
SOME REMARKS ON SET THEORY

P. ERDÖS

The present note contains a few disconnected remarks on the
theory of sets .

It is well known that the addition of ordinal numbers does not
satisfy the the law of commutativity, for example, 1+w3-6w+1.
Let now n be a finite number. Denote by f (n) the maximum number
of different ordinals we can obtain by adding in all possible ways n

ordinals. We prove the following theorem .

THEOREM I . We have

(1)

	

f(n) = max (k2k-1 + 1)f(n - k) .
ksn-1

In fact, f(2) =2, f(3) =5, f(4) =13, f(5) =33, f(6) =81, f(7) =193,

f(8) =449, f(9) = 1089, f(10) = 2673, f(11) =6561, f(12) =15633, f(13)

=37249, f(14)=88209, f(15)=216153, • • , and for x>3, f(5x+1)
= 81z, f (5x+2) =193 . 81 x-1 , f (5x-{-3) =193 281 0-2 ,f (5x+4) =193 381 x-3 ,
f(5x+5)=33 . 81x. Thus for n>21

(2)

	

f(n) = 81f(n - 5) .

Let there be given n ordinals al, a2, • • • , an . It is well known that
every ordinal can be written uniquely as the sum of indecomposable
ordinals. (An ordinal is said to be indecomposable if it is not the sum of
two smaller ordinals .) Denote by ¢(a) the largest of these indecom-
posable ordinals belonging to a . (4(a) may have a coefficient c in the
decomposition of a.) Put y=minis . 0(ai), and assume that there are
k a's with cb(ai) =y . Denote these a's by al, a2, • • • , ak . If in the sum
ai,+ai,+ - - - +ain , il, i2, . . . , i„ a permutation of 1, 2, • . . , n,

none of the ai, i 5 k appear at the end, they get absorbed in the fol-
lowing summands, and we get exactlyf(n-k) different sums. Assume
next that exactly r of the ai's, r 5 k, appear at the end of ail+ai,
+

	

+ai,,. Put

(3)

	

ai = 2'y + Si, Si < y, S; 0 Si,

	

for i, j S k .

We then have
(4) ai, + ail + . . . ._}.+ ain = S + (2i. + 2in_i + . . . + 2i,-+1)7 + Sin
where (3 >_ wy . (All the S's except Sin get absorbed.) Now 2'n+2 in-1

+ • • • +2'n->- can be chosen in Ck ,, ways and Sin in r ways. Thus
Received by the editors November 2, 1948 .

127



128

	

P. ERDÖS

the number of sums is rCk,rf(n - k) . (The k-r a's with 0(a)=y not
appearing at the end get absorbed .) Summing for r, we obtain

(5)

	

f(n)

	

C1

	

rCx,r1 An - k) = (k2x-1
r=1

+ 1)f(n - k) .

Hence clearly

(6)

	

f(n) = max (k2k-1 + 1)f(n - k)
t<_n-1

(since it clearly follows from our proof that our choice of the a's
gives the maximum number of different summands) . This proves (1) .

We obtain from (1) by a simple computation that for n<20 the
value of f(n) is given by Theorem I. The rest of Theorem I is easily
proved by induction, we have to use that (k2x-1+1)1/x (k integer)
increases for k :!95 and decreases for k>5 .5 . We suppress the details
since they can easily be given and depend only on numerical esti-
mates. Thus the proof of Theorem I is complete .
Mr. Spanier remarked that the number of different products one

can obtain from n ordinals is n! . It suffices to choose a i =co+1,
a2 =co+2,

	

• , an=co+n . A simple computation shows that

ai l ail . . , ai„ = co n + ince-1 + . . . + ii .
where i 1 , i2 , • • , in is any permutation of 1, 2, • • . , n.

Let X be a set of power m . Letters a, b, • • denote subsets of
X;A, B, sets of subsets of X. A and B are defined (by Lusin) to
be orthogonal if for any aEA, bEB, aflb has power less than m . The
orthogonal sets are said to be separable if there exist c and d with
cfld empty and such that for every aEA, bEB, aCc'a', bCdUb',
where the power of a' and b' is less than m.

LusinI proves with the aid of the axiom of choice that if m=l`t 0
there exists two orthogonal sets which are not separable . We shall
give a very simple proof of this result for all m, which for m=ht o
will be independent of the axiom of choice .

Let A consist of m disjoint sets of power m and B consist of all the
sets which intersect the sets of A in not more than one point . Clearly
A and B are orthogonal, but they clearly are not separable, for every
set c which intersects all the sets of A contains a set of B . For m=No

this proof is independent of the axiom of choice, but in the general
case the equality ml =m is used and this is equivalent to the axiom
of choice . 2

1 C. R. (Doklady) Acad . Sci . URSS. vol . 40 (1943) pp . 175-178 .
2 Tarski, Fund . Math . vol . 7, pp . 147-154 .
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Lusin1 also proves that if both A and B contain only countably
many sets, then they are separable . His proof generalizes to the case
when m is a regular number and both A and B contain only m sets .
We give the proof only for the sake of completeness .
Suppose A consists of the sets { a q } and B of the sets { b q } . Put

c -= U (aa -

	

b, / ,

	

d = U (b q -

	

a~~ .

Clearly c and d separate A and B.
The proof breaks down if m is singular. We shall give an example

which shows that the theorem is not always true for singular m. Put
m = No+2"1+220+ . . .

Let A consist of countably many disjoint sets ai of power m. Write
ai=no) +ni°+

	

where card (no`)) =No, card (n(0 ) = 'lj,

	

(card
a denotes the cardinal number of a) and nx`)fnl')=0. B con-
sists of all the sets b of the form Uinf(i ) where f(i) is any function of i
(clearly card B=2N°<m) . A and B are clearly orthogonal, but a
simple argument shows that they are not separable .

If n is the smallest cardinal number cofinal to m and A and B con-
tain not more than n sets, then it is easy to see that if A and B are
orthogonal, they are also separable .

The orthogonal sets A and B are said to be complete (Lusin) if we
can add no set either to A or to B without destroying orthogonality,
that is, if X is the set of integers and A consists of all the subsets con-
taining only a finite number of even numbers and B of all sets con-
taining only finitely many odd numbers .
A and B are called k-orthogonal if for any aEA and bEB,

card (a(lb) <Nk . k-completeness can be defined in the obvious way .
We shall prove the following theorem .

THEOREM II. The cardinal number N of the k-complete orthogonal
pairs equals

N = 2 mnk.

We shall assume the generalized continuum hypothesis 2Hk= Nk+i-
Tarski3 proved (by using the generalized hypothesis of the con-
tinuum) that there exist m t~k subsets of X(card X=m) such that the
intersection of any two has power less than I`Zk . Denote such a set of
subsets by C. Split C in an arbitrary way into the union of two sets
of subsets A' and B' . This can clearly be done in 2mt~ k ways. Clearly

3 Ibid . vol . 12, pp . 186-206 and vol . 14, pp . 205-216 .
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A' and B' are k-orthogonal . It immediately follows from the axiom
of choice that they can be extended to the k-complete orthogonal pair
A and B, and a simple argument shows that to different A' and B'
correspond different A and B. This shows that

N >_ 2 mxk.

Let now A' be any set of subsets of X. There clearly exists a
maximal set of subsets of X, B say, which is k-orthogonal to A'. We
shall prove that there exists a subset A" of A' of power ~5 mNk which
determines the same set B. Consider all the subsets of power Nk of
the sets a EA' . The power of these sets is clearly not greater than
mNk . To each of these sets select an arbitrary a"EA' which contains
it, and let the sets of A" be all these a" . Clearly if B is k-orthogonal to
A" then it is also k-orthogonal to A' (and vice versa), which com-
pletes the proof of our statement . But then a simple argument shows
that the number of complete k-orthogonal pairs is not greater than

(2m)mNk = 2mNk

which completes the proof of Theorem II . In the second part of our
proof we clearly did not use the continuum hypothesis .

It follows from Theorem II that the number of complete orthogonal
pairs is 22m . The number of complete orthogonal and separable pairs
is clearly only 2m, which again shows that there are orthogonal pairs
which are not separable .

Without using the continuum hypothesis it seems to be very hard
to prove that the number of complete orthogonal pairs is greater
than 2m. But if m =No this is quite easy, since it is well known that
there exist 2No sets of integers such that the intersection of any two
is finite . It suffices to let a" consist of the integers 2"+ [n"] where a
is an arbitrary positive real number .

THEOREM III . Let S be any infinite subset of k-dimensional Euclidean
space . Card S =m. Then there exists a subset Sl of S, card Si=m, such
that all the distances between any two points of Sl are different .

REMARK. We are not going to assume the continuum hypothesis .
In fact the proof will be complicated only because we cannot exclude
the possibility that m is singular .

We use induction with respect to the dimension k . We slightly
strengthen the statement of our theorem . In fact we prove : Let the
set S (card S = m) be situated on n (n <m) k-dimensional hyperplanes
or hyperspheres . Then there exists a subset S l of S, card S, =m, such
that all the distances between any two points of S, are different .
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First we prove this for k=1 . Put S=L+C, where L is the subset of
S situated on lines and, C the subset situated on circles . Assume first
card L=m. Denote by ML the set of lines containing L. By assump-
tion card ML =< n < m . Let L1 be a subset of L, such that any line
bisecting the distance between any two points of L1 is not in ML, and
L1 is maximal with respect to this property (it clearly follows from
the axiom of choice that such an L1 exists, possibly it is empty) . We
prove card L l=m. For if not assume that card L1 =r<m, then by
definition of L1 , to every point x of L-L 1 there exists a point y of
L1 such that the perpendicular bisector of x and y is a line of ML.
But a point y of L 1 and a line l of ML uniquely determines a point x
of L-L1 such that the perpendicular bisector of the segment [x, y] is 1 .
But since cardL1 <m and cardML<m this would imply that L-Ll < m,
and hence card L<m, which is not true . Thus we prove that card L 1
=m. Let now L2 be a maximal subset of L 1 with the property that
all distances between points of L2 are different . Let card L2 = t . If
t<m, then all the points of L1-L2 must lie on t circles or lines . But
this is impossible since the lines cannot coincide with any of the lines
of ML, therefore any of these lines can intersect any line of ML in at
most one point. Therefore each of these lines can contain at most
card ML points of L1-L2, and each of the circles can contain also
at most card ML points of L1-L2 . But this would mean that
card (L1 - L2) <__ t • card ML < m which is not the case. Thus t = m,
which completes the case card L=m . Assume next card C=m. De-
note by M, the set of circles containing C, put card Mc=r<m,
denote further by 0 the set of centers of the circles of Me,, and con-
sider the set C-0. Denote by C1 a maximal subset of C-0 with the
property that all distances between points of C 1 are different. Then
it is easy to see that card C1=m, which completes the proof in case
k=1.

Assume now that our theorem is true for k -1, and we shall prove
it for k . Suppose then that S lies on n <m k-dimensional hyperplanes
and hyperspheres . By the same argument as used in the previous
pages we can find n (k -1)-dimensional hyperplanes and hyperspheres
which contain m points of S, and by the induction hypothesis this
completes the proof of Theorem III. In case m is a regular number
it is easy to give a very much simpler proof .

Assume that m is regular and that S is a set of power m in k-dimen-
sional Euclidean space. Then we can select a subset S l of S of power
m such that for r=1, 2, • . • , k the volume of any two r-dimensional
nondegenerate simplices is different. The proof is similar to the case
for r = 1 . If m is singular this result is false . Take m =fl.„ and denote



132

	

P. ERDÖS [April

by ll , 12 , . • • a countable set of parallel lines . Let lx contain >•l k points
of S. Clearly any subset Sl of S of power I`t l contains two nondegen-
erate triangles of the same area .

If the set S is in Hilbert space our theorems of the previous pages
do not generalize . In fact Oxtoby and I constructed a set of power N1,

such that the distance between any two points is rational. We do not
give the construction here . At present we cannot decide whether
there exists in Hilbert space such a set of power c . (Added in proof :
Kakutani and I found a simple example of such a set .)

One can ask the following question : Is it possible to split the n-di-
mensional Euclidean space into countably many disjoint sets, such
that in each set any two distances between any two points should be
different. For n = 1 this is known, 4 and I do not know the answer for
n>1.
The problems we just considered have some interest also for

finite sets . Let there be given n points (n finite) on a line . Then we
can select c • n"3 points among them, such that all the distances are
different. It is probable that c • n1"3 can be replaced by c . n1 " 2. If the
n points are in k-dimensional space, we can select c • n"Mk> points
among them such that all the distances are different . I do not know
the exact value of f(k) .
Dénes König's5 book on graphs contains the following theorem :
Let G be a graph of order m (m is an infinite cardinal) and any two
vertices are connected by less than n edges, and we assume n<m.
Then G is the product of linear factors . Let us first explain the ter-
minology : The order of a point is the cardinal number of edges of its
star (the star of a vertex is the collection of edges incident with it) .
A graph is said to be of order m, if every vertex of it has order m.
Let S2k be the initial number belonging to the cardinal number m. G
is the product of linear factors if we can make correspond to each edge
of G an ordinal number (3 < SZk, such that the star of every vertex con-
tains one and only one edge to which the ordinal (3, g = 1, 2, . • • ,
corresponds . König 5 raises the question whether the condition "con-
nected by less than n edges, and n <m" can be replaced by "connected
by less than m edges ." The proof given in his book shows that the
answer is affirmative in case m is a regular number . We shall show
that the answer is negative for singular numbers . Let the vertices of
G be the points { ai } , i =1, 2, • . . , and { b a } , a < 52, . The vertices ai
and a;, i<j, are connected by N ; edges, and .b a and ai are connected
by 1,i edges. Clearly G is of order N w and any two vertices are con-

P .P. Erdös and S . Kakutani, Bull . Amer. Math . Soc. vol . 49 (1943) pp . 457-460 .
s Theorie der endlichen and unendlichen Graphen, pp . 220-223 .

I
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nected by less than Rw edges. Nevertheless G is not the product of
linear factors, in fact G has no linear factor at all . (A linear factor is
a subgraph of order 1 containing all the vertices of G .) Clearly any
linear factor would have all the b's as vertices, but then at least
one a would have to have order Ni, which is impossible ; this con-
tradiction proves our assertion. It would be easy to construct an
analogous counterexample for every other singular number .

Now we prove the following theorem .

THEOREM IV. Let G be a graph of order m, where every vertex is con-
nected (by an edge) to at least m different vertices . Then G is the product
of linear factors .

REMARK. This theorem is clearly a generalization of the theorem
given in König's book.' My original proof was very complicated .
Hajós found the following very much simpler proof :

Let S2k be the initial number belonging to m, I a. } , a < S2k, be the
vertices of G and { ey } , (3 < S2k, the edges of G. We construct the
factors of G by transfinite induction . Let 0 <y < Sh, and suppose
that for every b <y we have already found a linear factor . Then we
construct the yth linear factor as follows : Let e, be the edge of
smallest index which has not been used in any of the previous linear
factors (in other words every e, , , with p' <p, occurs in some previous
linear factor) . Let then e, be the first edge of our 7th linear factor . We
construct the yth factor by transfinite induction . Suppose we have
already constructed a subgraph G7 (a) of order 1 of G containing e,
and also all the vertices of index less than a of G. Clearly G7(a) has
less than m vertices. By our assumption as is connected to at least m
different vertices . Thus it is connected to m different vertices not in
G7 (a) . In the factors of index less than y we clearly used less than m
(in fact card y) edges all emanating from aa . Thus there remains an
unused edge of G which connects a « to a vertex not in G7(a), this edge
will be in our yth factor . This construction gives our yth factor for
every y < S2k and clearly by construction every edge of G occurs in
one of the factors once and only once, q .e.d. This proves Theorem
IV .
The following problem is due to Turán (oral communication)
Let card S=c, to every aES there corresponds a finite subset f(a)

of S. We assume that a is not contained in f(a) . Two elements a and b

I The problem was originally raised by Turán in connection with a problem on
interpolation and solved by G . Grünwald in case card S= No. For the literature of
the problem see, for example, P . Erdös, Some set-theoretical properties of graphs,
Universidad Nacional de Tucuman Revista, 1942, also footnote 7 .
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are called independent if a (Ef (b) and b EEf(a) . A subset S' of S is
said to be independent if any two elements of it are independent
or if S'(\f(S') is empty. Turin's question was : does there always
exist an infinite independent set? G . Grünwald showed that the answer
is affirmative. Later Lázár showed that there exists an independent
set of power c . Sierpinski and Ruzievicz raised the following general
question : Let S be a set of power m, and let n <m, an arbitrary
cardinal number . To every aES there corresponds a subset f(a) of S
satisfying a EEf(a) and f(a) < n. Does there always exist an independent
set S' with card S'= in? This has been proved if m is a regular number,
or if m is the countable sum of smaller cardinals .' We shall prove,
assuming the generalized continuum hypothesis, that the answer is
always affirmative (Theorem V) .

If we replace the condition card (f(a)) <n<m by card (f(a)) <m,
then in general we do not even have two independent points . Let
S2k be the initial number belonging to m, and at the set of ordinals
less than S2 k . Define f(at) as the collection of all i < at. Clearly no two
elements are independent .

First I give a very simple proof of Theorem V in case m is a regular
number. This proof is due to D. Lázár, and has been communicated
to me orally. Assume that the theorem is false, that is, the power of
every independent set is less than m. Let S1 be a complete set of inde-
pendent elements, that is, S1(lf (S1 ) is empty and if a ELS1 i then
(aUS1)nf(aUS 1 ) is not empty. Consider S-SI -f(S 1), and let S2 be
a maximal independent subset of it, and consider S-S1 -S2-f(SO )
-f(S2) . Continue this process for all ordinals a< 2 1 , where SZa is
the initial number belonging to n = Nt . Since in is a regular
number, the power of Ua(SaUf(Sa)) is less than m. Thus the
set S-Ua(S aUf(S a )) is not empty . Let a be an element of this set .
Because of the maximal property of the sets Sa , f (a) must intersect
each of the S a's (by our construction aEf (S a ), thus the last state-
ment is a consequence of the fact that a and Sa are not independent) .
But this would mean that card (f(a))>=n, an evident contradiction .
Clearly this proof also works if m is singular but is not the sum of n
smaller cardinal numbers .

Now we prove our main theorem . Let card S=m, m singular . Put
S = UaSx, a<52,. Card (Sa)=m a, m a >m,3 for a>$. Let S2k be the
initial number belonging to m and 2, the smallest ordinal number co-
final to S2 k . We can clearly assume that each m a is regular (every
singular number is the sum of fewer, smaller regular numbers) . Also

' Sophie Piccard, Fund . Math. vol. 29, pp . 5-9 . See also Comptes Rendus des
Seances de la Societe des Sciences et des Léttres de Varsovie vol . 30 (1937) .

I
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we, can assume thatml> nkr and m, > card (a). By the theorem proved
in the previous pages, there exists for every S a a set Sa' CS., such that
S« nf(Sa) is empty and card (SQ) =m a . Omit for (3>a all the ele-
ments of f(Sa) from S# . Thus we get the sets S,' of power m a , such
that

(7)

	

AS") n ( U Si') = 0

	

(0 stands for the empty set) .
sa

	

/a

We want to construct sets S ."CSC' of power m a which further satisfy

(8)

	

f(sa") n ( us,"'
)

= 0.

But then clearly

(9)

	

f(u Sa," / n (Us '. " / = 0 .-
a

	

as

Thus the set U.S."' is independent and clearly of power m . Thus we
only have to construct S,," . We shall use transfinite induction . Let as
before 2, be the initial number belonging to n and let N be any set
with card N>_nKr . We construct a ramification system belonging to
N as follows : Consider the disjoint sets

(or)
NJ,, . . .,{;, . . .ii < 01, j < 12r ;

N =

	

U

	

NJ, .. . card (N;''') .) = card N.

Clearly there are nNr5N such sets, thus since N2=N this is clearly
possible. The sets (10) will be the SZr th (and last) column of the
ramification system . The sets of the kth, 15k<SZ ., column we de-
fine as follows : (ii, i2, • , i ;, again run through the ordinals
less than 01 and j <k)

U N (f2r) {; . . .{k . . .,{ I . . .

this means that IV . . is the union of all the sets of (10) whose indices
agree with it for j<k. (The 0th column NO) is N.) We will denote
this ramification system by R(N) .

Consider now R(Si"). Let a be any element of S2" . Since card (f(a))
<n there must exist an (Si') ;2) (that is, a set of the first column of
R(Si')) such that f(a)fS1")?)=0. Now since m2 (card S2'=m2) is
regular (thus not the sum of n sets of power<m 2) there exists a set
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S,",' CS2' with card S2' = m2 and an index i(i)) < 0 1 so that

f(s2-) n (S1')s;(i) = 0 .

Consider now R(S3). Let a be any element of S3' . As before there
exists a set S,,CS3' with card S3"' = M3 and

„

	

(3)

	

,t

	

„ ( 2)
x3") (1

(S t„ ) ; I(I),iP) = 0,

	

f(S3') () (S 2 ') ; 1 (2) = 0,

where ill) , 4 ) , i12) are less than 01 . Again we construct R(S3), and so
on. Assume we have already completed this construction for all
ordinals ,l3 <a < Q,. This means that there exists for all ordinals
y <a sets S, ,, with card S, =m,. and so that for all S <y we have

it

	

a (k)

	

,r

	

,i
f(Sy') n (Sa,) ;I(a), . . . = 0,

	

(S1 =S1')

where 4 . . . are ordinals less than 0 1 and k = 1 + (y - 6) . Now we
construct the ath step as follows : Let a be any element of St' . Since
card (f(a)) <n, there exists for every (3<a an index i(s) < Sgt such that

f(a) (1 (S~~) ;ks>,	k_IC ) = 0,

	

k = 1 + (a - ~) .

The number of possible choices for all the i (ft) , ~ <a, does not exceed

nN, < ma,

since the generalized continuum hypothesis was assumed to be true
(it is clear from the generalized continuum hypothesis that ab
<_ max (a+, b+) where a+ is the cardinal number immediately follow-
ing a). Thus since m« is regular there exists a set S.; of power m a
such that for all i <a

f(S«') n (SRS) (s>, . . ., ;k_,(~) = 0,

	

k = 1 +

Now we construct our ramification system R(S.") . We continue this
construction for every ordinal S < Q,. Thus we obtain the sets

(12)

	

(Sa%) "i'a>, . . . = D1,

	

S = 1, 2,

	

< 9,.

The sets (12) all occur in the last (that is, S2,th) column of their
ramification system. By construction they satisfy

f(Da) Th Dg 2 = 0

	

for 82 < 3 1 < 2,-

Thus we can put

[April
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and this completes the proof of Theorem V .
In the first paper on this subject Lázár8 proved (without assuming

the continuum hypothesis) that Theorem V holds if f (a) is finite and
card S=c. In fact his proof gives that S is the union of No independ-
ent sets. One can ask the question what happens in the general case?
It is easy to see that if f (a) is finite and has not more than k elements
and S is also finite, then S is the union of 2k + 1 independent sets, and
2k+ 1 is best possible. By a method of König9 it is easy to see that
this also holds if S is countable . I conjectured that it is true for all
sets S. Clearly this would be a consequence of the following result :
Let G be a graph . Assume that all finite subgraphs of G are the union
of r independent sets . (Two points are independent if they are not
connected . A set of vertices is independent if any two of them are
independent, and a graph G' is said to be the sum of r independent
sets if the vertices of the graph can be split into r independent sets .)
Then G is the union of r independent sets . De Bruijn recently proved
this conjecture (written communication) . In general perhaps the
following result holds : Let card (f(a)) < n . Then S is the sum of n
independent sets (n is an infinite cardinal number) .

Let S be any set of real numbers . We define Sk to be the set of all
numbers

k
tray ,

	

cr rational, ar E S.
r=1

Let H be a Hamel basis. It has been remarked 10 that the sets Hk can-
not all be measurable . Indeed since UkHk is the set of all real numbers,
they cannot all have measure 0 . Suppose that Hk has nonzero meas-
ure. If the inner measure of Hk would be positive, then by a well
known theorem of Steinhaus11 there would exist a 5 such that if
x I < S, x = a - b, a EHk, b EHk. But then H2k contains the set of all

real numbers, which is clearly impossible .
Sierpinski 12 proved that there exist Hamel bases which are non-

measurable and also Hamel bases of measure 0 . We shall prove that
for every k there exists a Hamel basis such that Hk has measure 0 but

Hk+1 is nonmeasurable.
Let 0 _<A1<A2< . . . be an infinite sequence of integers, such that

every integer is the sum of k+1 A's, and the number of A's not ex-

s Compositio Math. vol . 3 (1936) p . 304 .
1 Theorie der endlichen and unendlichen Graphen, pp . 81-85 .
10 This remark is probably due to Sierpinski, but I do not remember for sure .
11 Fund. Math . vol. 1, pp . 93-104 .
12 Ibid . vol . 1, pp . 105-111 .
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The number of these numbers is less than c'n(n!)k/k+1 . Consider all the
intervals whose centers are all these points and whose length equals
4c2/n! . It follows from I u;l <c2j that all the Ek 2uk/k! are in the
interior of these intervals, that is, the whole set Y-;= lckbr , b r EB, is
covered by them. The sum of the length of these intervals is
<4c(c'n/n! 1lk+ 1) =o(1), which proves that Bk has measure 0 .
Now we construct a Hamel basis HCB, with Hk+1 nonmeasurable .

First we construct a set LCB such that L is rationally independent
(that is, any finite subset of L is rationally independent) and Lk+1 is
nonmeasurable. Let M=A1+A2+ . • . +Ak+1 . It is well known (and
easy to see) that the real numbers z, 0 <_ z _<_ 1, in whose representa-
tion z=1:12u;/j!, 0 <_ u ; <j, we have infinitely often u; = M, have
measure 1 . Denote this set of real numbers by IM . Let { F , } , a < Sh,
be the collection of all the perfect subsets of I„r (S2c, is the initial
number of c) . Suppose we have already constructed a set L ( O) of
power less than c, which is rationally independent and such that
L,(O+) 1 intersects all the F,, with a<Q . Let zEEFs, zEEU ;L;rr . Such a z
exists since the power of U;L;?' is less than c. Consider the equation

Z
= x1 + x2 _}	+ xk+1, x; E B, z =

jc2

x; =

u;

j!

[April

ceeding n is less than cin'Ik+1 We shall prove the existence of such
sequences later . Denote by B the set of real numbers in (0, 1), which
admit the representation :

°° A i
-,

	

with A ; < j an arbitrary term of {An } .
=2 j!

E
First we prove that Bk has measure 0 . It clearly suffices to prove that

7=1 crb r where the c's are fixed integers and brEB has measure 0 .
Let xEBk be arbitrary. We have

k

	

o0

X = E cr
r-1 i=2

	

J!

	

i-2 11

where I u;j <c2 .j and we have, for us less than c', jkik+1 choices. Con-
sider all the numbers

0 S A j5(r) < j,

05 u;,AjM <j.
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This equation is solvable. Also clearly we have c choices for xi, c
choices for x2 after we have chosen x1 , and so on. Finally we have c
choices for xk after we have chosen xi, x2, • • • , xk_i . The proof of
these statements is immediate, since u; = E;±i A"' is solvable and
since, in the representation of z, M=A1+ • • • +Ak+1 occurs in-
finitely often, say u;, = u;2= . . . = M. We can clearly interchange
the jlth, j2th, • • • digits of the x's (those digits are A1, A2, • • • , Ak+1)
and thus obtain the required c solutions . Thus we can clearly choose
xi, i <= k, so that the set consisting of LO ) , the xi, i _< k, and z should be
rationally independent . But then the set consisting of L(P) and the
xi, i <=k+1, is also rationally independent . This set we denote by
L«+ 1 > . Clearly L+1 1) intersects FF, and the power of L (0+ 1) is less than
c. Put now L = Uo<a,L«> . Clearly Lk+1 intersects all perfect subsets of
IM, thus can not have measure 0 (IM has measure 1), but since L is
rationally independent, Lk+1 can not have positive inner measure (as
was shown before) . Thus Lk+1 is nonmeasurable. Now since Bk+1
clearly consists of all real numbers, we can find a Hamel basis HCB
which contains L. Clearly Hk+l is also nonmeasurable and HkCBk has
measure 0, which completes the proof .
We now have to construct our sequence A i with the required

properties : Denote by T„ 0 < r < k+ 1, the sequence of integers of the
form E9=o e;2 1, n =1, 2, • , e; =0 or 1, and all the e ; are 0 except
possibly for those with j=r (mod (k+1)) . Consider now the sequence
U,T,, this sequence clearly has the required properties ."
Let S be a set of power greater than No but smaller then the first

strongly inaccessible cardinal number (>No) . It is well known that
no countably additive two-valued measure can exist for the subsets
of S, so that elements have measure 0 and the whole set S has meas-
ure 1. Ulam now raised the question (oral communication) : What is
the smallest cardinal number n so that there should exist n two-
valued measures defined for the subsets of S (elements of S having
measure 0 and S having measure 1, in each of them) with the prop-
erty that each subset of S is measurable in at least one of these
measures? Ulam proved that nZX • Alaoglu and I proved n>_N1. I
now present our proof.

Suppose the result is false. Then there exist countably many meas-
ures M1 , M2, • • • so that each subset of S is measurable for at least
one of these measures . Split the set S into the union of ,ll sets each
nonmeasurable in M1 . 14 Clearly only countably many can have posi-
tive measure in any Mk, thus there must exist two of them, S l and

13 This example is due to Stöhr, Math . Zeit . vol. 42, pp . 739-743 .
14 S. M. Ulam, Fund . Math . vol . 16 (1930) p . 142 .



140

	

P. ERDÖS

	

[April

Si say, which are both nonmeasurable in M1 and whose union does
not have positive measure in any Mk. Split now S-S1-Si into the
union of fl, disjoint sets each nonmeasurable in M2. Denote these
sets by U1, U2, • • • , UU, • - . It is easy to see that among the sets
S,-f Sf+ Ut there are only countably many of positive measure in any
Mk. Thus there exist two of them, S 2 and S2 say, such that S1+Si+S2
+S2 does not have positive measure for any Mk. Consider now the
set S-S1-Si-S2-S2, and repeat the same operation . We can clearly
repeat this operation for any k, and the set UiSi will be nonmeasur-
able for any Mk, since it contains Sk but is disjoint to SS. We cannot
decide the question whether n > R1 . It seems probable that n is
greater than the power of S .

Some simple remarks about ordinal numbers : (1) A sequence of
ordinals (not necessarily countable) /3i < S2k is said to be rarified if
lim Ni+,-(3i= S2k , also every bounded sequence is said to be rarified
(that is, a sequence for which lim (3i= S2k) . Sierpinski15 remarked that
the ordinals a < 01 are the sum of No but not of a finite number of
rarified sequences. Assume that Qk has an immediate predecessor .
Then the ordinals a < Qk are the sum of S2k-, but not fewer rarified
sequences . If 52k does not have an immediate predecessor and 9 1 is
the smallest ordinal cofinal with it, then the ordinals a < Qk are the
sum of S2 i but not fewer rarified sequences . If Qk is weakly inaccessible,
that is, Qk = S2 i , then the ordinals a < Qk are not the sum of fewer than
Qk rarified sequences, or the weakly inaccessible numbers are the
only ones which are not the sum of fewer rarified sequences .

Similarly we can define a sequence (3i < S2k to be r-rarified if
lim (3 i+1 - (3i = Qr . Then the ordinals a < Qk are the sum of min (S2r , S2i)
but not fewer r-rarified sequences .

(2) Dushnik16 proved the following theorem : Let m be a regular
number, Qk the initial number belonging to it . Let f (a), a < S2k, be

such that for all a, f(a) <a . Then there exists an ordinal /3 such that
the equation f(a) =(3 has m solutions . For singular numbers the
theorem is false. The following generalization holds : Assume that S2 k
is not cofinal to w . Then there exists an ordinal 0 and a sequence ai
cofinal with 12k such that f (ai) <_ (3 . For regular numbers one im-
mediately obtains from this Dushnik's theorem . If Qk is cofinal to
w, the analogous result clearly does not hold. Dushnik's proof would
easily give a proof of this theorem (oral communication) but perhaps
the following proof is of some interest : Suppose the theorem is false .
Then to every (3 there exists a 0((3) < Qk such that for S>>=~(/3), f(S) >(3 .

as Revista de Sciencias (Lima) vol . 4 1 (1939) pp. 289-296 .
is Bull. Amer. Math . Soc . vol. 37 (1931) pp . 860-862 .
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Consider now

'y = 0(1 ) + cb(q5(1)) + . . .

Clearly y < 52,, since S2k is not cofinal with w . But then from the defini-
tion of y, f(y)>_y, an evident contradiction ; this completes the proof .

UNIVERSITY OF MICHIGAN

ON A PROBLEM OF G. BIRKHOFF

TADASI NAKAYAMA AND JUNJI HASHIMOTO

In his book Lattice theory, G . Birkhoff proposed to prove that the
representation of a finite partially ordered system as the product of
indecomposable factors is unique within pairwise isomorphism of
factors.' The present short note is to show that this is not the case in
general. A simple counterexample, and indeed one of the simplest,
perhaps, can be constructed as follows :

Let X be the lattice 10, 11 of two elements 0, 1 (0 < 1), for instance,
and A be the partially ordered system

I + X + X2 + X3 + X4 + X5,

where I resp . Xi stands for the one-lattice resp . the direct product of
I copies of X, and where + means direct summation . The finite
partially ordered system A may be expressed also by f(X) with the
polynomial f (x) =1 +x+x2 +x3+x4 +x5. Since every Xi has the up to
isomorphism unique decomposition into indecomposable factors,
Xi=XX . . . X (i factors), one sees easily that direct decompositions
of A are, in the sense of isomorphism, in 1-1 correspondence with
factorizations of polynomial f(x) =1+x+x 2+x3 +x4+x5 into factors
with non-negative rational integral coefficients . But our f(x) has two
distinct decompositions into factors which are irreducible in the pre-
scribed sense, namely

f(x)=(1+x)(1+x2+x4)_(1+x3)(1+x+x'-) .

Two direct decompositions
A = (I+X)(I+X2+X4) _ (I+X3)(I+X+X2)

Received by the editors October 28, 1948 .
' G . Birkhoff, Lattice theory, Amer. Math . Soc. Colloquium Publications, vol . 25,

New York, 1940, Problem 8 .
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