SOME REMARKS ON SET THEORY
P. ERD{S
‘The present note contains a few disconnected remarks on the

theory of sets.
h is well known that the addition of ordinal numbers does not
v the the law of commutativity, for example, 1+w#w+1.
' now # be a finite number. Denote by f(n) the maximum number
of different ordinals we can obtain by adding in all possible ways n
ordinals. We prove the following theorem.

1‘1'33&331.1 1. We have
A 3 J(n) = max (k2 e ) — R

at, f(2)=2, f(3)=35, f(4)=13, f(5)=33, f(6)=81, f(7)=193,
449, £(9) =1089, f(10) =2673, f(11) =6561, f(12) =15633, f(13)
=37249, f(14) =88200, f(15) =216153, - - -, and for 23, f(5x+1)
=817 f(5x+2) =193 .81, f(5x+3) =193'817 2, f(5x+4) = 1939812,
£5)=33:81%. Thus for n=21

f(n) = 81f(n — 5).

t there be given » ordinals ey, e, « + + , o It is well known that
dinal can be written uniquely as the sum of indecomposable
An ordinal is said to be indecomposable if it is not the sum of
er ordinals.) Denote by ¢(a) the largest of these indecom-
ordinals belonging to a. (¢{a) may have a coefficient ¢ in the
position of «.) Put "'f-l]li.ﬂgi. ¢{oe), and assume that there are
with qb{m} =7. Denote these a's by ay, aa, + + +, e If in the sum
2o SOURCHUIES o PN TP * SCHCHCINR T permutntmn of 1, 2,+++,m,
 the ay, ¢Sk appear at the end, they get absorbed in the fol-
gummands, and we get exactly f(n —k) different sums. Assume
at exactly r of the a)'s, r =k, appear at the end of a:,+ay,
e, Put

oy = Ty 4 by, & < 7y, B #F By, fﬂl‘i,jé k.
then have
Db ant =B (@ 2 4 Ty 4 5

ﬁ’?_,w (All the &'s except #:, get absorbed.) Now 244 2h-
s+« 2% can be chosen in i, ways and &, in » ways. Thus

i by the editors November 2, 1948,
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128 P. ERDOS

the number of sums is rCif(n—k). (The k—r a's with ¢(a) =y
appearing at the end get absorbed.) Summing for r, we obtain

'}
) )z [1 +X rc..,]f:n — ) = (B2 + 1)/ — ).

Hence clearly
(6) f(n) = o (k251 + 1)f(n — &)

(since it clearly follows from our proof that our choice of the a's
gives the maximum number of different summands). This proves (1),
We obtain from (1) by a simple computation that for n =20 the
value of f(n) is given by Theorem I. The rest of Theorem I is easily.
proved by induction, we have to use that (k2*'41)V* (k integer)
increases for k<5 and decreases for A= 5. We suppress the details’
since they can easily be given and depend only on numerical esti-
mates, Thus the proof of Theorem I is complete,
"~ Mr. Spanier remarked that the number of different products one
can obtain from s ordinals is m!. It suffices to choose ay=w+1,

oy=w+2, -+ +, dp=w+n. A simple computation shows that
Gy Oty g, = w0t g™l e
where 4, 4, « + «, 4, is any permutationof 1, 2, « « -, m.

Let X be a set of power m. Letters a, b, - - - denote subsets of
X;A, B, -« -, sets of subsets of X. 4 and B are defined (by Lusin) to
be orthogonal if for any a4, BB, aMb has power less than m. The
orthogonal sets are said to be separable if there exist ¢ and d with
¢Md empty and such that for every a €4, bEB, aCc\Ja’, bCTd\Jb',
where the power of a’ and b’ is less than .

Lusin! proves with the aid of the axiom of choice that if m=M;
there exists two orthogonal sets which are not separable. We shall
give a very simple proof of this result for all m, which for m =N,
will be independent of the axiom of choice,

Let A consist of m disjoint sets of power m and B consist of all the
sets which intersect the sets of A in not more than one point. Clearly
A and B are orthogonal, but they clearly are not separable, for every
set ¢ which intersects all the sets of 4 contains a set of B. For m =¥,
this proof is independent of the axiom of choice, but in the general
case the equality m*=m is used and this is equivalent to the axiom
of choice.? '

' C. R. (Doklady) Acad, Sci. URSS, vol. 40 (1943) pp. 175-178.
* Tarski, Fund. Math. vol. 7, pp. 147-154.
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Lusin' also proves that if both 4 and B contain only countably
many sets, then they are separable. His proof generalizes to the case
when m is a regular number and both 4 and B contain only m sets.
We give the proof only for the sake of completeness,

Suppose 4 consists of the sets [a.} and B of the sets {b.}. Put

¢= EJ(&-.—FEB,), d= E}(ﬁ,—-ﬁ%qﬂ).

Clearly ¢ and d separate 4 and B.
The proof breaks down if m is singular. We shall give an example
which shows that the theorem is not always true for singular m. Put

m=Rop ooty ...

Let 4 consist of ununtahly many disjoint sets g; of power m. Write
gi=wy +n"+ - - - where card (nl?) =M,, card {n N =My, - -+ (card
a denotes the l:ardlnal number of a) and #"Ma=0. E con-
sists of all the sets b of the form U;nlt, where f({) is any function of
{clearly card B=12%<m). 4 and B are clearly orthogonal, but a
simple argument shows that they are not separable,

~1f n is the smallest cardinal number cofinal te m and 4 and B con-
tain not more than n sets, then it is easy to see that if 4 and B are
- orthogonal, they are also separable.

‘The orthogonal sets A and B are said to be complete (Lusin) if we
can add no set either to 4 or to B without destroying orthogonality,
that is, if X is the set of integers and A consists of all the subsets con-
taining only a finite number of even numbers and B of all sets con-
taining only finitely many odd numbers.

4 and B are called k-orthogonal if for any a4 and BEB,
card Eaf‘ib <N:. k-completeness can be defined in the obvious way.
’Wﬂ shall prove the following theorem.

“Treoneym 11, The cardinal number N of the k-complete orihogonal
ﬁws equals
N =12

We shall assume the generalizeﬂ continuum hypothesis 2% =N,
Tarski® proved (by using the generalized hypothesis of the con-
tir uum) that there exist m® subsets of X(card X =m) such that the
ection of any two has power less than M. Denote such a set of
haets by C. Split C in an arbitrary way into the union of two sets
afﬁubﬁebﬂ A’ and B', This can clearly be done in 2™ ways. Clearly

3 Ibid, vol, 12, pp. 186-206 and vol. 14, pp. 205-216.
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A’ and B' are k-orthogonal. It immediately follows from the axiom
of choice that they can be extended to the k-complete orthogonal pair
A and B, and a simple argument shows that to different 4’ and B’
correspond different 4 and B, This shows that

N = 2~

Let now A’ be any set of subsets of X. There clearly exists a
maximal set of subsets of X, B say, which ig k-orthogonal to 4/, We
shall prove that there exists a subset 4" of 4’ of power =mM which
determines the same set B, Consider all the subsets of power M of
the sets ae=4’. The power of these sets is clearly not greater than
m*, To each of these sets select an arbitrary ¢.©4' which contains
it, and let the sets of 4 "' be all these a,. Clearly if B is k-orthogonal to
A" then it is also E-orthogonal to 4' (and vice versa), which com-
pletes the proof of our statement. But then a simple argument shows
that the number of complete k-orthogonal pairs is not greater than

2™ mite o mite

which completes the proof of Theorem 11. In the second part of our
proof we clearly did not use the continuum hypothesis.

It follows from Theorem II that the number of complete orthogonal
pairs is 2*". The number of complete orthogonal and separable pairs
iz clearly only 2", which again shows that there are orthogonal pairs
which are not separable,

Without using the continuum hypothesis it seems to be very hard
to prove that the number of complete orthogonal pairs is greater
than 2= But if m =M, this iz quite easy, since it is well known that
there exist 2% sets of integers such that the intersection of any two
is finite. It suffices to let a, consist of the integers 2°4 [#2] where a
is an arbitrary positive real number,

Taeorewm 111, Let S be any infindie subset of k-dimensional Euclidean
space, Card S=m. Then there exisis a subset Sy of S, card Sy=m, such
that all the distances between any lweo points of Sy are different.

ReEmark, We are not going to assume the continuum hypothesis.
In fact the proof will be complicated only because we cannot exclude
the possibility that = is singular.

We use induction with respect to the dimension k. We slightly
strengthen the statement of our theorem. In fact we prove: Let the
set S (card S=m) besituated on n (# <m) k-dimensional hyperplanes
or hyperspheres. Then there exists a subset 5; of 5, card Sy =m, such
that all the distances between any two points of 5; are different.

u
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First we prove this for 2=1. Put S=L+-C, where L is the subset of
5 situated on lines and, C the subset situated on circles. Assume first
card L=m. Denote by My the set of lines containing L. By assump-
tion card Mr=#n<m. Let L, be a subset of L, such that any line
bisecting the distance between any two points of L; is not in Mg, and
Ly is maximal with respect to this property (it clearly follows from
the axiom of choice that such an I; exists, possibly it is empty). We
prove card Ly=m. For if not assume that card L, =r <m, then by
definition of Ly, to every point x of L—L, there exists a point ¥ of
Ia such that the perpendicular hisector of x and v is a line of M.
‘But a point ¥ of L; and a line ! of M, uniquely determines a point x
of L—L; such that the perpendicular bisector of the segment [x, v]isl.
Butsince card L; <m andcard M <m this would imply that L— L =m
‘and hence card L<m, which is not true. Thus we prove that card L,
=#1. Let now L: be a maximal subset of L; with the property that
all distances between points of L, are different. Let card Ly=¢. If
‘#<tm, then all the points of L;—L; must lie on { circles or lines. But
~ this is impossible since the lines cannot coincide with any of the lines
‘of Mp, therefore any of these lines can intersect any line of M, inat
most one point, Therefore each of these lines can contain at most
‘card M points of Li—Ls;, and each of the circles can contain also
at most card M. points of Li—ZLs. But this would mean that
card (Li—Ls) S¢-card My <m which is not the case. Thus t=m,
wht:h completes the case card L=m. Assume next card C=m. De-
note by M, the set of circles containing €, put card Mg=r<m,
-denote further by O the set of centers of the circles of Mg, and con-
‘sider the set C—0. Denote by € a maximal subset of C—©O with the
property that all distances between points of C; are different. Then
it is easy to see that card Cy=wm, which completes the proof in case
e=1.
~ Assume now that our theorem is true for k—1, and we shall prove
(it for k. Suppose then that S lies on n <m k-dimensional hvperplanes
-rﬂlﬂ hyperspheres. By the same argument as used in the previous
‘pages we can find % (k —1)-dimensional hyperplanes and hyperspheres
{ﬁ'}nch contain m points of S, and by the induction hypothesis this
;gnm;:letes the proof of Theorem III. In case # is a regular number
it is easy to give a very much simpler proof.

- Assume that #s is regular and that 5 is a set of power m in k-dimen-
sional Euclidean space. Then we can select a subset S, of S of power
#t such that for r=1, 2, - + +, k the volume of any two r-dimensional
‘nondegenerate simplices is different. The proof is similar to the case
for r=1. 1 m is singular this result is false. Take m =N,, and denote
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by I, ls, - - + a countable set of parallel lines. Let I; contain ¥ points
of 5. Clearly any subset 5; of S of power M, contains two nondegen-
erate triangles of the same area.

If the set 5 is in Hilbert space our theorems of the previous pages
do not generalize, In fact Oxtoby and I constructed a set of power Ny,
such that the distance between any two points is rational. We do not
give the construction here. At present we cannot decide whether
there exists in Hilbert space such a set of power ¢. (Added in proof:
Kakutani and 1 found a simple example of such a set.)

™ One can ask the following question: Is it possible to split the n-di-
mensional Euclidean space into countably many disjoint sets, such
that in each set any two distances between any tweo points should be
different, For #=1 this is known* and I do not know the answer for
n>1.

The problems we just considered have some interest also [or
finite sets. Let there be given » points (# finite) on a line. Then we
can seleet ¢-n'? points among them, such that all the distances are
different. It is probable that ¢-n'* can be replaced by ¢-n¥% If the
# points are in k-dimensional space, we can select ¢-#'"W® points
among them such that all the distances are different. I do not know
the exact value of f(E).

Dénes Konig's® book on graphs contains the following theorem:
Let & be a graph of order m (m is an infinite cardinal) and any two
vertices are connected by less than n edges, and we assume n<m.
Then @ is the product of linear factors. Let us first explain the ter-
minclogy: The order of a point is the cardinal number of edges of its
star (the star of a vertex is the collection of edges incident with it).
A graph is said to be of order m, if every vertex of it has order m.
Let & be the initial number belonging to the cardinal number m. G
iz the product of linear factors il we can make correspond to each edge
of G an erdinal number < 2, such that the star of every vertex con-
tains one and only one edge to which the ordinal g, 8=1, 2, - -+,
corresponds. Kiénig® raises the question whether the condition “con-
nected by less than n edges, and #<m" can be replaced by “connected
by less than m edges.” The proof given in his book shows that the
answer is affirmative in case m is a regular number. We shall show
that the answer is negative for singular numbers. Let the vertices of
¢ be the points {u;}, §=1,2 + .« and {b.?, o< . The vertices a;
and ay, £<j, are connected by ¥, edpes, and+b, and a; are connected
by ¥: edges. Clearly G is of order ¥, and any two vertices are con-

' P, Erdis and 5. Kakutani, Bull. Amer, Math. Soc. vol. 49 (1943) pp. 457460,
& Theorie der endlichen und unendlichen Graphen, pp. 220223,
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mnected by less than N, edges. Nevertheless G is not the product of
linear factors, in fact G has no linear factor at all. (A linear {actor is
a subgraph of order 1 containing all the vertices of G.) Clearly any
linear: factor would have all the b's as wvertices, but then at least
one a would have to have order ¥, which is impossible; this con-
digtion proves our assertion. It would be easy to construct an
‘analogous counterexample for every other singular number.

~ Now we prove the following theorem.

Turorem IV. Let G be a graph of order m, where every vertex is con-
d (by an edge) to at least m different vertices. Then G is the product
linear factors.

- Remark. This theorem is clearly a generalization of the theorem
n in Kinig's book® My original proof was very complicated.
jé= found the following very much simpler proof:

Let @ be the initial number belonging to m, {g.}, &<, be the
ces of G and {g;}, #<Q, the edges of G. We construct the
of G by transfinite induction. Let 0<y <, and suppose
for every &<y we have already found a linear factor. Then we
nstruct. the yth linear factor as follows: Let ¢, be the edge of
allest index which has not been used in any of the previous linear
ctors (in other words every e, with p’<p, occurs in some previous
factor). Let then g; be the first edge of our yth linear factor. We
fruct the yth factor by transfinite induction. Suppose we have
dy constructed a subgraph G,(e) of order 1 of & containing e,
also all the vertices of index less than e of G. Clearly Gy(a) has
than m vertices. By our assumption a, is connected to at least m
ent vertices. Thus it is connected to m different vertices not in
Gy J. In the factors of index less than 4 we clearly used less than m
{in fact card ) edges all emanating from a,. Thus there remains an
n edge of G which connects g, to a vertex not in G,(a), this edge
be in our yth factor. This construction gives our yth factor for
< {4 and clearly by construction every edge of & occurs in
of the factors once and only once, g.e.d. This proves Theorem

The following problem is due to Turdn® (oral communication):
- Let card S=¢, to every s €S there corresponds a finite subset f(a)
\of 8. We assume that a is not contained in f{a). Two elements a and b

# The problem was originally raised by Turdn in connection with a problem on

polation and solved by G. Griinwald in case card §= s For the literature of
»pq:gblm see, for example, P. Erdds, Some sel-thearelical properties of graphs,
versidad Nacional de Tucuman Revista 1942, also footnote 7,
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are called independent if a&Ef(b) and bFf(a). A subset S’ of S is
said to be independent if any two elements of it are independent
or if S'Mf(S") is empty. Turdn's question was: does there always
exist an infinite independent set? G. Griinwald showed that the answer
is afirmative, Later Lizir showed that there exists an independent
set of power ¢. Sierpinski and Ruzievicz raised the following general
question: Let S be a set of power m, and let #<m, an arbitrary
cardinal number. To every a &5 there corresponds a subset f(a) of §
satisfying a & f{a) and f(a) <n. Does there always exist an independent
set §' with card ' =m? This has been proved if m is a regular number,
or if m is the countable sum of smaller cardinals.” We shall prove,
assuming the generalized continuum hypothesis, that the answer is
always affirmative (Theorem V).

If we replace the condition card (f(a)) <n<m by card (f{a)) <m,
then in general we do not even have two independent points. Let
{3 be the initial number belonging to m, and e the set of ordinals
less than 2. Define f(cg) as the collection of all 8 <a;. Clearly no two
elements are independent.

First I give a very simple proof of Theorem V in case m is aregular
number. This proof is due to D. Ldzir, and has been communicated
to me orally. Assume that the theorem is false, that is, the power of
every independent set is less than m. Let 5; be a complete set of inde-
pendent elements, that is, SiMf(5,) is empty and if adES,, then
(a\J5)Mf(a\JS5)) is not empty. Consider 5—8,—f(Sy), and let Sy be
a maximal independent subset of it, and consider 5—38,—S;—f(5)
—f(5:). Continue this process for all ordinals a<Q;, where 2 is
the initial number belonging to n=¥. Since m is a regular
number, the power of U.(S.\Jf(S.)) is less than m. Thus the
set §—UL(SUf(S.)) is not empty. Let a be an element of this set.
Because of the maximal property of the sets S, f(a) must intersect
each of the S.'s (by our construction aeEf(S.), thus the last state-
ment is a consequence of the fact that a and S, are not independent).
But this would mean that card (f(e))Zn, an evident contradiction,
Clearly this proof also works if m is singular but is not the sum of »
smaller cardinal numbers.

Now we prove our main theorem. Let card S=m, m singular. Put
S=U,5., a<Q. Card (S.)=m., m.>ms for a>f. Let & be the
initial number belonging to m and @, the smallest ordinal number co-
final to 4 We can clearly assume that each m, is regular (every
singular number is the sum of fewer, smaller regular numbers), Also

¥ Sophie Piccard, Fund. Math. vol. 29, pp. 5-9. See also Comptes Rendus des
Séances de la Société des Sciences et des Léttres de Varsovie vol. 30 (1937),
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we can assume that m, >#™ and m; >card (Q,). By the theorem proved
in the previous pages, there exists for every S.aset 5J (CS., such that
SaMf(Sa) is empty and card (SJ) =ma. Omit for B> all the ele-
ments of f(S.) from Sf. Thus we get the sets S of power m,, such
that

{n fSa) M ( u S.;’) =0 (0 stands for the empty set).
i fZa

We want to construct sets S CSY of power m, which further satisfy
':s} (Sn.-}n (J:T Sn: -

But then clearly

o us)n(es)-o

Thus the set U.S2” is independent and clearly of power m. Thus we
only have to construct S;”. We shall use transfinite induction. Let as
before @ be the initial number belonging to # and let NV be any set
with card N=n*. We construct a ramification system belonging to
N as follows: Consider the disjoint sets

i Ni oo by <0 § <801
s [£2'5]

N= U N
I T
arly there are #* =N such sets, thus since N'=XN this is clearly
e. The sets (10) will be the fth (and last) column of the
fication system. The sets of the kth, 1 Sk < Q,, column we de-
ne as follows: (s, 42, - - - , 45 - - - again run through the ordinals
s than ) and j<k)

l“f‘.l

; card (N§.) = card N.

k)

Nipiva U Nm'} T T

i

‘means that V... is the union of all the sets of (10) whose indices

e with it far_;{k (The Oth column N'V is N.) We will denote

x;;mlﬁ{:atmn system by R(N).

Consider now R(S{’). Let a be any element of S{’. Since card {fla))

must exist an (S{'){" (that is, a set of the first column of
}) such that f(a)NS{* )P =0. Now since ms (card S =ms) is

lar (thus not the sum of n sets of power <ma.) there exists a set
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S C 84" with card S§ =1, and an index if}} < ©; so that

53 OV (815 = 0.
Consider now R{5{). Let a be any element of 53’. As before there
exists a set S¢C.S{' with card S =m3 and

JSEY O (ST o = 0, f(S3) N (S35 = 0,
where #i", &2 #* are less than Q. Again we construct R(S5Y), and so
on, Assume we have already completed this construction for all
ordinals f<a<2, This means that there exists for all ordinals
v <e sets 52, with card 52 =m, and so that for all §<v we have

SO SIS =0, (5 =5

where ¥ . - - are ordinals less than @ and k=14 (y—4&). Now we
construct the ath step as follows: Let a be any element of S7. Since
card (f(a)) <=, there exists for every § <o an index 1% < £, such that

1, k)

Jla) N\ (Se)y@,couw =0, k=14 (e— B
The number of possible choices for all the i®, § <a, does not exceed
#te < m,,

since the generalized continuum hypothesis was assumed to be true
(it is clear from the generalized continuum hypothesis that o
=max (gt, &) where ¢t is the cardinal number immediately follow-
ing a). Thus since m. is regular there exists a set S5 of power ma
such that for all <o

ve, LY

f(Sat) N (S5)i®, oo = 0, k=14 (&~ B).

Now we construct our ramification system R(S2). We continue this
construction for every ordinal 6 < £,.. Thus we obtain the sets

(12) (SiNeE.... = Dy, b 10 S

The sets (12) all occur in the last (that is, 2th) column of their
ramification system. By construction they satisfy

f(Dy) M Dy =0 fordey < 6 <.

Thus we can put

LEE

Dy = 5.
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and this completes the proof of Theorem V.

In the first paper on this subject Lizdr® proved (without assuming
the continuum hypothesis) that Theorem V holds if f{g) is finite and
card S=¢. In fact his proof gives that 5 is the union of N independ-
ent sets, One can ask the question what happens in the general case?
It is easy Lo see that if f(a) is finiteand has not more than & elements
and S is also finite, then S is the union of 2k 4-1 independent sets, and
2k+1 is best possible. By a method of Konig® it is easy to see that
this also holds if S is countable. I conjectured that it is true for all
sete S. Clearly this would be a consequence of the following result:
Let G be a graph. Assume that all finite subgraphs of G are the union
of r independent sets. (Two points are independent if they are not
connected, A set of vertices is independent if any two of them are
independent, and a graph G’ is said to be the sum of r independent
sets if the vertices of the graph ecan be split into » independent sets.)
Then & is the union of r independent sets. De Bruijn recently proved
this conjecture (written communication). In general perhaps the
fnﬂuwxng result holds: Let card (f(a)) <#. Then S is the sum of »
independent sets (n is an infinite cardinal number).
= Let S be any set of real numbers. We define S to be the set of all
numbers

[
N Gt ¢ rational, &, £ S.

Let H be a Hamel basis. It has been remarked?!® that the sets Hy can-
not all be measurable. Indeed since U,H, is the set of all real numbers,

1 they cannot all have measure 0, Suppose that H; has nonzero meas-
are. If the inner measure of Hi would be positive, then by a well
‘_Ir;nnwn theorem of Steinhaus™ there would exist a § such that if
|| <8, x=a—b, a€Hy, bEH;. But then Hy contains the set of all
real numbers, which is clearly impossible,

Sierpinski’® proved that there exist Hamel bases which are non-
-measurable and also Hamel bases of measure 0. We shall prove that
fm every kthere exists a Hamel basis such that & has measure 0 but
.Hm is nunmeasurable.

I,¢t l:'.i 5}11{31,{  be an inﬁnite sequence of integers, sul:h that

i {:umpumtju Math. vol. 3 (1936) p. 304,

 Theorie der endlichen und unendlichen Grogphen, pp. B1-85,

A This remark is probably due to Sierpinsli, but I do not remember for sure,
‘M Fund, Math. vol, 1, pp. 93-104,

B Jhid. vol. 1, pp. 105-111.
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ceeding # is less than gu'/**!, We shall prove the existence of such
sequences later. Denote by B the set of real numbers in (0, 1), which
admit the representation:

“ A

5 r—:r with 4; < j an arbitrary term of {4,}.

=t 7

First we prove that B, has measure 0. It clearly suffices to prove that
>k, &b, where the ¢'s are fixed integers and b, EB has measure 0.
Let x& B, be arbitrary. We have

E [ A =
em BT G2 LT, bsai) <
=l jet it i~z Jl

where Iu,.-| <g-f and we have, for uy less than &', 75¥H choices. Con-
sider all the numbers

The number of these numbers is less than ¢"*(a!)¥*, Consider all the
intervals whose centers are all these points and whose length equals
dea/nl. It follows from || <esj that all the D .,u/k! are in the
interior of these intervals, that is, the whole set 2 ;. .ab,, b,EB, is
covered by them. The sum of the length of these intervals is
<4c(c"/nl¥Y) =0(1), which proves that B has measure 0.

Now we construct a Hamel basis HC B, with Hyyy nonmeasurable;
First we construct a set LCB such that L is rationally independent
(that is, any finite subset of L is rationally independent) and Liys is
nonmeasurable, Let M =4+ 4s+ + - + +4s1. It is well known (and
easy to see) that the real numbers =z, 02251, in whose representa-
tion z= 2 jegtt;/f!, 0S#;<j, we have infinitely often u;=2M, have
measure 1. Denote this set of real numbers by [ Let {Fu] s i,
be the collection of all the perfect subsets of Iy (. is the initial
number of ). Suppose we have already constructed a set L¥ of
power less than ¢, which is rationally independent and such that
L, intersects all the F, with a<B. Let s& Fy, 2EU;LY. Such a 2
exists since the power of U;L{" is less than ¢. Consider the equation

By

t=m+ 2+t e+ T, HEB, SIE}_‘?’
-1
i)
- 4
PR, e DS e A<}
=1 j!
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This equation is solvable. Also clearly we have ¢ choices for xy, ¢
choices for x: after we have chosen x,, and so on. Finally we have ¢
choices for x: after we have chosen xy, x, -+ -, %e. The proof of
these statements is immediate, since u;= 2 01 A is solvable and
‘since, in the representation of 2, M=d4,+ -+ +4w occurs in-
finitely often, say u;,=wuu= - -+ =M., We can clearly interchange
the jith, juth, « - - digits of the x's (those digits are A4, 44, - - -, dssa)
~and thus obtain the required ¢ solutions, Thus we can clearly choose
%i, # =k, s0 that the set consisting of L', the x;, 1 =k, and z should be
rationally independent, But then the set consisting of L and the
x:, 1=k+1, is also rationally independent. This set we denote by
L&, Clearly LESY intersects Fy, and the power of L+ is less than
0. Put now L=Ugzo L¥. Clearly Ly, intersects all perfect subsets of
Iy, thus can not have measure 0 (Iy has measure 1), but since L is
rationally independent, Ly, can not have positive inner measure (as
‘was shown before). Thus Ly, is nonmeasurable. Now since By,
'Eieariﬁy consists of all real numbers, we ecan find a Hamel basis HC B
lwbmh contains L. Clearly Hy is also nonmeasurable and H.C B; has
measure 0, which completes the proof.

We now have to construct our sequence 4; with the required
properties: Denote by Te, 0=r<k+1, thesequence of integers of the
form P ey €2, n=1,2, - - -, =0 or 1, and all the ¢ are 0 except
possibly for those with j=r Ernod (k+1)). Consider now the sequence
U, T, this sequence clearly has the required properties.”

Let S be a set of power greater than ¥, but smaller then the first
- strongly inaccessible cardinal number (>N,). It is well known that
nio countably additive two-valued measure can exist for the subsets
ILﬂf 5, so that elements have measure 0 and the whole set 5 has meas-
ure 1 Ulam now raised the question (oral communication): What is
the smallest cardinal number # so that there should exist n two-
ﬁulueﬂ measures defined for the subsets of S (elements of S having
- measure 0 and § having measure 1, in each of them} with the prop-
‘erty that each subset of 5 is measurable in at least one of these
measures? Ulam proved that n=®.. Alaoglu and I proved nzM,. I
now present our proof.

. Suppose the result is false. Then there exist countably many meas-
i;l,‘i:ﬁ My, My, - - - so that each subset of § is measurable for at least
one of these measures. Split the set S into the union of N sets each
nonmeasurable in M." Clearly only countably many can have posi-
hﬁre meagure in any My, thus there must exist two of them, S; and

% This example is due to Stéhr, Math., Zeit. vol. 42, pp. 738-T43,
B M. Ulam, Fund. Math. vol. 16 (1930} p. 142,
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&y say, which are both nonmeasurable in M,; and whose union does
not have positive measure in any M. Split now §—5,— 8] into the
union of ¥, disjoint sets each nonmeasurable in M, Denote these
gets by U, Uy, -+ -, U + + -, It i5 easy to see that among the sets
S+ 581+ U there are only countably many of positive measure in any
M. Thus there exist two of them, S:and S! say, such that S;-S5{+5;
-+.53 does not have positive measure for any M: Consider now the
set S —5;—5] —5;— 5, and repeat the same operation. We can clearly
repeat this operation for any &, and the set U.5; will be nonmeasur-
able for any My, since it contains S; but is disjeint to Si. We cannot
decide the question whether n>N,, It seems probable that # is
greater than the power of S.

= Some simple remarks about ordinal numbers: (1) A sequence of
ordinals (not necessarily countable) 5; <% is said to be rarified if
lim Biy1—f8i= %, also every bounded sequence is said to be rarified
(that is, a sequence for which lim 8= (). Sierpinski'® remarked that
the ordinals a <, are the sum of M¥; but not of a finite number of
rarified sequences. Assume that {3 has an immediate predecessor,
Then the ordinals e < Qs are the sum of @y but not fewer rarified
sequences. If @ does not have an immediate predecessor and £ is
the smallest ordinal cofinal with it, then the ordinals a< @ are the
sum of {; but not fewer rarified sequences. If @y is weakly inaccessible,
that is, =1, then the ordinals & < & are not the sum of fewer than
£ rarified sequences, or the weakly inaccessible numbers are the
only anes which are not the sum of fewer rarified sequences.

Similarly we can define a sequence #:< % to be rrarified if
lim 8;y1—8:= .. Then the ordinals a < i are the sum of min (&, &)
but not fewer r-rarified sequences.

(2) Dushnik proved the following theorem: Let m be a regular
number, & the initial number belonging to it. Let fle), a< &, be
such that for all o fle) <a. Then there exists an ordinal 8 such that
the equation flo)=g has m solutions. For singular numbers the
theorem is false. The following generalization holds: Assume that @
is not cofinal to w. Then there exists an ordinal 8 and a sequence a;
cofinal with @, such that fle) =8. For regular numbers one im-
mediately obtains from this Dushnik's theorem. If & is cofinal to
w, the analogous result clearly does not held. Dushnik’s proof would
easily give a proof of this theorem (oral communication) but perhaps
the following proof is of some interest: Supposge the theorem is false,
Then to every i there exists a ¢(#) < @ such that for §=¢(8), () >8.

15 Reviata de Sciencias {(Lima) wvol, 41 {193%9) pp. 280-296.
W Bull. Amer. Math. Sce, vol. 37 (1931) pp. 860-862.
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'Consider now
v = ¢(1) + o(a(1)) +

Clearly v < @Iy since {1, is not cofinal with w. But then from the defini-
tion of v, f(y) Zv, an evident contradiction; this completes the proof.

UnivErziTy oF Micmcan

ON A PROBLEM OF G. BIREHOFF
TADASI NAKAYAMA AND JUNJT HASHIMOTO

In his book Lagtice theory, G. Birkhoff proposed to prove that the
i entation of a finite pm*tmIIy ordered system as the product of
mposable factors is umque within pairwise isomorphism of
| .! The present short note is to show that this is not the case in
ﬁ;&nm! A simple counterexample, and indeed one of the simplest,
perhaps, can be constructed as follows:
~ Let X be the lattice {0, 1} of two elements 0, 1 (0 <1), for instance,
‘and A be the partially ordered system

I+ X+ X4 X X4 X5,

re [ resp. X* stands for the one-lattice resp. the direct product of
ies of X, and where 4+ means direct summation. The finite
ally ordered system A may be expressed also by f(X) with the
ynomial f(x) =14x+x2+2*+x1445 Since every Xt has the up to
orphism funique decomposition into indecomposable factors,
XX + . - X (i factors), one sees easily that direct decompositions
A are, in the sense of isomorphism, in 1-1 correspondence with
rizations of polynomial f(x) =14x+x*+2*+x*+=* into factors
h non-negative rational integral coefficients. But our f(x) has two
inct decompositions into factors which are irreducible in the pre-
scribed sense, namely

f(x) = (L4 2)(L + 22 + 29 = (1 + (1 + =+ 27).
Two direct decompositions

A=+ X4+ X4+ XY= T+ XN+ X+ X9
 Received by the editors October 28, 1948,

1 G, Birkhofi, Laltice thesry, Amer. Math, Soc. Colloguium Publications, vol. 25,
ke, 1940, Problem 8,
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