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A classical theorem of Steinitz [I& p. 1251 states that the characteristic of an 
algebraically closed field, together with it.s absolute degree of transcendency, 
uniquely det,ermine the field (up to isomorphism). It is easily seen that the word 
real-closed cannot be substituted for the words algebraically closed in this theorem. 
It is therefore natural to inquire what invariants other than the absolute tran- 
scendence degree are needed in order to characterize a real-closed field.’ 

For non-denumerable fields, the question is equivalently stated as follows: 
what invariants in addition to the cardinal number are needed in order to char- 
act’erize a real-closed field? Xow, it is well-known that any two isomorphic real- 
closed fields are similarly ordered (i.e., as ordered s&s). Here we establish the 
converse implication’ for a particular class of non-denumerable,3 non-archi- 
medean, real-closed fields. Section 2 of our paper is devoted to the proof of this 
theorem (Theorem 2.1). 

The class of ordered fields to which our isomorphism theorem applies is quite 
restricted. (In fact, in order that it not be vacuous, we must assume either the 
continuum hypothesis, or some one of its generalizations to higher cardinals.4) 
Nevertheless, we are able to find an application to a class of fields that is not 
insignificant,, namely, those that, appear as residue class fields of maximal ideals 
in rings of continuous funcbions (on completely regular topological spaces). This 
discussion is the content of Section 3, and leads t’o the theorem that all non- 
archimedean residue class fields (the so-called kyper-reul fields) of power N1 are 
isomorphic (Theorem 3.5). As a rat,her interesting corollary to this theorem, we 
find (using the continuum hypot’hesis) that all the non-real residue class fields 
of maximal ideals of a countable complete direct sum of real fields are isomorphic 
(Corolla~ry 3.9). 

Section 4 continues the discussion of non-arahimedean residue class fields. 
The development here leads to the construction of various such fields that arise 
from the same ring, but have different cardinal numbers (Theorems 4.4 ff. and 
4.8 ff.). (it fortiori, not all such fields that arise from the same ring are isomor- 
phic.) This section is almost entirely set-theoretic in character, and some of t,he 
results obtained here have some set-theoretic interest in themselves (Lemmas 
4.1 and 4.7). (No use is made of the continuum hypot’hesis in this section.) 

Finally, in Section 5, we pose some unsolved problems. 

1 The characteristic of every real-closed field is zero. 
2 Similarity of order implies, of course, equality of cardinal. 
3 The converse is false for denumerabEe fields. 
4 Or the existence of the so-called sfrongIf/ inaccessible cardinals (For defmrtiwl, ‘TV? f r,jt 

note 12). 
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1. Preliminary remarks 

In this section, we recall some standard facts from algebra and set-theory.5 
Every field is an algebraic extension of a pure transcendental extension of its 

prime field. By the absolute degree of transcendency of a field is meant its tran- 
scendence degree over its prime field. The prime field of every ordered field is 
the rational field &. It follows that for a non-denumerable ordered field, the 
absolute degree of transcendency coincides with the cardinal number of the 
field (since an algebraic extension of an infinite field does not increase its cardinal 
number). 

An ordered field F is called real-closed if every positive element of F has a square 
root in F and every polynomial of odd degree with coefficients in F has a zero 
in F. (The adjunction of a square root of minus one to such a field yields an 
algebraically closed field.) It is well-known that a real-closed field has a unique 
ordering (in fact, a > 0 if and only if a = b2 for some non-zero b). It follows t,hat 
any isomorphism of a real-closed field is order-preserving. 

We shall also need t,he following important theorem of Artin and Schreier 
117, p. 232]. 

THEOREM 1.1 (Artin-Schreier). For every ordered jieid F, there is a unique (up 
to Gomorphism) algebraic extension of F that is real-closed and whose order pre- 
serves the order of F. 

The real-closure of F will be denoted by RF. 
Turning now to abstract ordered sets, we introduce the following drfinit(ion, 

due to Hausdorff (see [4, pp. lSO--1811). 
DEFJNTION 1.2 (Hausdorff). Let Q! be any ordinal. A (simply) ordered set, L 

is called an qu-set provided that: 
(i) if g, B are subsets of L of power <N,, and such that A < B,6 then there 

is a y E L with A < y < B,” and 
(ii) no subset D of L of power <N, is cofinal or coinitial with L. 
Applying (i) again, there is a z e L such that y < x < B. Hence there is an 

entire interval of L between ,4 and B. Likewise, from (ii), there is an entire 
interval of L that is >D, and an entire interval that is <D. With these remarks 
in mind, the proof of the following lemma becomes evident. 

LEMMA 1.3. Every dense subset of an qa-set is an qa-sez!. 
The cardinal number of any set E will be denoted by 1 E 1. 

2. A characterization theorem for real-closed fields 

In this section, we establish the following t,heorem. 
THEOREM 2.1. Let a! be any ordinal >O. -4ny two real-closed $elds F, F’ that are 

qn-sets (De$nition 1.2) of power N, are isomorphic. 
In connect,ion with this t.heorem, it is known that any two ?I,-sets of power 

J For a general reference in algebra, see [17] ; for set-theory, see [a]. The necessary defini- 
tions in connect.ion with rings of functions may be found in [7]. 

6 A < B (A < y < B) means that, a < b (a < y < b) for all a c A and all b E B. 
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N, are similar as ordered se&s. The set of rat,ionals is an To-set (of power No). On 
the other hand, for every ordinal p, the existence of an qp+l-set of power NBfl 
is equivalent to the validity of the hypothesis 2*” = Ha+1 , For singular H,, 
no r,-set of power N, can exist [4, pp. 181-1821. 

To establish our theorem, we first prove two lemmas. 
LEMMA 2.2. If a su?gMd E of an ordered jield F contains any interval (a, b) of 

F, then E = F. 
PROOF. Let el , eS be elements of E such that a < el < ez < b. Put d = e2 - el . 

Since E is a field, the closed intervals 1 = [0, d] and J = [l/d, a)’ of F are con- 
tained in E. Now the interval K = [d, m) of F is the translate of J by the ele- 
ment d - 1 d of E; therefore K, too, is contained in E. Thus E contains I u K = 
[0, oo), i.e., E contains every non-negative element of F. It follows that E = F. 

LEMMA 2.3. Every non-denumerable ordered Jield F has a transcendence base over 
the rational field Q that is dense in F. 

PROOF. Well-order the set of all int,ervals I = (a, 6) of F [a, b E F) into a se- 
quence l~f~~iu, , where N, = 1 F 1. Let 0 be any ordinal <w, , and suppose that 
a sequence { t;)E<p of independent transcendentals has been chosen, such that 
TV E IE for each E < 0. Let Ep denote the subfield of F consisting of all elements 
of F that are algebraic over the field Q(to, 1 . . , ti , . . ‘)E<B. This latter is of 
power < N, ; hence Ea , too, is of power < K, , and therefore Ep is a proper sub- 
field of F. -%ccordingly, by Lemma 2.2, Ep does not cover any interval of F. 
Hence me may choose a transcendental TV E IB that is independent of the set 
{ tf ) gia . In t>his way, we construct a set S = ( tl: ) E<~, of independent transcenden- 
tals, with X dense in F, We then extend S to a transcendence base for F. 

PROOF OF THEOREM 2.1. For convenience of notation, we identify the prime 
fields of F and F’ with the rational field &. By Lemma 2.3, there exist tran- 
scendence bases T, T’ of F, F’ that are dense in F, F’ (resp.). Clearly, 1 T 1 = 
/ T’ 1 = N, . List, the elements of T in a sequence 

(1) l&If<% > 

and list the elements of T’ in a sequence 1 t;)~eu, . Let p be any ordinal < w,, 
and suppose that we have defined a sequence 

(2) 1%)X3 

of elements of T, and a sequence {s; Jo.+ of elements of T’, as follows. Introduce 
the subfield 

(3) E,T = Qbo, --I ,SE, ‘+.>t<a 

of F, and the subfield Ei = Q(sh , * . . , .s; , * * *)E<8 of F’, and denote their real- 
closures by 

FB = olEB, F; = &E;. 

i [x, =) denot.es t.he set of all elements 2-z. 
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Since F and P’ are real-closed, we may regard Fb , F$ as subfields of F, F’. Our 
induction assumpt,ion is Oha,t there exists an (order-preserving) isomorphism 
@6 of Fp upon Fi . 

We now define sg and sj . To simplify t’he notat’ion, we shall refer to these ele- 
ments as z a,nd x’, resp. ; furthermore, for any element or subset, B of PO , me 
shall denot,e its image @6(A) in Fi by 4’. 

There are two cases, according as 0 is even or odd. If 6 is even, we define IL’ t,o 
be the element’ tg of (1) of smallest index E such t.hat tf does not, a,ppear in t.he 
sequence (2) : such an element. exisk, since the sequence (2) is of power i p ( < N, . 
Since 5’6 is an algebraic extension of E p , t’he transcendental z does not. belong 
to FB ; also, / Fs 1 = / ED 1‘ Now from (3), we see that / Eb ( < N, (since O( > 0); 
therefore / Fp j < % . Finally, the set’-union T’ u Fi is dense in the v,-set F’ 
(since T’ alone is), and is therefore it,self an vm-set (Lemma 1.3). 

We are now prepared to apply t’he definition of an so-set,. Decompose the set 
FB into t,he sets -46 , BB , such that -40 < x < BP (one of Obese sets may be empty). 
The corresponding subsebs Ai , Bi of Fi are both of power <N, , and, since +pB 
is order-preserving, we have Ai < & . Therefore, by (i) of Definition 1.2, t,here 
exists an element y’ of the T,-set T’ u Fi such bhat Ai < y’ < Bi (or, in case one 
of t’he sets of t,he decomposition is empt’y, we apply (ii) instead of (i)). We define 
2’ t,o be any such element, y’. Since Ai u Bi = Fi , we ha,ve X’ 4 FL ; hence 

(4) for all c E Fg , .r’ > c’ if and only if z > c. 

In case p is odd, we proceed analogously, reversing t.he roles of T and T’ 
throughout. 

To complete t’he induct,ion st,ep, we must extend t’he isomorphism Qjp of Ffl 
upon FA t’o an isomorphism $+I of F~+I = @EB(~) upon Fi+l = mEi( NOW 
clearly we have Fa+, = W@(x), F ;+I = &FL(z’). Accordingly, we begin by ex- 
tending @.B to an order-preserving isomorphism @p~+~ of Fb(x) upon F,k(z’). Define 
+B+l(~) = z’, and t,hen extend &+I over F&c) in t,he na,tural way (i.e., preserving 
formal sums and product’s). Since x and z’ are transcendentals, @~a+1 will be an 
algebraic isomorphism. Our first, problem, t,hen, is to verify tha.t. &+I , thus de- 
fined, preserves order. 

To t&his end, it’ suffices to show t’hat. $J Hi-1 preserves order from the polynomial 
ring Fb[x] t’o t)he ring F&z’] (the extension t#o the desired quot.ient, fields being 
then automatic). Thus, we a,re to show t’hat) 

(5) f = C:“=[, urxr > 0 implies ,f’ = C,“=O ai 2’? > 0 

(a, E FB , a, Z 0). We may assume a, = 1. If n = 1, then (5) holds by construc- 
tion (cf. (4)). Turning to the case n = 2, write f = (z - II)’ + k (in, k E FB). If 
k >= 0, then t,rivially j’ = (2 - h’)? + k’ > 0. If k < 0, let a denote the positive 
square root of - k; then a c FB , since F,q is real-closed. Then f > 0 implies 
z < h - a or CC > h + a, whence by (a), X’ < h’ - a’ or z’ > h’ + a’ (resp.), 
whence f’ > 0. 

Thus (5) holds for n = 1 and for n = 2. Since any polynomial (in one inde- 
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terminate) over a real-closed field is the product of linear and quadratic factors, 
(5) holds in the general case as well, We have thus shown that $,+,.l is an order- 
preserving isomorphism of FB(z) upon 2$(x’). By t,he Artin-Schreier theorem 
(Theorem l.l), &+I. has an extension to an (order-preserving) isomorphism 
@o+~ between t’heir real-closures, i.e., of FB+i upon Fi+l . 

This completes the induction st’ep. By alternating in t’he induct,ion between 
the cases p even and 0 odd, we have ensured that both of the sets T and T’ will 
be exhausted. Kow put. 

G = UB<& , G’ = &<w,F; . 

It is easily seen that G is real-closed. Obviously, G c F; and, as just noted, 
T c G. Since F is real-closed, and algebraic over T, we must, have G = F. Like- 
wise, G’ = F’. But clearly G and G’ are isomorphic. Therefore F and F’ are iso- 
morphic. This completes the proof of t’he theorem. 

It is clear that two real-closed fields may be similar as ordered set,s and have 
the same absolute degree of transcendency, and yet, not be isomorphic, For 
example, it is obvious (and well-known) that the smallest real-closed field con- 
taining the real number e is not isomorphic with the smallest real-closed field 
contaning r. It may be, however, that a non-archimedean real-closed field is 
characterized by its order type (together wit,h its degree of 6ranscendency over 
the real field?). We have so far been unable either to prove this, or t’o find a 
counter-example. 

For examples of non-archimedean real-closed fields of arbitrarily large power 
that are not ?I,-sets, see Sikorski [lo, 111. 

3. Hyper-real fields of power c = ZNo 

Let C = C’(X) denote Ohe ring of all cont,inuous real-valued funct,ions over 
a completely regular topological space X.5 Hewitt ha’s shown that if M is any 
maximal ideal of C, then t,he residue class field C/M is an ordered field that con- 
tains the real field R. If C/M contains R properly (whence C/2@ is non-archi- 
medean), t,hen M is called a hyper-real ideal, and C/M is called a h.yper-real 
field. A necessary (but not sufficient) condition that C contain a hyper-real ideal 
is that X be non-compact \7,, Theorem 411. 

For every f e C(X), we write Z(f) = 1~: 2 e X, f(z) = 0) ; Z(f) is called the 
zero-set of f, For any ideal I of C, we write Z(I) = {Z(J) : f E I). It, can be seen 
without dif%uity Ohat, the family~(1) is closed under finite int,ersect,ion; M is 
a maximal ideal if and only if Z(M) is a maximal such family that does not con- 
tain the empty set [7, Theorem 361. An ideal 1 is called a free ideal if n&??{~) 
is empty. Every hyper-real maximal ideal is free (but not conversely [7, Theorem 

411). 
We digress for a moment to insert a definition and a lemma that will be needed 

at various points in the sequel. 
DEFINITION 3.1. By t.he minimal cardinal associated wit.h a maximal ideal 
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M, we shall mean the smallest, of the cardinal numbers of the dense subset,s of 
2, for 2 6 Z(M). 

LEMMA 3.2. Let +J clenote the associated minimal cardinal of a ma,xim.al free ideal 
M. Then 1 C(X),/M 1 5 2”. 

PROOF. Any two functions that coincide on an element of Z(M) are congruent 
modulo M. Let 2 be any element of Z(M) that, has a dense subset Y of power p. 
Since the values of a cont,inuous function on 2 are determined by it.s values on 
Y, there are at most c’, i.e., 2D (since, trivially, p is infinite), continuous real- 
valued functions on 2, hence at most this many mut,ually incongruent such 
functions. 

We return now t’o the cent,ral topic of t,his section. 
LEMMA 3.3 If X is a,ny com.pletely regular space, and if M is any hyper-real 

ideal of C(X), then the residue class field C(X)/M is rea.l-closed, and its degree of 
transcendency over the red &field R is at least C. 

PROOF. See Henriksen and Isbell [S], Isbell [8], and Hewitt [7, Theorem 421. 
For any maximal ideal M of C, the residue class modulo .M that cont,ains any 

given j E C will be denoted by Ifl.ni-or, for brevity, simply by [j]. The field C/M 
is ordered as follows: If] > 0 if and only if both (i) the set {z: j(z) 2 0) is in 
Z(M), and (ii) Z(j) d Z(M) 17, p. 741. Equivalent,ly: [f] > 0 if and only if there 
is a zero-set’ 2 E. Z(Jf) such that j(s) > 0 for all 2 E 2. Thus M is hyper-real if 
and only if t,here exists a $J E C such t,hat the set {x: 4(z) 2 n} is in Z(M) for 
all n = 1, 2, . . . . 

THEOREM 3.4. If X is any completely regular space, and if M is any hyper-real 
ideal of C(X), then. the residue class field C(X)/M is an Tl-set (De$nition 1.2). 

PROOF. Let {Lfn]), {[g,J) cn = 1, 2, ** .) be t,wo sequences of element,s of C/M 
such that’ 

(61 tfnl < LL+ll < kJm+ll < k7ml (m., n = 1, 2, ..e). 

In order t’o verify condition (i) of Definition 1.2, it. is sufficient t,o find an h E C’ 
such that [j,J < [h] < [gm] (m, n = 1, 2, * . s). 

First, we note tha,t we may assume, without loss of generality, that 

(7) 
jn(z) 5 jn+l(s), and gm+l(x) 5 g,(x), for all 2 E X 

(m, n = 1, 2, . * e). 

For if we put 

j&(x) = max (h(x), . b . , .13x> I, g22j = min 191(x>, -. . , g,(x)), 

for all z e X, then we will have ux] = Ifn] and [gi] = [gm], by (6) and the defini- 
tion of the ordering of C/M. Obviously j:(z) 5 ji+l(x) and gk+i(z) 5 g;(z) for 
every 5. 

Secondly, we note that. we may also assume Ohat 

(8) jn(x) 5 g&x) for all x e X (n = 1, 2, e-s). 
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For put f:‘(x) = &(JJ), and g:‘(z) = max (f:(z), g:(x)). If we have defined 
f:‘;.. ,fz, g:‘, ... , gz so that 

“g(2) 5 ... 5 f:(x) 5 g:(z) s .* * 5 g:‘(z) 

for all x: e X, then we put 

(all z E X). It follows readily from (6) and the definition of order in C/M that 
[fz] = [fa] and [gi] = [g:] for all n = 1, 2, . . . . Moreover, we have 

,a) 5 fZ+dx, s s:+lb> s Y3X) 

for all z E 9. 
Resuming our original notation, we assume that (B), (7) and (8) hold. Since 

M is hyper-real, there is a function 4 c C such that for all x E X, we have @p(z) 2 1, 
and, for every rz = 1, 2, . 3 . , the set 

9, = {z:#l(x) L n) 

is in Z(M). We now define a function h as follows: 

h(z) = (n + 1 - #h))fnb) + (dx) - n)fn+1b) 

whenever n 5 $(z> 5 n + 1 (n = 1, 2, eU .). 

Evidently, h E C(X). Clearly,f,(z) 5 h(z) $ f n+l 5 x5 ( ) vh enever 12. 5 cp(s) 5 72 + 1, 
Since the sequence of functions {fn} is monotone increasing (7), we have h(x) 2 
fn+l(z) for all 2 E %+I . Now by (6), there is a Zn+l E Z(M) such that J+fi+l(z) > 
f%(x) for all 2 E Zn+l . Therefore h(z) > fm(z) for all 2 in the set @‘n+l n Zn+l- 
which is inz(M) (sinceZ(M) is closed under finite intersection). Thus [h] > Ifn] 
for all n = 1, 2, . . . . 

Next, it follows from (7) and (8) that for each fixed m, fm+p(z) 5 gm+l(z) 
for all x e X and all p = 1,2, . . . . It is easily seen from this that h(z) 5 gm+l(z) 
for all 2 E@~. As above, there is a 2; E z(.M) such that gm+l(z) < g,(z) for all 
z ~2;) whence h(z) < gm(x) for all z E (ZL n@,,J EZ(M), i.e,, [h] < [gm]. We 
have thus verified condition (i) of Definit,ion 1.2. Since the definition of h de- 
pended only upon the f,‘s-not upon t.he g,,A’s-the arguments just given yield 
the additional fact that C/Al has no countable cofinal subset (and hence no 
countable coinitial subset).S Thus we have also verified (ii) of Definition 1.2. 
This completes the proof that C/M is an ql-set. 

THEOREM 3.5. Under the continuum hypothesis c = HI , all hyper-real jelds of 
power c are isomorphic. 

PROOF. These fields are VI-sets (Theorem 3.4) of power N1 , and are real-closed 
(Lemma 3.3). Hence, by Theorem 2.1, they are all isomorphic. 

8 We are indebted to J. R. Ishell for the device used here, which was used by Isbell to 
show that C/X has no countable cofinal subset 191 (written communication). 
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Another way of expressing this theorem is: all hyper-real fields of power N1 
are isomorphic. 

COROLLARY 3.6. If 1 C(X) 1 = HI , then all the hyper-real fields C(X)/Af are 
isomorphic. 

COROLLARY 3.7. I.f c = N1, then all the hyper-real fields C(X)/M for which 
some 2 E Z(M) kas a &numerable dense subset are isomorphic. 

PROOF, Lemma 3.2. 
COROLLARY 3.8. If c = N1 , and z’f X is separuble metric or denumerabbe, then 

all the hyper-real $elds C(X)/‘M are isomorphic. 
COROLLARY 3.9. If c = & , then all the non-real reskdue class fields of ma.ximal 

ideals of a denumera.ble complete direct sum of real fields are isom.orphic. 
PROOF. The direct sum in quest’ion may be identified with the ring of all (con- 

t8inuous) real-valued functions on the denumerable discrete space. 
If it were true that, every Z(M) contained a discrete set., then the proof of 

Theorem 3.4 could be considerably simplified. Unfort’unately, t’his is not true 
even for the case X = R (the real line), as is shown by the following example 
due to W. F. Eberlein [5]. 

EXAMPI,E 3.10. Let P be the family of all closed subsets of R whose comple- 
ments have finite (Lebesgue) measure. Let I = (f: f 6 C(R), Z(f) E I’}. It is 

easily seen that I is a proper ideal of C(R). Let M be any maximal ideal con- 
t,aining I. It’ is easily verified t’hat .M is hyper-real (see also [7, Theorem 531). 
We shall show t’hat, Z(M) contains no discrete set. In fact, Z(M) cont’ains no set’ 
of finite measure. For suppose that 2 E Z(M) has finite measure. Then there is 
an open set V of finit.e measure contaning 2. But then we have R - V E r c Z(M) 
contrary t,o the fact that Z(M) is closed under finite intersection but does not 
contain the empty set. 

A consequence of this construction is the exist,ence of a point p in t’he Stone- 
tech compactification [13, l] of R such that every neighborhood of p intersects 
R in a, set of infinite measure (see [2; 3, Theorem 11). 

4. Cardinal numbers of hyper-real fields 

In this section, we establish some theorems concerning the cardinal numbers 
of various hyper-real fields. The continuum hypothesis is not used (except in 
a remark at the end of the section). The purely set-theoret’ic results that are used 
in t,he proofs have some int’erest for their own sake, and, accordingly, are stat’ed 
separately as lemmas, 

LEMMA 4.1.’ For every set X of injnite power M, there exists a set of m.ore than 
m subsets of X, each of power m,” a:nd such that the intersection of any two of them 
is of power <m. 

PROOF. Express X as t,he union of ttt mutually disjoint set’s 8, (a < w ,,,)I1 

9 This lemma was proved by P. Erd6s in 1934, hut, has not been published heretofore. 
For a large collection of result,s on almost disjoint sets, see Tarski [14, 161. 

10 In our application of this lemma, we will not need the fact that the sets are of power m. 
11 Here (and subsequentlv) we we t’he symbol w  m to denot,e the least ordinal of power m. 
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each of power M. Well-order each S, in a sequence of type w ,,, , and, for each 
PC w ,,, , form the set AB consisting of all the elements of index /3 (one from each 
set, 8,). Then the collection P of the m sets AB has the following propert,ies: 
(i) each A E P is of power m, (ii) each A E P meets every S, in exactly one ele- 
ment, and (iii) the intersection of any two distinct sets of P is of power <m. 
(In fact, the intersection is empty.) By the maximal chain theorem of Hausdorff 
(or Zorn’s lemma), there is a maximal family Q containing P and satisfying (i), 
(ii) and (iii), We shall show t,hat 1 Q 1 > m, which will establish the theorem. 
In the cont’rary case, 1 Q 1 = m (since Q II, P), and the elements of Q can ac- 
cordingly be enumera’ted in a sequence {&ja+,, . We define a new set B as 
follows. From (ii), we see that for every Q: < wm , the intersection of S, with the 
set Us&p is of power <m. Hence, since 1 S, 1 = m, the set S, - lJB.&p is 
not empty. We define 2, to be any a’rbit,rary element of this latter set. The set 
B = ~xol)m<w,,, , thus defined, clearly satisfies (i) and (ii). To verify (iii), we ob- 
serve that’ for eacha < w m , we have B n B, c (zb)~~~ ; therefore / B n B, j < m. 
Thus Q was not maximal, as supposed. Accordingly, we must have 1 Q ) > m. 

As already not,ed, if M is any maximal free ideal of a ring C(X), then the set 
Z(M) is a maximal subset of Z(C) that is closed under finiteintersection, does not 
contain the empt,y set, and has total intersection void. If X is discrete, then, of 
course, Z(C) is the set of all subsets of X. In discussing this case, it has often been 
found convenient t.o speak in terms of a non-l&Gal, Jinitely additive, two-valued 
measu.re I* on the set X; by this we mean: p is defined on all subsets of X, to each 
it assigns the value 0 or 1, every one-element set has measure 0, the entire set 
X has measure 1, P is finitely additive. Thus (if X is discrete) there is a nat.ural 
one-one correspondence between the set of all such two-valued measures p on 
X and the set of all maximal free ideals M of C-under which ~(2) = 1 if and 
only if 2 r Z(M). 

Let us call a cardinal m nonmeasurable if there exist.s no non-trivial, countably 
additive, two-valued measure on a set. of power m. Every m smaller than t,he 
first strongly inaccessible cardinal is nonmeasurable.‘* Now for any discrete 
space X, a maximal free ideal fM of C(X) is hyper-real if and only if the finitely 
additive measure P corresponding to M fails to be count’ably additive [7, Theorem 
501. Therefore, if the cardinal of the discrete space X is nonmeasurable, the 
maximal free ideals of C(X) coincide with the hyper-real ideals. In part,icular, 
this is the case whenever I X / 5 c. 

LEMXA 4.2. Let X be any set, and suppose that X has a subset Y of infinite power 
n. Then there exists a non-trivial, Jinitely additive, two-valued measure p on X su.ch 
that g(Y) = 1, and every subset qf X of power <n is of measure zereand if n 
is nonmeasurable, then cr is not countably additive. 

PROOF. Suppose first that Y = X. Let P be the set of all subsets X of X whose 

l2 This result is due to Ulam and Tarski. (A regular cardinal m > & is strongly inacces- 
sible if 2” < m for all n < nt. No such cardinal is known.) See [16]. 
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complements are of power <n. Then P is closed under finite intersection. Embed 
P in a maximal system & that is closed under finite int.ersection, and that ex- 
cludes the empty set. Obviously, every element of & is of power n. Define p(E) = 1 
if and only if E e &. If n is nonmeasurable, then by definition, cc cannot be count- 
ably additive. 

Applying this result to the general case, let py be a non-trivial, finit’ely addi- 
tive, two-valued measure defined on Y such that every subset of Y of power < 11 
is of measure 0. ExOend ~.l~ to a two-valued measure P on X as follows: for d c X, 
p(A) = ,ur(A n Y). It is easily verified that the measure P has the required prop- 
erties (cf. [16, p. 1461). 

As a particular application of this lemma, we have: 
COROLLARY 4.3. For every in$nite discrete space X, there exist hype+real ideals 

M oj C(X) for which 1 C(X)/M 1 = c. 
PROOF. By Lemma 4.2, there exist hyper-reaI ideals whose associated minima.1 

cardinal (Definition 3.1) is No. The result now follows from Lemma 3.2. 
THEOREM 4.4. Let X be the discrete space of power c. Then for every hyper-real 

ideal M of C(X) for which every 2 .z Z(M) is of power c,13 we have j C(X)/M j > c. 
PROOF. By Lemma 4.1, there is a set (A;) irr of more than c subsem of X, t,he 

intersect’ion of any two of which is of power < c. Let cp be any element of C(X) 
that assumes no value twice (i.e., + is a one-one mapping of X into t’he reals). 

For each i E I, define ji as any function on X that assumes precisely the values 
cp(AJ, i.e., ji(X) = $(A,). Then j;(z) = j&) = r only if r E f$(AJ n $(Aj), hence 
onlyifscEA6nAi. Consequently, if i # j, ja agrees with jj only on a set of power 
<c-therefore on no set 2 e Z(M). Thus ji f jj (mod M). Hence {ji)itr is a set 
of more than c mutually incongruent (mod Al> elements of C(X). 

COROLLARY 4.5. The hyper-real .fields associated with the discrete space of power 
c do not all have the same cardinal number-a fortiori, they are not all isomorphic. 

PROOF. Corollary 4.3 and Theorem 4.4. 
LEMMA 4.6. Let {EBJ~<w, be a family of n sets of power m, where m is in&&, 

and 0 < n 5 m. Then there is a set (HB]~<~, of mutually disjoint sets of power m, 
with Hb c ED for all 0 < W, . 

PROOF. By repeating the set Eo m times, we can secure the condition n = m. 
Let (Y be any ordinal <w ,,, , and p any ordinal S;;cw, and suppose that a set of 
distinct elements 

has been defined, such that every x, ,7 E E, , and every X,J E EE . Then / Xa.p 1 < In ; 
we choose x=,8 as any element of Eb - Kol,# . We have thus defined a set of distinct 
elements ~~P,~~a~o,,~~a, with every x,,~ e EB. We put H@ = {z,,B)~~,<,, . 

LEMMA 4.7. Let X be any set of inJinite power m, and let q be any infinite cardinal 

13 The existence of such ideals follows from Lemma 4.2. 
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S ~1. Then there exists u system K = (Xrr,sJacA,srB of subsets of X, where / A 1 = 
q and 1 S 1 > m, such thut 

for all s E S, u&J-a,, = x; 

for all s ES, and for all a, b e A, with a z b, 

X’,,, n Xt,,, is empty; 

for every s, t e S, u?ith s # t, put 

Y,,t = LA (X,,, n Z,d; 

then 
(11) every subset E of X that is the complement of the union of a finite number oj. 

the sets Ys,t is of power m. 
PROOF. Certainly such a system exists for 1 A 1 = q wibh 1 S [ = 2. By the 

maximal chain theorem, there is a maximal system K for I A / = q; we shall 
show that for such a K (for which, clearly, 1 X I 2 2), we have j S [ > nt. 

Suppose, on the contrary, that I X I 5 m. We shall find that then K is not 
maximal. Let P denot,e the set of all finite subsets of the set of all two-element 
subsets is, t) of S. Then j P I 5 m. Each p e P determines a set E, = X - 
U ls,tlrpYs,t as in (11). Conversely, to each set E as in (ll), there corresponds at 
least one p c P for which E = E, . By Lemma 4.6, t,here is a set (HP jprP of 
mutually disjoint sets of power m, with each 23, c E, , 

Now let u be any index $8; we construct a set of sets {Xa.U)a,, , as follows. 
Let x be any element of X. If II: is in no H, , we assign 5 to an arbitrary X,,, . 
In the contrary case, there is exactly one p for which z IE H, . Let 

For each s E S, , there is, by (9) and (lo), exactly one a, c A such that x E X,,,, . 
Let a(p) be any element of the infinite set A distinct from each of Ohe finibely 
many elements a, (s E 8,); me assign 2 to the set Xacp) ,W . 

Write S’ = S u (2~). Clearly, the enlarged system K’ = {X,,, JacA,srS, satisfies 
(9) and (10) (with S therein replaced by S). To verify (ll), let p’ be any finite 
subset of the set P’ of all two-element subsets of S’; me are to show that 1 Ep, I = 
m. Since I S I 2 2, there is a p” e P’ that contains p’ and that also contains at 
least one element of P; since lZ,e c Epl , it suffices to show that I E,. I = m. 
Let p be the element of P consisting of all the two-element subsets of the set 

then p is not empty (by definition of p”). The set) H, is contained in E, . Fnrther- 
more, by the construction above, we have H, c Xa(p~.u , whence none of the 
sets Y,,, (s E T,.) meets H, . It follows that H, c E,H . Since I H, 1 = m, we 
have ! E,,, ( = m. As indicated above, this implies bhat the system K’ satifies 
(11). Thus K’ satisfies (9), (10) and (11). Therefore K was not maximal, as sup- 
posed. Accordingly, we have 1 S I > m. 
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THEOREM 4.8. Let X be the discrete spa.ce of cardinal M 2 c. Then there exists 
a hypeweal ideal M of C(X) for which / C(X)\M 1 > Ott. 

PROOF. Let the system K be as in Lemma 4.7, mit,h q = c. The set of all finite 
unions F of sets Y,,, is closed under finit’e union; hence if we define p = 0 on 
all subsets of all such F, and Jo = 1 elsewhere, then I* will be a non-trivial, finitely 
additive, two-valued measure on X. Let’ M be the maximal free ideal correspond- 
ing to the measure ~1, Let the set of all reals be indexed (ra)ar.A . For every s E S, 
we define a fun&on f8 E C(X) as follows: given any 5 E X, we ha,ve 2 t X,,, for 
exactly one a E A--we put fs(z) = r, . Then, for s f t, we have .fs(s) = f&j = r, 
if and only if 5 E X,,, n X,,t , Therefore t,he set, of all 5 on which f,$ agrees with 
ft is the set Y,,t . Since P(Y~.~) = 0, we have fA % fl (mod M). Thus {f8}sls is a 
set of more than m mutually incongruent (mod M) elemenk of C. Accordingly, 
/ C(X)/M 1 > m. And, since m 2 c, M must be hyper-real. 

Observe t)hat for t,he special case m = C, a stronger conclusion is given by 
Theorem 4.4. 

COROLLARY 1.9. Let X be the discrete space of cardina.1 m S_ c, and /et tt be any 
cardinal su.ch that m 2 n 2 c. Then there exists a hype+real ideal M of C(X) such 
that n < 1 C(X)/M / 5 2”. 

PROOF (cf. proof of Lemma 4.2). Let Y be any subspa,ce of power n. By 
Theorem 4.8, t,here exists a maximal free ideal My of C(Y) for which 1 C(Y)/M, 1 
> n. Define 

M = (f:f E C(X), (Z(f) n Y) E z(M,) ). 

It is verified without difficulty that M is a ma,ximal free ideal of C(X). With each 
fY t C(Y), associat,e t,he function f0 E C(X) t’hat’ agrees wit,h fr- on Y a,nd vanishes 
everywhere on X - Y. Clearly fo = go (mod M) if and only if fY = g, (mod 
Al,). Hence / C(X),/&1 / 2_ 1 C(Y)/Mp 1; t,herefore , C(X)/M j > n 2 C, and 
M is hyper-real. To est,ablish the remaining inequality, we observe that Z(M) 
contains the set Y, which is of power n. Hence, from Lemma 3.2, 1 C(X)/M ] 5 2”. 

If we assume the generalized continuum hypot,hesis, t,hen in Theorem 4.4 
we can conClude tha,t / C/M 1 = 2’, and, in Theorem 4.8, that i C/M 1 = 2”‘; 
and in Corollary 4.9, we will have t,hat for every p 5 0, where N, = m, t,here 
exist,s a hyper-real ideal M wit.h 1 C/M / = &+I . 

5. Some open problems 

5.1. Is a non-denumerable real-closed field-in part,icular, if it is non-archi- 
medean-characterized by its type of order as an ordered set? (See the remarks 
at the close of Section 2.) 

5.2. Are all hyper-real fields of the same power isomorphic? (This would follow 
from Theorem 2.1 if every hyper-real field of power H, were an q--set (Defini- 
tion 1.2). On the other hand, this latter lvould imply that, no hyper-real field of 
singular cardinal can exist-is this true?) 

5.3. Let m denote the minimal cardinal associated with the hyper-real ideal 
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M (Definit’ion 3.1); is the field C/M necessarily of power > ttt? (We know this 
is true if m = No , or if X is discrete and m = c.) 

5.4. What,, if any, of t,he various results that are obtained using the con- 
tinuum hypot’hesis or its extensions, can be derived without t’he intervention of 
t’hese hypotheses? Specifically, are any t’wo real-closed fields-in particular, 
a,ny two hyper-real fields-that are ql-sets of power c, necessarily isomorphic? 
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