . 52 -7 2 . 11 . . .29

	

6.043

	

21-31-52-72 . 11 . . .37

	

6.304
28 .33 .52 .7 .11 . . .31

	

6.078(11)

	

27 .34 .5 2 .7 .11 . . .37

	

6.319
25 .34 .52 .7 .11 . . .31

	

6.080

	

26-31-52-72 . 11 . . .37

	

6.354
27 .3 3 .5 2 .7 .11 . . .31

	

6.102

	

25 . 34 . 52 -7 2 . 11 . . .37

	

6.356
26 .34 .52 .7-11 . . .31

	

6.129

	

27 .31 .5 2 .72 .11 . . .37

	

6.379
25 .3 3 .52 .7 2 .11 . . .31

	

6.138

	

21 .347 52 . 72 . 11 . . .37

	

6.407(13 )
27 -3 4 . 5 2 - 7 .11 • • -31

	

6 .153

	

27 . 34 . 5 2 . 72 -11 . . . 37

	

6.432
28.3 1 .52 .7 2 .11 . . .31

	

6.187(11 )

	

211 . 3 4 . 52 . 72 . 11 . . .37

	

6.445
25.3 4 .52 .72 .11 . . . 31

	

6.189
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