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1. Introduction. Let al <a2 <a3 * * - be a set, A, of positive integers. Let A(n) 
denote the number of integers of A which are not greater than n. The asyrnpiotic 
density S(ls) of A is defined to be the lower limit of A(n)/n. This is a natural 
definition of density: the set of all (positive) integers has asymptotic density 1; 
the odd integers , 3; the even integers, 3; the integers which are multiples of 7, 
l/7. 

A less natural definition, but one which has attracted considerable attention, 
is the greatest lower bound of A (n)/n. This is the Schniretmann density [14] of A, 
denoted here by d(A). The odd integers have density 3, clearly, but the even 
integers have density 0 under this definition. In fact, if a set A lacks the integer 
1, then d(A) =O. Although this may seem artificial, Schnirelmann was led to the 
definition quite naturally by a study of certain problems in additive number 
theory, as we shall see later. 

It is clear from the definitions that Os’d(d) s 6(A) s 1. 
Let B be the set of positive integers bl <bZ <b3 < * - . . The sum A +B of 

the sets A and B is defined as the set of integers of the form ai or bi or a,+bi; 
that is, an integer x is in A +B if x is in A, or if x is in B, or if x is the sum of an 
integer of A and an integer of B. For convenience we denote d(A), d(B), and 
d(A +B) by (x, 0, and y, respectively. The question of the relation of y to a 
and 0 has been the subject of much investigation, culminating in Mann’s proof 
[12] of the celebrated Khintchine conjecture [s], commonly known as the a+@ 
hypothesis, which is that y is not less than the minimum of 1 and (Y+P. This 
paper outlines briefly, and not at all exhaustively, the history and present state 
of knowledge of this problem and some related ones. Some of the simplest proofs 
are given. 

Landau [l 11 and Rohrbach [13] h ave summarized much of the principal 
work in this field up to 1937 and 1938 respectively. 

2. Asymptotic density. First we mention some well known sequences of in- 
tegers and their asymptotic densities. If A is the set of prime numbers, then 
t&4)=0 [9]. Th e set of square-free integers has density 6/n2 [7]. If A is either 
the set of squares or the integers which are expressible as sums of two squares, 
then 6(A) =O. The set of integers which can be written as sums of three or fewer 
squares has density S/6, as can be readiiy deduced from the fact that this set 
contains all integers except those of the form 4”(7+8b). 

Davenport [4] h as shown that if A represents the set of integers whichare 
sums of s or fewer cubes of positive integers, then 6(A) = 1 for s =4 but for no 
smaller value of s. Change cubes to fourth powers, change s=4 to s= 15, and 
you get another result of Davenport [5]. In each of these cases the fact that 
the result is best possible can be proved by simple congruences. For example, no 

314 



THE a+/3 HYPOTHESIS AND RELATED PROBLEMS 31.5 

integer of the form 15+16a can be a sum of 14 fourth powers, because any 
fourth power is congruent to 0 or 1 (mod 16). 

Less is known about the higher powers. If Ak,, represents the set of integers 
which are expressible as sums of s or fewer kth powers of positive integers, it is 
known that 6(Ak,k--l) =O; but whether 6(Ak,k) is zero or positive is not known 
for kL3. 

We mentioned in $1 the problem of the relationship between the Schnirel- 
mann densities of A, B, and A +B. For asymptotic densities the ~y+fi hypothesis 
is not true: consider the case, for example, where both A and B are composed 
of all positive even integers, so that A+B is the same set, and we have 6(A) 
=i?(B)=rY(d+B)=$. 

However, Erdos [6] has proved the following result. Let (Y’, fl’, and 7’ stand 
for 6(A), 6(B), and 6(A+B). If y’sl, oz’sfi’, and al= 1 (recall that al is the 
first integer of A), then y’Z&‘+fl’. This result is best possible in the sense 
that sets A and B can be exhibited so that the equality sign holds in the conclu- 
sion. This can be done by taking A and B to be the same set, the set of integers 
which are congruent to 0 or 1 (mod 4), so that A +B is composed of all integers 
congruent to 0, 1, or 2 (mod 4). 

3. Two proofs. Henceforth we shall discuss only Schnirelmann density. 
Schnirelmann [14] and Landau [lo] proved that rZcu+P-c$. We now prove 
this result. 

Proof. Consider any integer a in A such that a-l-1 is not in A. Let the next 
largest integer in A be a+h+l. Thus we have a gap of length k, that is, a gap of 
exactly h. integers which are not in A. Consider now any integer x, not neces- 
sarily in A. Let there be m gaps of lengths hl, hz, . . * , h, in A among the in- 
tegers which are Sx. In case x is not in A, we shall take h,,, to be the number of 
consecutive integers x, 3t- 1, x-2, m * * which are not in A ; thus h,, unhke the 
other h’s, may not represent the length of a complete gap in the integers of A. 

Now since A(x) denotes the number of integers in A which are SX, we have 

(1) r - A(x) = hl + hl + . * - -I- It,. 

Moreover, a and a+h+l being in A (but no integer between these two), we 
can add the B(lt) integers of B which are 5 h to a to get B(k) integers in A + B be- 
tween a and u+a+l. Doing this for all the gaps of lengths hr, hz, . . l , JZ, we 
see that, denoting A +B by C, 

(2) C(x) 2 A(x) + B(hl) + B(kz) + - + . + B(hm). 

But by definition B(k) IPh, and hence (2) implies 

C(x) 2 A(x) + B(hl+ hz + * - - + L), 

which combines with (1) to give 

C(x) 2 -4(x) + a(% - A(x)) = (1 - /3).4(x) -/3x. 
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But A (x) 2 LWG, so we have 

C(x) B (1 - #+2x + 0% = x(a + B - as>, 

which completes the proof. 
As we have stated the CC+@ hypothesis it includes the result that if a+B 2 1, 

then y = 1. This is very simple, and we prove it now. 
Proof. We must prove that A +B is the set of all integers. Suppose a certain 

integer & is not in A+B. Let al<a2<ar< * f ‘ <ok be the members of A which 
are <n. Then A(n) =R and k/ la=A(n)/nZ~~. Also it is clear that B lacks the 
k+1 integers n-al, n-az, = * * , n-ak, 7t. Hence 0, the density of B, is at most 
1 - (k + 1)/n. Thus we have 

k k+l 1 
CYS--, /9Sl--1 &+/351---t 

n n n 

which contradicts the hypothesis. 

4. Concerning Goldbach’s hypothesis. Schnirelmann [14] proved that if A 
represents the set of all primes (we include 1 as a prime for convenience in this 
discussion), then, although d(A) ‘0, d(A +A) is positive. By the Schnirelmann- 
Landau theorem of $3 (or a fortiori by the CY+@ hypothesis) it follows from 
d(A+A) =d(2A) =X>O that d(4d) &X+X-X2 which exceeds #X if h<$ By in- 
duction we know that there exists an ra such that d(nd) > 3 and the second result 
proved in $3 implies that d(2lzA) =l. Thus Schnirelmann was able to show the 
existence of a constant 2n such that every integer is expressible as a sum of 272 
primes. Later, Vinogradoff proved by different methods that every sufficiently 
large odd integer is a sum of three primes. Goldbach’s hypothesis is that every 
even integer is a sum of two primes. 

5. The cw+p hypothesis. Khintchine [8] conjectured the tu+/3 hypothesis 
(that ~&cx+P or y=l, a best possible result), having proved it in the special 
cases a! =/3 and (Y = I-2p. There followed a series of papers proving partial or 
modified results. 

The Schnirelmann-Landau resuIt has already been mentioned in $3. Besi- 
covitch [2] defined fl* as the greatest lower bound of B(n)/(n+l), and proved 
that the density of integers of the form a; or rtifbj is not less than QI+@*, a 
result which is best possible. 

Schur [IS] proved that yZ~~/(l-j3) or y=l. Brauer [3] proved that 
+f2&(a+/3) or y=l. 

-Landau [ii, p. 7] posed the question of the as yet undecided problem and 
wrote : “Ich Weiss es nicht: dies ungelSste Problem mijchte ich dem Leser ans 
Herz legen.’ 

Finally Mann [12] became interested in the problem while in attendance at a 
series of lectures on number theory by A. T. Brauer, and achieved the result 
that had eluded so many, the proof of the ru+,f? hypothesis. Later Artin and 
Scherk [f ] gave a simplification of Mann’s proof. 
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