Problems and results on the differences of consecutive primes.

By P. ERDŐS in Syracuse (U. S. A.).

Let $p_1 < p_2 < ...$ be the sequence of consecutive primes. Put $d_n = p_{n+1} - p^n$ The sequence d_n behaves extremely irregularly. It is well known that $\lim d_n = \infty$ (since the numbers n! + 2, n! + 3, ..., n! + n are all composite). It has been conjectured that $d_n = 2$ for infinitely many n (i. e. there are infinitely many prime twins). This conjecture seems extremely difficult. In fact not even $\lim d_n < \infty$, or even $\lim \frac{d_n}{\log n} = 0$ has ever been proved. A few years ago I proved¹) by using Bruns's method that

(1)
$$\underline{\lim \ \frac{d_n}{\log n}} < 1.$$

 $\frac{\lim d_n}{\log n} \leq 1$ is an immediate consequence of the prime number theorem. WESTZYNTHIUS²) proved in the other direction that

(2)
$$\overline{\lim} \ \frac{d_n}{\log n} = \infty.$$

In fact he show that for infinitely many n,

 $d_n > \log n$. $\log \log \log \log n / \log \log \log n$.

I proved⁸) using Brun's method that for infinitely many n

(3)
$$d_n > c \frac{\log n \cdot \log \log n}{(\log \log \log n)^2}.$$

CHEN4) proved (3) very much simpler without using Brun's method,

33

¹⁾ Duke Math. Journal, Vol. 6 (1940), p. 438-441.

²⁾ Comm. Phys. Math. Soc. Sci. Fenn., Helsingfors, Vol. 5 (1931), No. 25. p. 1-37.

³) Quarterly Journal of Math., Vol. 6 (1935), p. 124-128. In this paper one can find some more litterature on the difference of consecutive primes.

Schriften des Math. Seminars und des Instituts f
ür angewandte Math. der Univ. Berlin, 4 (1938), p. 35-55.

and RANKIN⁵) proved that

(4)
$$d_n > c \frac{\log n \cdot \log \log \log \log \log \log n}{(\log \log \log n)^2}$$

In the present note I prove the following

Theorem:

(5)
$$\overline{\lim} \ \frac{\min(d_n, d_{n+1})}{\log n} = \infty.$$

In other words to every c there exist values of n satisfying the inequalities $d_n > c \log n$, $d_{n+1} > c \log n$.

It can be conjectured that $\overline{\lim}\left(\frac{\min(d_n, d_{n+1}, \ldots, d_{n+k})}{\log n}\right) = \infty$ for every k, but I cannot prove this for k > 1.

It can also be conjectured that $\lim_{n \to \infty} \frac{\max(d_n, d_{n+1})}{\log n} < 1$, but I cannot prove this either.

Proof of the Theorem⁶). Let *n* be a large integer, $m = \varepsilon \cdot \log n$, where ε is a small but fixed number, f(m) tends to infinity together with *m* and $f(m) = o(\log m)^{1/6}$, $N = \prod_{p_i \leq m} p_i$, q_i denotes the primes $\leq (\log m)^2$, r_i the primes of the interval $[(\log m)^2, m^{1/100} \log \log m]$, s_i the primes of the interval $\left(m^{1/100} \log \log m, \frac{m}{2}\right)$, and t_i the primes satisfying $\frac{m}{2} \leq t_i \leq m$.

Our aim will be to determine a residue class $x \pmod{N}$ so that

(6) (x+1, N) = 1 and $(x+k, N) \neq 1$ for all $|k| \leq mf(m)$ and $k \neq +1$.

Suppose we already determined an x satisfying (6). Then we complete the proof as follows: Consider the arithmetic progression (x+1)+dN, $d=1,\ldots$. Since (x+1, N)=1 it represents infinitely many primes, in fact by a theorem of LINNIK⁷) the least prime it represents does not exceed N^{e_1} where c_1 is an absolute constant independent of N. Now by the prime number theorem, or by the more elementary results of TCHEBICHEFF, we have

$$N^{c_1} = (\prod_{p_i \leq m} p_i)^{c_1} < e^{2mc_1} = n^{2\varepsilon c_1} < n^{1/\epsilon}$$

for $\varepsilon < \frac{1}{4c_1}$, or there exists a prime p_i satisfying (7) $p_i < n^{1/s}, p_i = (x+1) + dN.$

⁵) Journal of the London Math. Soc., Vol. 13 (1938), p. 242-247. For further results on the difference of consecutive primes see P. ERDős and P. TUBÁN, Bull. Amer. Math. Soc., Vol. 54 (1948).

6) We use the method of CHEN.

⁷) On the least prime in an arithmetical progression, I. The basic theorem, Math. Sbornik, Vol. 15 (57), No 2, p. 139-178. II. The Deuring-Heilbronn phenomenon, Math. Sbornik, Vol. 15 (57), p. 347-368.

It follows form (6) that

(8) $p_{j+1} - p_j \ge mf(m), p_j - p_{j-1} \ge mf(m).$

Thus from (7) and (8)

(9)
$$\frac{p_{j+1}-p_j}{\log p_j} \ge \frac{mf(m)}{\log n} = \varepsilon f(m) \to \infty, \quad \frac{p_j-p_{j-1}}{\log p_j} \ge \frac{mf(m)}{\log n} = \varepsilon f(m) \to \infty,$$

which proves (5) and our Theorem is proved.

Now we only have to find an x satisfying (6). Put

(10)
$$x \equiv 0 \pmod{q_i}, x \equiv 0 \pmod{s_i}.$$

Let $|k| \le mf(m)$, have no factor among the q's and s's. Then we assert that k is either ± 1 or a prime $> \frac{m}{2}$ or has all its prime factors among the r's. For if not then k would be greater than the product of the least r and the least t, i. e.

$$k \ge \frac{m}{2} (\log m)^{s} > mf(m); (f(m) = o(\log m))$$

an evident contradiction.

Denote by $u_2, u_2, \ldots, u_{\xi}$ the integers $\leq |mf(m)|$ all whose prime factors are r's. We estimate ξ as follows: We split the u's into two classes. In the first class are the u's which have less than 10.log log m different prime factors. The number of these u's is clearly less than

(11)
$$(m^{1/100}\log\log m, \log m)^{10\log\log m} < m^{2/8}$$

(since the number of integers of the form p^{α} , $p^{\alpha} < mf(m)$, $p < m^{1/100} \log \log m$ is less than $m^{1/100} \log \log m$. log m).

For the u's of the second class $v(u) \ge 10 \cdot \log \log m$ (v(u) denotes the number of different prime factors of u). Thus from

$$\sum 2^{v(u)} < 2 \sum_{b=1}^{mf(m)} 2^{v(b)} < cmf(m) \cdot \log m < m (\log m)^2$$

we obtain that the number of the u's of the second class is less than

(12)
$$\frac{m(\log m)^2}{2^{10\log\log m}} < \frac{m}{(\log m)^2}.$$

Hence finally from (11) and (12)

(13)
$$\xi = o\left(\frac{m}{\log m}\right).$$

Denote now by v_1, v_2, \ldots, v_η the integers of absolute value $\leq mf(m)$ which do not satisfy the congruence (10). Then the v's are either -1 or are u's, or of the form $\pm p, \frac{m}{2} . Thus by (13) and the results$

of TCHEBICHEFF about primes

(14)
$$\eta < c \frac{mf(m)}{\log m}.$$

Suppose we already determined for i < j a residue class $\lambda^{(i)} \pmod{r_i}$ so that

(15)
$$x \equiv \lambda^{(i)} \pmod{r_i}, \ \lambda^{(i)} \neq -1, \quad i = 1, 2, ..., (j-1).$$

Denote by $v_1^{(j)}, \ldots, v_{\eta_j}^{(j)}$ the v's which do not satisfy any of the congruences (15). There clearly exists a residue class mod r_j which contains at least η_j/r_j of the v's. Denote this residue class by $\lambda_1^{(j)}$. If $\lambda_1^{(j)} \not\equiv -1 \pmod{r_j}$ we put

(16)
$$x \equiv \lambda_1^{(j)} \pmod{r_j}.$$

If on the other hand $\lambda_1^{(j)} \equiv -1 \pmod{r_j}$ we distinguish two cases: In the first case the residue class $\lambda_1^{(j)} \pmod{r_j}$ contains less than $\frac{1}{2} \eta_j$ of the $v^{(j)'}$ s. Then there clearly exists a residue class $\lambda_2^{(j)} \not\equiv \lambda_1^{(j)} \pmod{r_j}$ which contains more than $\eta_j/2r_j$ of the $v^{(j)'}$ s. Put for these r'_j s

(17)
$$x \equiv \lambda_2^{(j)} \pmod{r_j}$$
.

We continue this operation for all the r's and let us first assume that for every r_i either $\lambda_1^{(j)} \equiv -1 \pmod{r_i}$ or that the first case occurs. Denote by V_1, V_2, \ldots, V_q the v's which do not satisfy the congruences (16) and (17). Clearly

(18)
$$\varrho \leq \eta \Pi \left(1 - \frac{1}{2r_j} \right) < c \, \frac{mf(m) \log \log m}{(\log m)^{s_{j_2}}} = o\left(\frac{m}{\log m} \right)$$

since

$$\frac{c_1}{\sqrt{\log z}} < \prod_{p \leq z} \left(1 - \frac{1}{2p}\right) < \frac{c_2}{\sqrt{\log z}}.$$

Put now

(19) $x \equiv -V_i \pmod{t_i}, \quad 1 \leq i \leq \varrho,$

where t_i is chosen so that $V_i - 1 \neq 0 \pmod{t_i}$ and the different V_i correspond different t_i . This is always possible since the number of prime factors of $V_i - 1$ is less than $c \log m$ and number of t's equals $\pi(2m) - \pi(m)$, and we have by (18) and the results of TCHEBICHEFF

$$\pi(2m) - \pi(m) > c_1 \frac{m}{\log m} > \varrho + c \log m.$$

For the t's not used in (19) we put

$$(20) x \equiv 0 \pmod{t_i}.$$

The congruences (10), (16), (17) and (10) determine $x \pmod{N}$ so that (6) is clearly satisfied, which proves our Theorem in case the second case never occurs.

36