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1. F. P. Ramsey (1) proved the following theorem. Let 7~ be a positive 

integer, and let A be an arbitrary distribution of all sets of n positive integers 

into a Jinite number of classes. Then there exists an in.nite set M of positive 
integers which has the property that all sets of n numbers of M belong to the 

Same class of A. Apart from its intrinsic interest the theorem possesses 

applications in widely different branches of mathematics. Thus in (1) 
the theorem is used to deal with a special case of the “ Entscheidungs- 

problem ” in formal logic. In (2) the theorem serves to establish the 
existence of convex polygons having any number of vertices when these 

vertices are to be selected from an arbitrary system of sufficiently many 
points in a plane. In (3) it is a principal tool in finding all extensions of 
the distributive law 

(a+b)(c+d) = ac+ad+bc+bd 

to the case where the factors on the left-hand side are replaced by con- 
vergent infinite series. Finally, Ramsey’s theorem at once leads to 

Schur’s result (4), which asserts the existence of a number nk such that, 

whenever the numbers 1, 2, . . . , n, are arbitrarily distributed over k classes, 

at least one class contains three numbers x, y, z satisfying x+y = z. The 
estimate of n, obtained in this way is, however, inferior to Schur’s estimate 

n,<ek! 
The object of the present note is to prove a generalisation of Ramsey’s 

theorem in which the number of classes of A need not be finite. We consider 
the term “distribution of the set Q ” as synonymous with “binary, 

reflexive, symmetrical, transitive relation in Q “. Let N = (1, 2, 3, . ..I. 
and denote, for nsN, by Q2, the set of all subsets {%, u2, . .., aJ of N, 

where $<a,<...<~,. Let k, vl, v2, . . . . vk be integers, O<k<n, 

o<vl<v2<..~<vk<n~ Consider the following special distribution of 

Q2,, called the canonical distributioti At”,?,.,. ,,k of Q2,. Two elements 
{ai, . . ., a,J, {b,, . . . . b,,J of .R, are in the same class of A$!.. yL if, and only if, 

a,<a,<...<a,; b,<b,<...<b,, 

ayl = b,, ; ays = bV2 ; . . . ; ayk = b,t. 

There are exactly 2” canonical distributions of ti2,. We mention the 

following two extreme cases of such distributions : (i) A(O), the distribution 

t Received 26 August, 1949; read 17 November, 1949. 
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in which all elements of Q, form one single class, (ii) AFL, . . . . ,&, the distribu- 

tion in which every element of Q2, forms a class by itself. We shall prove 

THEOREM I. Let n, be a positive integer. Let A be an arbitrary d&&u- 

tion of all sets of n positive integers into classes. Then there is an in$nite set 

N* of positive integers and a canonical distribution At:‘. . . yk such Ihat, as far as 

s&sets of N* are concerned, the given distribution A coincides with the can&& 

dktribution A::). . i Yk. 

If, in particular, A has only a finite number of classes then the canonical 

distribution of !I’heorem I, having itself only a finite number of classes, 

must be A@)‘, so that Ramsey’s theorem follows from Theorem I. 

2. It may be worth while to state explicitly the special case n = 2 of 
Theorem I. 

THEOREM II. Suppose that all pairs of positive integers (a, b), where 

a < b, are arbitrarily distributed into chsses. Then there is an increasing 

sequence of integers x1, x2; x3, . . . such that one of the following four sets 

of conditions holds, where it is assumed that a < j3 ; y < 6 : 

(i) All (x=, xa) belong to the same class. 

(ii) (x., 5) and (x,, 3) belong to the same cluss if, and only if, a = y. 

(iii) (x,, x& and (x,, zs) belong to the same class if, and only if, /I = 6. 

(iv) (x,, x6) and (z,, x8) belong to the same class if, and only if, a = y ; 

(tl=S. 

We ahall deduce Theorem I from Ramsey’s theorem. Our argument 

does not make any use of Zermelo’s axiom. Ramsey stated explicitlyt 

that his proof assumes Zermelo’s axiom. It is, however, very easy to 

modify his proof in such a way that this axiom is not required. In order 
to establish Theorem I without the use of Zermelo’s axiom, we give a brief 

account, in 86, of such a modified proof of Ramsey’s theorem. 

3. We introduce some notations and definitions. The letter A denotes 
distributions of objects into classes, The relation X = Y (.A) expresses 

the fact that X and Y are objects distributed by A, and that X and Y 

belong to the same class of A. Letters A, B, C, D denote typical finite 

subsets of N. The number of elements of A is j A I. A relation1 

(1) A,:A,:...:A,=B,:B,:...:B, 

f (1), Theorem A. 
$ Set-tkieoretioal operations are denoted by the common algebraic symbols, and 

brackets { } are only used in order to define sets by means of B list of their elements. 
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means that there exists a function f(x), defined for XE A, + . ..+A. and 
having functional values in N, which has the properties : 

if 2 < Y, then f(x) <fW, 

Thus (1) simply means that, as far as the order relation in N is concerned, 
the relative position of the sets A, to each other is the same ~EI t&at of the 

Bw A relation 
A1:A2= B,:B,=C,:C, 

is, by definition, equivalent to the simultaneous validity of the two relations 

A,:A,=B,:B,, B,:B,=C,:C,. 

4. Using the notation and definitions of $3, we can state Theorem I, 
for a fixed n > 0, as follows?. 

~OPOSITION P,. Let A be a dktribution oj Q,. Let C, ‘be jked, 
IC,I=n. Then there is an infinite m&et N+ of N and a subset C,* of C, 
such that the following condition holds : if 

AfBcN”; IAI=jBI=n; A*:A=B*:B=C,*:CO, 

then A r B (.A) if, and only if, A * = B+. 

A corollary of the proposition P, is the following test for a distribution 
to be canonical. 

THEOREM III. A distribution A of C& is carwnkul if, and on@ if, 
whenever 

AsB(.A); A:B=C:D, 

then CsD (.A). 

5. Our ” choice-free ” version of Ramsey’s proof of his theorem runs 

as follows. Let A be a distribution of 51, into a finite number of classes. 
We want to define an infinite subset H(A) of N such that, for some class K 

of A, we have A EK whenever A c M(A), IA ) = n. 
If n = 0, then we may put M(A) = N. Let n > 0, and use induction 

with respect to n. If aE N--M, where 

M=(xl,x,, . ..}cN. xl<xz< . . . . 

7 The case n. = 0 is included merely in order to have au esay stazt of the induction 

proof which is to follow. 
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we define the distribution A(N, a) by putting 

A E B( .A(M, a)) 

if, and only if, 

A+BcM, iA’1 = IBI =n-1, 

{u)+A EZ (u}+B (.A). 

By induction hypothesis, applied? to the set M, in place of N, and the 

distribution A(M, a), there is a well-defined infinite subset cr(M, a) of M 

and a class K(N, a) of A saOisfying 

{a)+A EK(M, a) whenever A c a(M, a), IA I= n-l. 

Now we define, inductively, numbers uk and sets M, not containing ak. 

Put a, = 1; M, = N- {l>. Let al+, be the least number of u(M~, al), and 

put Hl+r = u(M~, aJ- {a[+r} (I = 0, 1, . ..). Let IcO be the least number 

such that K(M~,, ak,) = ~(&f~, uk) for infinitely many k, and let k,, k,, . . . 
be all numbers lc satisfying this last equation, Ic, < k, < . . . . Then we may 

put M(A) = {Q,, a,tl, . ..). This proves Ramsey’s theorem. 

6. We now prove P,. Clearly, PO is true. For we may put N* = N ; 
C,” = co. Let n > 0, and use induction with respect to n. Let A be a 

distribution of s1,. Choose some fixed D, satisfying 1 D, I= 2n. Define, 
for any A such that 1 A 1 = 212, the set +(A) of pairs of subsets of D,, by putting 

$(A)= x d’Cd”Cd (P’, W). 
B’s A” (A) rl’.B”.d=D’.1)“.D . . . -0 

The set $(A) characterizes the effect of A on the subsets of A. We define 

A* by putting 

(2) A EF B(.A*) 

if, and only if, jAI=]Bj=2n; $(A)=+(B). 
Since A* has only a finite number of classes it follows from Ramsey’s 

theorem that there is an infinite subset M of N such that (2) holds whenever 

A+BcM; ]Al=jBl=2n. 

Without loss of generality we may assume that M = N. For all our 

arguments are only based on order relations in N. 

t The relation YC +x, sets up a one-one mapping of N on M. By means of this mapphg 

there corresponds to every well-defined subset Of N a well-d&ned Bubsot of dI, and vice 
VfWSB. 
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Consider any sets A’, B’, C’, D’ satisfying 

(3) A’E B’ (.A), 

(4 A’: B’= c’:D’. 

We want to deduce that 

(5) C’ ES D’ (.A). 

According to (3), (4), one can choose A and B satisfying 

A’fB’cA; C’+D’cB; IAI=]Bj=2n, 

(6) A’:B’:A=C’:D’:B. 

Then (2) holds and therefore, in view of (6), (3), and the definition of A*, 
also (5). The fact that (3) and (4) imply (5) will briefly be described by 
saying that A is invariant. 

Case 1. Suppose that A E B (.A) only holds if A = B. Then the 
conclusion of P, is true if we put iV* = N ; CO* = CO. 

Case 2. Suppose that there are sets A,, B, satisfying A,, = B, (.A) ; 
A,# B,,. Put 

Then 

A, = & (24; B, = zz (24. 
0 

A,:B,=A,:B,, 

and therefore, since A is invariant, 

(7) A, SE B, (.A). 

As A, # B,, we can choose X~E Bo-A, B,. Put, 

Then 
4 = (B,-- (%})+ PG+ I>. 

A,:B,=A,:B, 

and hence, again on account of the invariance of A 

(8) A, = B, (.A). 

From (7) and (8) 

(9) B, = B, (.A). 

There is C,’ satisfying 

(B,- {x0}) : B, = C,’ : Co. 

Now consider any sets A,, A, such that 

]AJ=JAaj=n; A,#A,; A’:Al=A’:Ac=C;:CO, 
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where A’ is some suitable set. We shall show that 

W A,zA8,{,A). 

We may assume that 

A’ = A,- {x3> = A,- (zp) ; x3 < x4. 

Then B, : B, = A,: A,, and therefore, since (9) holds and A is invariant, 
(10) follows. In other words, if sets A and A’ satisfy A’ : A = C,’ : C,, then 
the class of A which contains A only depends on A’ and not on A-d’. 
Hence every set A” satisfying 

IA”I=n-1; d”c(2, 4, 6, . ..>=iV”. 

say, determines a unique class K(A”) of A, namely that class which contains 
all A satisfying A” : A = C,’ : C,. Such sets A always exist. 

Define A” by putting 

A” z B” (.A”) 

if, and only if, 

Id”1 = J B”] = n-l; A”+B”cN”; K(A”) = R(B”). 

By induction hypothesis, the proposition P,+, is true for A”. Thus there is 
an in&-&e subset N”’ of N” and a subset Cy’ of C,’ such that the following 
conditions are satisfied. Let 

A”+B”cN”‘; . A”’ . A” = fj”’ . B” = (J”’ 0 :c;. 

Then A” E B” (.A”) if, and only if, A”’ = B”‘. In view of the definition 
of A”, this means that, the conclusion of P, holds for the given distribution 
A if we put 

iv* Zzz N”’ ; co* = iy. 

This proves Proposition P, and hence Theorems I and II. 

7. We now prove Theorem III. First of all, suppose that A is a 
canonical distribution of !&, say A = A&t’... “~. Then the relation A E B (.A) 
means that 

A = {a,, . . ., an> ; B = {bl, . . ., b,}, 

a,<...<a,; b,<...<b,, 

If now c= {Cl, . . . . cJ; D= {dl, . . . . cl,), 
c,<...<c,; a,<... <a*, 
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then the validity of A : B = C : D implies that c,< = d,# (1 <K < k), i.e. that 

C E D (.A). Hence A is invariant. 

Vice versa, suppose that A is invariant. By Theorem I, we can find 

an innnite subset N* of N, so that A is canonical in N*, say A = A!:‘...,,, as 

far as subsets of N* are concerned. But, since A is invariant in the whole 

set N, this obviously implies that A = A~~),.,ykas far as all subsets of N are 

concerned. This proves Theorem III. 
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