Reprinted from the American Mathematical Monthly Vol. LVII, No. 6, June-July, 1950

ON ALMOST PRMES*

P. Endơs

1. Introduction. D. H. Lehmer [1] and others have studied odd composite numbers \boldsymbol{n} which behave like primes in that they satisfy the congruence

$$
2^{n}=2(\bmod n) .
$$

For brevity, we call such numbers almost primes. In a previous note [2] we proved that for every k there exist infinitely many square free almost primes having \boldsymbol{k} distinct prime factors; this generalizes a result of Lehmer for $\boldsymbol{k} \leq 3$. In the present note we estimate from above the number of almost primes less than a given limit.
2. Theorem. Our result is the following.

Thionem. Let $f(x)$ denote the number of almost primes $\leqq x$. Then, for x sufficiendly large, we have

$$
f(x)<x \exp \left\{-\frac{7}{\left.(\log x)^{1 / 4}\right\} . ~}\right.
$$

Remark. Since the number of primes $\leq x$ is asymptotic to $x / \log x$, our theorem implies that the number of almost primes $\leqq x$ is very much less than the number of actual primes.
3. Proof. Let $g(n)$ be the least positive exponent e such that

$$
2^{0}=1(\bmod n) .
$$

We separate the almost primes $n \leqq x$ into two classes C_{1} and C_{2}. The class C_{1} consists of those n's for which

$$
g(n) \leq\left[\exp \left((\log x)^{1 / 2}\right)\right]=H,
$$

while C_{2} consists of all the other almost primes $\leq x$.
The members of C_{1} are divisors of

[^0]$$
P=\prod_{r=1}^{B}\left(2^{r}-1\right) .
$$

Let $g_{1}, g_{2}, \cdots, g_{4}$ be all the prime factors of P. Then the members of C_{1} are included in the class Γ_{1} of integers $\leqq x$ having prime factors taken from the set g_{1}, \cdots, g_{k} only. Since $2^{r}-1$ has less than r prime factors, we have

$$
\begin{equation*}
k<\sum_{r=1}^{H} r \leqq H^{2} . \tag{1}
\end{equation*}
$$

We now separate the members of Γ_{1} into two subclasses $\Gamma_{1,1}$ and $\Gamma_{1,2}$, where $\Gamma_{1,1}$ consists of those members of Γ_{1} which have less than

$$
W=\frac{1}{10}(\log x)^{1 / 2}
$$

distinct prime factors. From the fact that if $m \leqq x$ and if $g^{\boldsymbol{\alpha}}$ divides m, then $\alpha \leq$ $(\log x) / \log 2$, it follows from (1) that the number of members of $\Gamma_{1,1}$ is less than

$$
(\log x / \log 2)^{W} \sum_{t=1}^{W}\left(\frac{k}{t}\right)<W k^{W}(\log x / \log 2)^{W},
$$

a quantity less than $x^{1 / 4}$ for all sufficiently large x.
We consider next the class $\Gamma_{1,2}$. Let $d(m)$ denote the number of divisors of m, and let $\boldsymbol{v}(m)$ be the number of distinct prime factors of \boldsymbol{m}. If \boldsymbol{m} belongs to $\Gamma_{1,2}$, then

$$
d(m) \geqq 2^{\circ}(m)=\exp \{v(m) \log 2\}>\exp (W / 2) .
$$

Hence, if \boldsymbol{N} is the number of members of $\Gamma_{1,2}$, we have

$$
2 x \log x>x \sum_{m \leq x} w^{-1} \geqq \sum_{m \leq}\left[\frac{x}{m}\right]=\sum_{m \leq:} d(m) \geqq \sum_{m<\Gamma_{1}, 2} d(m) \geqq N \exp (W / 2) .
$$

That is, we have

$$
N \leqq 2 x(\log x) \exp (-W / 2) .
$$

Therefore, if \boldsymbol{x} is sufficiently large, the total number of members of C_{1} is less than

$$
\begin{equation*}
x^{1 / 4}+N \leqq x^{1 / 4}+2 x(\log x) \exp (-W / 2)<x \exp \left\{-\frac{1}{30}(\log x)^{1 / 2}\right\} \tag{2}
\end{equation*}
$$

We take up now the class C_{2} which we separate into two classes $C_{3,1}$ and $C_{2,9}$. The class $C_{2,1}$ consists of those members n of C_{2} which have a prime factor p such that the greatest common divisor δ of $n-1$ and $p-1$ satisfies

$$
\delta=(n-1, p-1) \geqq \exp \left((\log x)^{1 / 4}\right)=T .
$$

In other words, for each member \boldsymbol{n} of $\boldsymbol{C}_{\mathbf{2}, 1}$ there is a prime p and an integer m such that

$$
n=p m, \quad p=\delta t+1, \quad m=\delta m+1, \quad x / p \geqq m>1 .
$$

The last inequality follows from the fact that n is composite. If p and δ are fixed, the number of choices for m is at most $x /(\delta p)$. Hence the number of members of $C_{\mathbf{2}, 1}$ does not exceed

$$
\begin{align*}
& <2 x(\log x) T^{-1}<x \exp \left\{-\frac{1}{2}(\log x)^{1 / 4}\right\}, \tag{3}
\end{align*}
$$

for x sufficiently large.
Finally we consider the class $C_{2,2}$. This consists of almost primes

$$
n=\prod_{i=1}^{k} p_{i}^{a_{i}}
$$

for which

$$
\delta_{i}=\left(n-1, p_{i}-1\right)<T, \quad(i=1,2, \cdots, k) .
$$

It is well known that the exponent $g(n)$ divides

$$
\phi(n)=\prod_{i=1}^{n} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right) .
$$

Also $\boldsymbol{g}(\boldsymbol{n})$ divides $\boldsymbol{n} \boldsymbol{- 1}$ since \boldsymbol{n} is an almost prime. Hence

$$
H \leqq g(n) \leqq(n-1, \phi(n)) \leqq \prod_{i=1}^{k}\left(n-1, p_{i}-1\right) \leqq T^{k}
$$

That is,

$$
k \geqq(\log H) / \log T=\log T .
$$

Thus, if M denotes the number of members of $C_{\mathbf{2}, \mathrm{s}}$, we have, as before,

$$
2 x \log x>\sum_{m \leq x} d(m) \geqq \sum_{m \leq x} 2^{\prime}(m) \geqq 2^{k} \sum_{m C c i, 2} 1 \geqq M \cdot 2^{\log T} .
$$

Hence, for x sufficiently large, we have

$$
\begin{aligned}
M & \leqq 2 x(\log x) \exp \{-(\log 2) \log T\} \\
& \leqq x \exp \left\{-\frac{1}{2}(\log x)^{1 / 4}\right\} .
\end{aligned}
$$

Combining this result with (2) and (3) we have

$$
\begin{aligned}
f(x) & <x\left\{\exp \left(-\frac{1}{8}(\log x)^{1 / 2}\right)+2 \exp \left(-\frac{1}{3}(\log x)^{1 / 4}\right)\right\} \\
& <x \exp \left(-\frac{1}{8}(\log x)^{1 / 4}\right),
\end{aligned}
$$

for x sufficiently large. This is our theorem.
4. Discussion. By a slightly more complicated argument we could prove that, for some positive constant c,

$$
f(x)<x \exp \left\{-c(\log x)^{1 / 2}\right\} ;
$$

but the true order of $f(x)$ seems to be considerably smaller. As far as I know, the only estimate for $f(x)$ from below is

$$
f(x)>C \log x,
$$

which is due to Lehmer.
Added later. As far as I know the question of the existence of even numbers satisfying $2^{\boldsymbol{n}}=\mathbf{2}(\bmod \boldsymbol{n})$ has not been considered. Except for the trivial case $\boldsymbol{m}=\mathbf{2}$, I have not succeeded in finding any such even numbers.* By the method of this paper it is easy to see that their number $\leqq x$ is certainly less than $x \exp$ $\left\{-\frac{1}{3}(\log x)^{1 / 4}\right\}$.

References

1. D. H. Lehmer, On the Converse of Fermat's Theorem, I, II, this Monthly, vol. 43, 1936, pp. 347-354; vol. 56, 1949, pp. 300-309. These papers contain references to other work on almost primes.
2. P. Erdos, On the Converse of Fermat's Theorem, this Montily, vol. 56, 1949, pp. 623624.

[^0]: - Revined by D. H. Lehmer.

