SOME REMARKS ON EULER'S ϕ FUNCTION AND SOME RELATED PROBLEMS

PAUL ERDŐS

The function $\phi(n)$ is defined to be the number of integers relatively prime to n, and $\phi(n) = n \prod_{p|n} (1 - p^{-1})$.

In a previous paper I proved the following results:

1. The number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is $o(n(\log n)^{\varepsilon - 1})$ for every $\varepsilon > 0$.

2. There exist infinitely many integers $m \leq n$ such that the equation $\phi(x) = m$ has more than m^{c} solutions for some $c > 0$.

In the present note we are going to prove that the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is greater than $cn(\log n)^{-1} \log \log n$.

By the same method we could prove that the number of integers $m \leq n$ for which $f(x) = m$ has a solution is greater than $c(n(\log n)^{1-1} \log \log n)$ for every k. The proof of the sharper result follows the same lines, but is much more complicated. If we denote by $f(n)$ the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution we have the inequalities

$$n(\log n)^{-1} \log \log n < f(n) < n(\log n)^{-1}.$$

By more complicated arguments the upper and lower limits could be improved, but to determine the exact order of $f(n)$ seems difficult.

Also Turán and I proved some time ago that the number of integers $m \leq n$ for which $\phi(m) \leq n$ is $cn + o(n)$. We shall give this proof, and also discuss some related questions:

Lemma 1. Let $a < \varepsilon$, $b < n$, $a \neq b$, $\varepsilon = (\log \log n)^{-100}$. Then the number of solutions $N_\varepsilon(a, b)$ of

$$\begin{align*}
(p - 1)a &= (q - 1)b, \\
p &\leq na^{-1}, \\
q &\leq nb^{-1},
\end{align*}$$

p, q primes, does not exceed

$$\left(\frac{a, b}{ab}\right) \frac{n}{(\log n)^2} (\log \log n)^{100}.$$

Proof. Put $(a, b) = d$. Then we have $p \equiv 1 \mod bd^{-1}$. Also $(p - 1)ab^{-1} + 1 = q$ is a prime. We can assume that both p and q in (1) are greater

Received by the editors February 9, 1945.

than $n^{1/2}$, for the exceptional values of p and q give only $2n^{1/4}$ solutions of (1). Let $r < n^4$, where $\delta = (\log \log n)^{-10}$, be a prime. If p is a solution of (1) it must satisfy the following conditions

$$p \equiv 1 \mod bd^{-1}, \quad p < na^{-1},$$

$$p \equiv 0 \mod r, \quad p \not\equiv (-ba^{-1} + 1) \mod r.$$

If r is not a divisor of $a(a-b)$ the excluded two residues are different. Thus we obtain by Brun’s argument:

$$N_n(a, b) < 2n^{1/2} + c_nd(ab)^{-1} \prod_{r \leq n} (1 - 2r^{-1}),$$

where r runs through the primes less than n^4.

Now it is well known that

$$\prod_{r \leq x} (1 - 2r^{-1}) < c_2(log x)^{-2}, \quad \prod_{r \leq x} (1 - 2r^{-1}) > c_3(log \log x)^{-2}.$$\(\text{**}(1-2r^{-1})\)

Hence

$$N_n(a, b) < 2n^{1/2} + c_4nd(ab)^{-1}(log \log n)^{10}(log n)^{-2}$$

$$< nd(ab)^{-1}(log \log n)^{10}(log n)^{-2},$$

which completes the proof.

Lemma 2. \(\sum (p-1)^{-1} < (log \log n)^{10}d^{-1}\) if this sum is extended over all $p < n^4$ for which $p = 1 \mod d$.

Clearly (summing over the indicated p)

$$\sum p^{-1} \leq d^{-1} \sum' x^{-1},$$

where the dash indicates that the summation is extended over the x for which $x < nd^{-1}$ and $xd+1$ is a prime. Let $y < nd^{-1}$; first we estimate the number of these $x \leq y \leq n$. Let $r < y^\delta$ ($\delta = (log \log n)^{-10}$) be a prime; if $(r, d) = 1$ then $x \not\equiv -d^{-1} \mod r$. Brun’s method gives that the number of these $x \leq y$ is less than

$$cy \prod (1 - r^{-1}) < cy(log y)^{-1}(log log y)^{10} log log d,$$

where the product is extended over the r which satisfy $r < y^\delta$, $(r, d) = 1$. Thus a simple argument gives

$$\sum' x^{-1} < c \sum (log \log x)^{10}(log \log d)(x log x)^{-1} < (log \log n)^{10},$$

which proves the lemma.

2 Hardy-Wright, Theory of numbers.
3 Landau, ibid.
Lemma 3. The number $A(n)$ of integers m of the form $m=pq$, where $pq \leq n$,

p, q primes, $p > q, q < n'$, equals

$$n(\log \log n) (\log n)^{-1} + o\left(n(\log \log n)(\log n)^{-1} \right) = \pi_2(n) + o(\pi_2(n)).$$

Remark. Thus the number of integers satisfying (3) is asymptotically equal to the number $\pi_2(n)$ of integers which are less than n and have 2 prime factors.\(^5\)

The number of integers satisfying (3) is clearly not less than

$$\sum (\pi(nq^{r-1}) - n^r) = \sum nq^{r-1}(\log (nq^{r-1}))^{-1} - n^{2s}$$

$$+ \sum o(nq^{r-1}[\log (nq^{r-1})]^{-1})$$

$$= n(\log \log n)(\log n)^{-1} + o(n(\log \log n)(\log n)^{-1})$$

(here $\pi(n)$ denotes the number of primes, and the sums are taken over $q < n'$, since $\sum q^{-1} = \log_2 n + \log e + o(1)$ and $\log (nq^{r-1})$ is asymptotic to $\log n$ for $q < n'$. (The sum $\sum q^{-1}$ is for $q < n'$.))

Theorem. The number $f(n)$ of different integers m of the form $m=\phi(pr)$ where p, r are primes and $pr \leq n$ equals

$$n(\log \log n)(\log n)^{-1} + o(n(\log \log n)(\log n)^{-1}) = \pi_2(n) + o(\pi_2(n)).$$

Denote by $B(n)$ the number of solutions of $(p-1)(r-1) = (q-1)(s-1)$, where p, q, r, s are primes, with $pq, rs < n$ and $s, r < n'$. Clearly

$$f(n) \geq A(n) - B(n).$$

We have by Lemma 1 (the following sum being for $r, s < n'$)

$$B(n) = \sum N_n(r - 1, s - 1)$$

$$< n(\log \log n)^{10}(\log n)^{-1} \sum (r - 1, s - 1)(r - 1)^{-1}(s - 1)^{-1}.$$

Put $(r-1, s-1) = d$. Then

$$B_n < n(\log n)^{-3}(\log \log n)^{10} \sum d(q - 1)^{-1}(s - 1)^{-1},$$

where the first sum is for $d < n'$ and the second for $r=s=1 \mod d$, with $r, s < n'$. By Lemma 2 we have, summing over the same r and s,

$$\sum (r - 1)^{-1}(s - 1)^{-1} < (\log \log n)^{10}d^{-2}.$$

\(^5\) Denote by $\pi_k(n)$ the number of integers having k different prime factors. Landau proves (Verteilung der Primzahlen, vol. 1, pp. 208–213) that $\pi_k(n) \sim (n/\log n)(\log \log n)^{k-1}/(k-1)!$. The same asymptotic formula holds if $\pi_k(n)$ denotes the number of integers having k prime factors, multiple factors counted multiply. (Landau, ibid.)
Hence
\[B(n) = \left(\log n\right)^{-k} = o(n(\log n)^{-1}). \]

Hence by Lemma 3
\[f(n) \geq n(\log \log n)(\log n)^{-1} - o(n(\log n)^{-1}), \]
which completes the proof. (Clearly \(f(n) < \pi_2(n) < (1 + \epsilon)n(\log \log n) \cdot (\log n)^{-1} \).) Our result shows that the number of different integers not greater than \(n \) of the form \((p-1)(q-1)\) is asymptotic to the total number of integers not greater than \(n \) of the form \((p-1)(q-1)\). Nevertheless there exist integers \(m \) such that \((p-1)(q-1)=m\) has arbitrarily many solutions.

By similar but more complicated methods we can prove:

The number of integers not greater than \(n \) of the form
\[\prod_{i=1}^{k} (p_i - 1) = \phi(p_1, \ldots, p_k) \]
(\(p_i \) primes)
is greater than
\[cn(\log \log n)^{k-1}[(k - 1)! \log n]^{-1} = c\pi_k(n) + o(\pi_k(n)) \]
(\(\pi_k(n) \) denotes the number of integers not greater than \(n \) having exactly \(k \) prime factors). The constant \(c \) depends on \(k \) and tends to 0 as \(k \to \infty \). For \(k \geq 3, c < 1 \). We omit the proof of these results.

Theorem. The number \(M(n) \) of integers for which \(\phi(m) \leq n \) equals \(cn + o(n) \).

Denote by \(f(x) \) the density of integers for which \(m/\phi(m) \geq x \). It is well known that this density exists.\(^7\) We are going to prove that
\[c = 1 + \int_1^\infty f(x)dx. \]

First we have to show that \(\int_1^\infty f(x)dx \) exists. Since \(f(x) \) is nondecreasing it will suffice to show that for large \(r, f(r) < ce^{-r^2} \). We have
\[
\sum_{m=1}^{n} \left(\frac{m}{\phi(m)}\right)^2 = \sum_{m=1}^{n} \prod_{p|m} \left(1 + p^{-1} + \cdots\right)^2 < \sum_{m=1}^{n} \prod_{p|m} \left(1 + 5p^{-1}\right) = \sum_{m=1}^{n} \sum_{d|m} \mu(d)d^{-1}5^{\nu(d)} < n \sum_{d=1}^{\infty} 5d^{-1} < cn.
\]

Hence
\[\lim n^{-1} \sum_{m=1}^{n} \left(\frac{m}{\phi(m)} \right)^{2} < c \]
and this shows \(f(r) < cr^{-2} \).

Let \(k \) be a large number. Consider the integers \(m \) satisfying \(nuk^{-1} \leq m < n(u+1)k^{-1}, \ u \geq k \). We clearly have
\[
\limsup M(n)/n < 1 + k^{-1} \sum_{u=k}^{n} f(uk^{-1}),
\]
\[
\liminf M(n)/n > 1 + k^{-1} \sum_{u=k}^{n} f((u+1)k^{-1}).
\]
(If \(uk^{-1} \leq m \leq (u+1)k^{-1} \) and \(m/\phi(m) \geq (u+1)k^{-1}, \phi(m) < n \) and if \(m/\phi(m) < uk^{-1}, \phi(m) > n \).) If \(k \to \infty \) both sums tend to \(f_{1}(x)dx \), thus
\[
\lim M(n)/n = 1 + \int_{1}^{\infty} f(x)dx
\]
which completes the proof.

Let \(\sigma(m) \) be the sum of the divisors of \(m \). By the same methods as used before we can prove the following results:

1. The number of integers \(m \) for which \(\sigma(m) \leq n \) is \(cn + o(n) \).
2. Denote by \(g(m) \) the number of integers \(m \leq n \) for which \(\sigma(x) = m \) is solvable. Then \(n(\log n)^{-1}(\log \log n)^{k} < g(n) < n(\log n)^{-1}(\log \log n)^{k} \).

It seems likely that there exist integers \(m \) such that the equation \(\phi(x) = m \) has more than \(m^{1-\epsilon} \) solutions, and also that there exist, for every \(k \), consecutive integers \(n, n+1, \ldots, n+k-1 \) such that \(\phi(n) = \phi(n+1) = \cdots = \phi(n+k-1) \). We can make analogous conjectures for \(\sigma(n) \). It also would seem likely that there are infinitely many pairs of integers \(x \) and \(y \) with \(\sigma(x) = \sigma(y) = x+y \), that is, there are infinitely many friendly numbers, but these conjectures seem intractable at present.

One final remark: Let \(\psi(n) \geq 0 \) be a multiplicative function which has a distribution function. \(f(x) \) denotes the density of integers with \(\psi(n) \geq x \). Denote by \(M(n) \) the number of integers for which \(n\psi(n) \leq n \). Then \(\lim M(n)/n \) always exists since it can be shown that \(\int_{0}^{\infty} f(x)dx \) always exists. The proof is the same as in the case of \(\phi(n) \).

* It is known that there exists a number \(n < 10000 \) such that \(\phi(n) = \phi(n+1) = \phi(n+2) \), but I do not remember \(n \) and cannot trace the reference.

* The necessary and sufficient condition for the existence of the distribution function is given by Erdős-Wintner, Amer. J. Math. vol. 61 (1939) pp. 713–721.