ON THE STRONG LAW OF LARGE NUMBERS

BY

P. ERDÖS

In the present note \(f(x) \), \(-\infty < x < \infty \), will denote a function satisfying the following conditions: (1) \(f(x+1) = f(x) \), (2) \(\int_0^1 f(x) = 0 \), \(\int_0^1 f(x)^2 = 1 \). By \(n_k < n_{k+1} < \cdots \) we shall denote an arbitrary sequence satisfying \(n_{k+1}/n_k > c > 1 \), and by \(S_n(f) \) the \(n \)th partial sum of the Fourier series of \(f(x) \).

In a recent paper Kac, Salem, and Zygmund(1) prove (among others) that if for some \(\epsilon > 0 \)

\[
\int_0^1 (f(x) - \phi_n(f))^2 = O\left(\frac{1}{(\log n)^{\epsilon}}\right),
\]
then for almost all \(x \)

\[
\lim_{N \to \infty} \frac{1}{N} \left(\sum_{k=1}^N f(n_kx) \right) = 0,
\]
or roughly speaking the strong law of large numbers holds for \(f(n_kx) \) (in fact the authors prove that \(\sum f(n_kx)/k \) converges almost everywhere).

The question was raised whether (2) holds for any \(f(x) \). This was known for the case \(n_k = 2^k \). In the present paper it is shown that this is not the case. In fact we prove the following theorem.

Theorem 1. There exists an \(f(x) \) and a sequence \(n_k \) so that for almost all \(x \)

\[
\limsup_{N \to \infty} \frac{1}{N} \left(\sum_{k=1}^N f(n_kx) \right) = \infty.
\]

Further we prove the following sharpening of the result of Kac-Salem-Zygmund:

Theorem 2. Assume that for some \(\epsilon > 0 \)

\[
\int_0^1 (f(x) - \phi_n(f))^2 = O\left(\frac{1}{(\log \log n)^{\epsilon+\epsilon}}\right),
\]
then (2) holds.

By a slight modification of the construction of the \(f(x) \) of Theorem 1 it is easy to construct an \(f(x) \) and a sequence \(n_k \) for which (3) holds and for which

Presented to the Society, February 28, 1948; received by the editors January 28, 1948.

(2) This result is due to Raikov. See F. Riesz, Comment. Math. Helv. vol. (17) (1944) p. 223.
There is clearly a gap between (4) and (5). It seems probable that, in Theorem 2, (4) can be replaced by $1/(\log \log \log n)^2$, but much sharper methods would be needed than used here.

The following problem also seems of some interest: By an easy modification in the construction of the $f(x)$ of Theorem 1 we can show the existence of an $f(x)$ and a sequence n_k so that for almost all x

$$\limsup_{N \to \infty} \frac{1}{N(\log \log N)^{1/2}} \left(\sum_{l=1}^{N} f(n_k x) \right) = \infty.$$

(6)

On the other hand we can show that for almost all x

$$\lim_{N \to \infty} \frac{1}{N(\log \log N)^{1/2}} \left(\sum_{l=1}^{N} f(n_k x) \right) = 0.$$

(7)

Again there is a gap between (6) and (7). (6) seems to give the right order of magnitude, but I can not prove this.

One final remark. The $f(x)$ of Theorem 1 is unbounded. The possibility that (2) holds for all bounded functions $f(x)$ remains open.

Proof of Theorem 1. Let u_k, v_k, A_k tend to infinity sufficiently fast (their growth will be specified later). $r_m(x)$ denotes the mth Rademacher function. Put

$$f(x) = \sum_{k=1}^{w} \sum_{m=n_k+1}^{v_k} \frac{v_m(x)}{A_k(v_k - u_k)^{1/2}} \sum_{k=1}^{w} \frac{1}{A_k} = 1.$$

(8)

Clearly the series for $f(x)$ converges almost everywhere and $\int f(x) = 0$, $\int f(x)^2 = 1$. Now we define the n_k. Put $j_k = \lfloor \log N \rfloor$. Denote by $I^{(k)}_t$ the interval $((2t-1)v_k, (2t-1)v_k + l^{(k)}_t)$, $t = 1, 2, \ldots, j_k$,

where $l^{(k)}_1 = 2l^{(k)}_1$ and $l^{(k)}_t$ is very large compared to $v_k-1, A_k-1, l^{(k-1)}_t$, and will be specified later. If $v_k > l^{(k)}_{j_k}$ then the $I^{(k)}_t$ don’t overlap. The n_k are the integers of the form 2^m where $m \subseteq I^{(k)}_t, k = 1, 2, \ldots ; t = 1, 2, \ldots, j_k$. Order the l’s according to their size. Clearly each l is greater than the sum of all previous l’s. Thus a simple argument shows that to prove (3) it will be sufficient to show that for every fixed ϵ and almost all x

$$\limsup_{l^{(k)}_t} \frac{1}{l^{(k)}_t} \left(\sum_{m \subseteq I^{(k)}_t} f(2^m x) \right) > \epsilon,$$

(9) \hspace{1cm} k = 1, 2, \ldots ; t = 1, 2, \ldots, j_k.$$

(9) Instead of $r_m(x)$ I originally used $\cos 2^m x$. The advantage of using Rademacher functions was pointed out to me by Kac.
ON THE STRONG LAW OF LARGE NUMBERS

(3) is a consequence of (9). Hence it will suffice to show that for every \(\epsilon \) and sufficiently large \(k \) the measure of the set in \(x \) satisfying at least one of the inequalities

\[
\frac{1}{n^t} \left(\sum_{m \in I_t(k)} f(2^m x) \right) > c, \quad t = 1, 2, \ldots, j_n
\]
is greater than \(1 - \epsilon \).

Put

\[
f(x) = f_1(x) + f_2(x) + f_3(x)
\]

where

\[
f_1(x) = \sum_{m=1}^{\infty} \sum_{m=u_k+1}^{v_k} \frac{r_m(x)}{(A_1(v_k - u_k))^{1/2}}, \quad f_2(x) = \sum_{m=1}^{v_k} \frac{r_m(x)}{(A_2(u_k - v_k))^{1/2}}, \quad f_3(x) = \sum_{m=1}^{u_k} \frac{r_m(x)}{(A_3(u_k - v_k))^{1/2}}.
\]

A simple calculation shows that

\[
\sum_{m \in I_t(k)} f_2(2^m x) = \frac{l_t^{(k)}}{(A_2(u_k - v_k))^{1/2}} \sum_{m} r_m(x) + \sum_{1} + \sum_{2}
\]

where \(m \) runs in the interval

\[
(u_k + (2t - 1)v_k + l_t^{(k)}, 2tv_k)
\]

and

\[
\sum_{1} = \sum_{a=1}^{l_t^{(k)}} \frac{l_t^{(k)} - a}{(A_2(v_k - u_k))^{1/2}} r_y - a(x), \quad y = u_k + (2t - 1)v_k + l_t^{(k)},
\]

\[
\sum_{2} = \sum_{a=1}^{l_t^{(k)}} \frac{l_t^{(k)} - a}{(A_2(v_k - u_k))^{1/2}} r_a(x).
\]

Now \(\sum r_m(x) \) is the sum of

\[
v_k - u_k - l_t^{(k)} > v_k/2
\]

Rademacher functions (we choose \(v_k > 2(u_k + l_t^{(k)}) \)). It is well known(1) that

\[(1) \text{ See, for example, P. Erdős, Ann. of Math. vol. 43 (1942) p. 420, formula (0.7). Incidentally the formula in question should read }\]

\[
\Pr(A_n(x)) \leq e^{-c_1 n^{1/2}}, \quad \Pr(A_n(x)) < c_2(x/n) e^{-c_2 n}.
\]
the measure of the set in \(x \) for which
\[
\sum r_{m}(x) > 4c(A_k)^{1/2}(v_k)^{1/2}
\]
is greater than
\[
e_{1, A_k} e^{-32c_{1}A_k} > e^{-A_k^{4}}
\]
for sufficiently large \(A_k \). Thus the measure of the set in \(x \) for which
\[
(12) \quad \sum_{m} \frac{t_{i}^{(k)}}{(A_k(v_k - u_k))^{1/2}} \sum r_{m}(x) > 4c_{l_{i}}^{(k)}
\]
is greater than \(e^{-A_k^{2}} \). Clearly for all \(x \)
\[
(13) \quad |\sum_{s} + \sum_{s}| < \frac{2(t_{i}^{(k)})^{2}}{(A_k(v_k - u_k))^{1/2}} < \frac{4(t_{i}^{(k)})^{2}}{(v_k)^{1/2}} < 1
\]
if we choose \(v_k > 16(l_{i}^{(k)})^{4} \). Thus finally from (11), (12), and (13) the measure of the set in \(x \) for which
\[
(14) \quad \sum_{m \in I_{i}^{(k)}} f_{2}(2^{m} x) > 4c_{l_{i}}^{(k)} - 1 > 3c_{l_{i}}^{(k)}
\]
is greater than \(e^{-A_k^{2}} \).

If \(v_k > 2(l_{i}^{(k)}) \) for all \(t \), then the functions
\[
\sum_{m \in I_{i}^{(k)}} f_{2}(2^{m} x), \quad t = 1, 2, \ldots, j_k,
\]
are independent (since the same \(r_{m}(x) \) does not appear in two different sums). Thus the measure of the set in \(x \) for which one of the \(j_k \) inequalities
\[
(15) \quad \sum_{m \in I_{i}^{(k)}} f_{2}(2^{m} x) > 3c_{l_{i}}^{(k)}, \quad t = 1, 2, \ldots, j_k,
\]
holds, is greater than
\[
(16) \quad 1 - (1 - 1/y)^{s} > 1 - e/2 (y = e^{k}, s = e^{A_k^{2}}).
\]
Further if \(l_{i}^{(k)} > v_{k-1} \)
\[
\int_{0}^{1} \left(\sum_{m \leq l_{i}^{(k)}} f_{1}(2^{m} x) \right)^{2} < 2 v_{k-1}(l_{i}^{(k)}) + v_{k-1} < 2 v_{k-1}^{2} \]
since only the \(r_{m} \)'s with \(m \leq l_{i}^{(k)} + v_{k-1} \) occur and the coefficients of all of them are not greater than \(v_{k-1} \). Thus from Tchebychev's inequality we obtain that the measure of the set in \(x \) for which one of the \(j_k \) inequalities
\[
(17) \quad \sum_{m \in I_{i}^{(k)}} f_{1}(2^{m} x) > c_{l_{i}}^{(k)}, \quad t = 1, 2, \ldots, j_k,
\]
holds is less than
\[
\sum_{k=1}^{t_k} \frac{2^{\mu(k-1)}}{c_{l_k}^{(2)}} < \frac{4^{\nu(k-1)}}{c_{l_k}^{(3)}} < \frac{\epsilon}{4}, \quad \text{for } t_k > 16v_k^{-1}/\alpha.
\]

Finally we have by a simple computation
\[
\int_0^1 \left(\sum_{n \in T_k(x)} f_3(2^m x) \right)^2 < 4(\tau_k^{(3)})^2 \sum_{t \geq k} \frac{1}{A_t} < 1
\]
if \(A_k, \ldots \) are sufficiently large. Thus the measure of the set in \(x \) for which one of the inequalities
\[
\sum_{n \in T_k(x)} f_3(2^m x) > c_{l_k}^{(k)}, \quad t = 1, 2, \ldots, j_3,
\]
holds is less than
\[
\sum_{k=1}^{t_k} \frac{1}{(c_{l_k}^{(k)})^2} < \frac{\epsilon}{4}.
\]
Thus finally from (15), (16), (17), (18), (19), and (20) we obtain (10) and this completes the proof of Theorem 1.

Sketch of the Proof of Theorem 2. Put \(j = r \), then \(n_j/n_i > \sigma \). Denote by \(a_1, b_1, a_2, b_2, \ldots \) the Fourier coefficients of \(f(x) \). By (4) we evidently have
\[
\int_0^1 f(n_1 x) f(n_j x) = \sum_{a_1, b_1 = n_1} (a_1 a_2 + b_1 b_2) \leq \left(\sum_{a_1} a_1^2 \sum_{b_2} b_2^2 \right)^{1/2} + \left(\sum_{b_1} b_1^2 \sum_{a_2} a_2^2 \right)^{1/2} < \frac{c_1}{(\log r)^{1+\epsilon/2}}.
\]

Hence
\[
\int_0^1 \left(\sum_{n \in M_A(x)} f(n x) \right)^2 = o\left(\frac{N^2}{(\log N)^{1+\epsilon/2}} \right),
\]
or the measure of the set \(M_A(x, N, A) \) in \(x \) for which
\[
\left| \sum_{n \in M_A(x)} f(n_k x) \right| > A \cdot N
\]
is less than
\[
c/A^2(\log N)^{1+\epsilon/2}.
\]
Consider the sets
\[
M(1, 2^n, \delta); M(2^n, 2^{n-1}, 2\delta/2^n);
M(2^n, 2^{n-2}, 4\delta/3^n), M(2^n + 2^{n-1}, 2^n, 4\delta/3^n); \ldots .
\]
There are 2^{k-1} sets of order k, that is, sets of the form
\[(23) \quad M(2^n + 2u 2^{n-k}, 2^{n-k}, \delta 2^k/(k+1)^2), 0 \leq u < 2^{k-1}.
\]
From (21) it follows that the measure of any set of order k does not exceed
\[c(k+1)^{4/\delta^2}2^{k(n-k)^{1+1/2}}.
\]
Thus the measure of all the sets in (23) is less than $c(k+1)^{4/\delta^2}2^{k(n-k)^{1+1/2}}$, and the measure of all the sets M_n in (22) does not exceed
\[
\sum_{k=0}^{n} \frac{c(k+1)^{4/\delta^2}2^{k(n-k)^{1+1/2}}}{\delta^2 n^{1+1/2}} < c1.
\]
Thus
\[(24) \quad \sum_{n=1}^{\infty} M_n < \infty.
\]
But if x does not belong to any of the sets (22) we have by a simple argument for all $2^n \leq m < 2^{n+1}$ (every m is the sum of powers of 2)
\[(25) \quad \left| \sum_{k=1}^{m} f(n,x) \right| < \delta 2^n + \frac{\delta 2^n}{2^2} + \frac{\delta 2^n}{3^2} + \cdots + \frac{\delta 2^n}{k^2} + \cdots < 2\delta 2^n \leq 2\delta m.
\]
(24) and (25) clearly prove theorem 2(\textdegree).

\textdegree The method used here is due to Hobson-Plancherel-Rademacher-Menchof. (See, for example, Rademacher, Math. Ann. vol. 87 (1922) p. 117–121.)