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SETS OF DIVERGENCE OF TAYLOR SERIES
AND OF TRIGONOMETRIC SERIES

PAUL ERDÖS, FRITZ HERZOG and GEORGE PIRANIAN
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1 . Introduction . If a set E on the unit circle C is of type G, there
exists a Taylor series 'a,, zn which diverges on E and converges on C-E ;
this was shown by Herzog and Piranian in [3] . The same authors ex-
hibited in [4] certain sets that are not of type G,, and that are sets of
divergence of Taylor series whose partial sums s„(z) are uniformly
bounded on C. In Section 2 of the present paper we will prove, among
other things, that every set of type F, and of logarithmic measure zero
is the set of divergence of a Taylor series .

Zygmund [6] showed that the partial products of the infinite product
IT =i [1 ± (i/k)Cos3kfJ] coincide with certain partial sums of a Fourier
series 2 (an cosnO + b„sinnO) ; this Fourier series has uniformly bounded
partial sums, and it diverges on a set which has locally the power of
the continuum . Tandori [5] exhibited a continuous function whose
Fourier series has the same properties . In Section 3, we prove gener-
alizations of Tandori's result which are analogous to two of the theorems
in Section 2 .

In Section 4, an analogue to Theorem 3 of Section 2 is proved for
trigonometric series .

2. Taylor series . A set E on the unit circle C is of logarithmic
measure zero provided it can be covered with a set of arcs of lengths L,
(with L, < 1 for j = 1, 2, . . .) such that X 1/jlogL1 ; is arbitrarily small .

THEOREM 1 . If the set E on C is of logarithmic measure zero, there
exists a function f(z) =Xa,,,zn with the following properties

i) f (z) is continuous on jzl _< 1 ;

Eanzn diverges on E ;
iii) the sequence {sn(z)} is uniformly bounded on C .

The proof of this theorem is based on the fact that the polynomials
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are uniformly bounded on C (( see Fejér 12] : a very elementary proof that
{P,,(z)l < 4 + 2;r is given in [1, pp . 42--43]) . We choose a sequence of num-
bers ek, with 0 < e 4 < 3 and Xk._ V_k ( 1 . For each index k, we can con-
struct a set of open arcs A kj , of lengths L kj < 1, such that, for each
k, E~z U; l Akj and rJ 1 111logL ki ! <_ e k . ( Since ,,,< ;, the Lkj will ac-
tually be less than 11s .) We denote by o) kj the midpoint of A A.,, and we
choose integers nkj such that 11(4Lk1 ) snkj sl 1 (2Lkj ) . Finally, we let

( 1 )

	

f(z) _ E gkj(z)
k,j

where
(2) gkj(z) = (l.ognkj)-lP,,k;(zlcokJ) .

It is assumed here that the integers in.., are chosen in such a way that
no two of the polynomials g kj (z) contain like powers of z .

Since, by the foregoing inequalities,

fk, j (log nkj)-1 _<_ Ek, j (1 iog L kj l - log 4)-1< Xk, j 2 jlog Lkj l -1 < 2 ,

the double series in (1) converges uniformly on C, and therefore f (z) is
continuous on I z 1 ~ 1 .

If z=eill , the argument of each of the first n terms in P,,(z) lies between
-nd and n8. If in particular -1/4n< 0 < 1/4n, the real part of the sum
of the first n terms in p„(z) is greater than 31ogn . For each point z in
E, there exist infinitely many co,,, such that jarg(z/w kj )I <Lkj f2 < 1/4nkj .
It follows that, for each z in F, infinitely many of the polynomials gkj(z)
have at least one partial sum that is greater than 3 in modulus, and
therefore the Taylor series of f (z) diverges at all points of E .

To show that the partial sums s,,(z) of this Taylor series are uniformly
bounded on C, it is sufficient to observe that the partial sums of the
series (1) are uniformly bounded and that the partial sums of the poly-
nomials gkj(z) are bounded by a universal constant .

REMARK . We actually proved a result slightly stronger than the
theorem: there exist two positive universal constants K 1 and K2 , such
that at each point of E the Taylor series of our function f (z) diverges
with an oscillation greater than K 1 , while Is,,(z) I < K2 at all points of C .

THEOREM 2 . If the set F on C is of type F, and of logarithmic measure
zero, there exists a function f(z) =Ea,,zn with the following properties :

i) f (z) is continuous on !z1 < I ;
ii) Ean zn diverges on F and converges on C-E ;
iii) the sequence {s,,(z)} is uniformly bounded on C .
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First we prove the theorem for the special case where the set E is
closed. We observe that, if z = e , 0 -0, the partial sums of the poly-
nomial P,,(z) have moduli less than c/ j B l, , where c is a universal constant .
(See, for example, [1, p . 43] .) In the proof of Theorem 1, we now take
the precaution of requiring that each of the arcs A,,, contains a point of E .
Then each point z on C-E is the midpoint of an arc of length 26 which
contains at most a finite number of points wlij . The convergence of
,Ean zn at z now follows from the fact that, for every pair k and j for which
(Oki does not lie in the 6-neighborhood of z, the partial sums of g f,j (z)
have modulus less than c/ (o log n,,

'
The theorem is therefore proved

for the case where the set E is closed .
To deal with the general case, we suppose that E = U E.„ where each

of the sets E p is closed and has logarithmic measure zero . We construct
for each set E, a function f1;(z) in the manner which has just been de-
scribed and in accordance with the remark made at the end of the proof
of Theorem 1 . We then set f(z)=~s,K 3rf where A3 is a positive
constant small enough so that K 1 > 2 K, ,~ = 1 ~~ 3T-

if z is a point in E, let q be the smallest value of p for which z lies
in En . The Taylor series of f', (z 1 converges at z when 1,<q : the Taylor
series of K34fq (z) diverges at z with an oscillation greater than K K3 4 ;
and the partial sums of the Taylor series of the function s'_ i K3l'fP(z)
are bounded on C b -.Ii, - q _, K 3 a' < ii1 k 34 . It follows that the
divergence contributed by the term K3cfq (z) is not cancelled by the
other terms, and therefore the Taylor series off(z) diverges at z .

If z is a point of C-E then. for all p, the Taylor series of K3"f1 ,(z)
converges at z and has partial sums that are bounded on C by K2K.~1' .

Therefore the Taylor series of f( .-) converges at z . It is obvious that
f (z) has also the properties i) and iii) stated in Theorem 2 . This completes
the proof .

THEOREM 3 . If E on C is the union of two sets E, and E,, where E,
is of type, FQ and of logarithmic measure zero, while E 0 is of type G,,, then
there exists a Taylor series which diverges on. E and converges on C-E .

By Theorem 2, there exists a function f(z) whose Taylor series con-
verges on C-El , diverges on E1 and has partial sums that are uniformly
bounded on C ; let Ls„(z1 < B . By the method of [3, p . 532, lines 17-20],
a function g(z) exists whose Taylor series converges on C--E, and diverges
at every point z, of E_, with an oscillation greater than some positive
constant b, which is independent of z,, . If the constant k is chosen greater
than 2BIb, the Taylor series of f (z) - kg(z) provides the proof of the
theorem
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3. Fourier series . In this and the next section, the interval 0 < 0 < 2xr
will be denoted by I and the nth partial sum of the series

cc
(3)

	

Za. COs n(0-O n )
n-0

by sn(6) .

THEOREM 4 . If the set E* on I is of logarithmic measure zero, there
exists a function f(0) with the following properties :

i) f (0) is continuous on the closure of I and J'(0) = f (2-r) ;
ii) the Fourier series (3) of f(0) diverges on E* ;

iii) the sequence {s„,(0)} is uniformly bounded on I .

THEOREM 5 . If the set E* on I is of type . Fa and of logarithmic measure
zero, there exists a function f (0) with the following properties :

i) f (0) is continuous on the closure of 1 and f (0) = f(2,7) ;
ii) the Fourier series (3) of ;(6) diverges on E* and converges on. I-E*
iii) the sequence {s n(0)} is uniformly bounded on I .

For the proof of these two theorems, we map the set E* into a set E
on the unit circle C in the obvious manner, and we use essentially the
real part of the series (1), constructed in the preceding section . As far
as continuity, boundedness of the partial sums, and (in the case of
Theorem a"") convergence are concerned, no new problems arise . However .
a certain refinement is necessary in order to ensure divergence of the
Fourier series on the given set E* . The difficulty lies in the fact that the
exponent mki in (2) may be very large compared with nk1 , and that
therefore the real part of the sum of the first n k1 terms of the polynomial
gk,(z) may be zero even when z lies very near to CO ., . We solve this
difficulty by replacing the functions g kj(z) by the polynomials

a
hkj(z) = (lognk;)`k ['mk>Pnkl(~/t,yka)

	

z sriaiP
nx,( 1 ('k-j)]

The mkj are here assumed to be chosen so that no two of the polynomials
h kj(z) overlap, and also so that in each h,_ ; (z) the two "halves" of the
polynomial do not contain like powers of z .

Let rpkj(0) denote the argument of the suns of the first n ki terms of
pnk (ei,6) . Then, for - if4n k1 < 0 < 1J4n k1, ,q~ k,(0)I <-,z/12, and therefore at
least one of the quantities

(cos [mkj 0

	

`p'kj(0)]i

	

d

	

Icos [2mk ;r9 -;- cpk ;( 0 )]a

is greater than cos(5,r/12) . (Note that, for any real 3, at least one of
the two values /3 and 2,c3 differs from the nearest multiple of :z by at
most 43.) This ensures that . for arg (zjo> k1 )I < 1f4nK1 , the polynomial
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h k," (z) contains a block of nz_i terms whose sum has a real part of modulus
greater than a positive universal constant . From here on, the proof
proceeds as before, and we omit the details.

4. Trigonometric series. The following result is a natural analogue
of Theorem 3 .

THEOREM 6 . If E* on I is the union of a set of type G, and a set of tape
FQ and of logarithmic measure zero, then there exists a trigonometric series
which diverges on E* and converges on I--E* .

To prove this theorem, we use the procedure outlined in the proof of
Theorem 3, combined with the "doubling" process described in the proof
of Theorems 4 and 5. We omit the details .
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