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REMARKS ON A THEOREM OF RAMSAY
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A graph G is called complete if any two of its vertices are connected by an edge, a
set of vertices of G are said to be independent if no two of them are connected by
an edge . A well known theorem of Ramsay1 states that an infinite graph either
contains an infinite complete subgraph or an infinite set of independent vertices .
He also proved the finite form of this theorem, namely that there exists a function
h(n) so that if G has h(n) or more vertices, then either G contains a complete graph
of n vertices, or a set of n independent points . Another way of formulating the same
theorem is to say that if the edges of a complete graph having h(n) vertices are
coloured red or blue, then there exists either a red, or a blue complete graph of n
vertices .

Define f(k,l) as the least integer so that every graph of f(k,l) vertices either contains
a complete graph of k vertices or contains a set of l independent points, f(k,l) has only
been determined for small values of k and 1 2 . Szekeres3 proved that

It seems likely that lim f(k,k)'Ik exists, but this has not yet been proved .
k=c

(1) implies that f(3,1) < (' z'), but up to the present it has not even been proved
that

lim f(3,1)fl = co .
r=W

21

(3)

In the present note I shall prove (3) and in fact considerably more ; namely that
there exists a constant cl > 0, so that

f(3,1) >
I1+c,

	

(4)
Thus at least for I = 3, (1) is not so very far from being best possible. I can not
decide whether f(3)) > c212 is true .
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f(k,l) < (kk1 1 2 ) ( 1 )

and there has been no substantial improvement of (1) up to the present time .
I4 proved that

2kI2 <f(k,k) (< (2k-1 2)) (2)
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The lower bound in (2) was obtained in some sense by an existence proof, by
using combinatorial-probabilistic arguments and not by actually constructing a graph
which satisfies 2k12 <f(k,k), on the other hand (4) will be proved by an expli-
cit construction.

Define g(k,1) as the least integer so that every graph having g(k,l) or more vertices
contains either a closed polygon of k or fewer vertices (we do not here require that
any two vertices of this polygon should be connected by an edge i .e. it does not
have to be a complete graph), or a set of I independent points . Clearly g(3,1) = j(3,1) .
In a subsequent paper I am going to prove that

c31' +c,lk< g(k, 1) and g(2k + 1, 1) < C5 1' +li(k+l),g(2k + 2, 1) < C51' +11(k+0

Further that for k > 3 there exists a graph of n vertices which contains no complete
graph of k vertices and no set of c6n 21(k +' ) log n independent points .

This implies by a simple computation that for a certain c7 > 0 (c7 independent
of k and 1)

f(k,l) > l (kk1 1 2 )c7

which shows that for no k and 1 can (1) be improved very much .
First we outline the proof of (3) . Let k be a large integer and consider the lattice

points in k dimensional space . The vertices of our graph G will be the lattice points
which are contained in a sphere of radius r and whose centre is the origin, r large .
It is well known that the number of lattice points in this sphere equals (1 + o (1))r k Vk
where Vk denotes the volume of the unit k dimensional unit sphere . Two vertices
of our graph are connected if their distance is greater than ri/3 . Clearly our graph
contains no triangle since a triangle inscribed in a circle of radius r must have at
least one of its sides < r-,/3 . Let S be a set of independent points of G. Then the
distance between any two points of S is '< r -,/3 , or the diameter of the convex hull
of S is <r,\13 and therefore by a well known theorems its volume is less than or
equal to the volume of the k dimensional sphere of radius r-/3 /2 i .e . (r,\/3 /2)k Vk .

Thus the number of lattice points of S is less than (1 + o(l)) (r-\/3/2)kVk which is
less than a times the number of vertices of G if k is sufficiently large . From this (3)
follows immediately .
Now we prove (4) . First we prove the following simple
Lemma: Let there be given a set of n lattice points in k dimensional space . Then

the number of unit cubes which contain at least one of these lattice points as vertices
is greater than n . Similarly if we have n unit cubes, the number of all the vertices
incident on it is greater then n .

A cube has 2k vertices and the number of unit cubes containing a given lattice
point as vertex is 2k . Consider all the unit cubes containing at least one of our
vertices . Their number is 2kn, clearly some of these cubes occur with a multiplicity
<2k (e.g . the unit cube farthest away from the origin), thus the number of these
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unit cubes is greater than n, which proves the first half of our lemma . The second
half is proved in the same way.
Consider now the sphere Sr of radius r = 100k' 1 2, and centre the origin, (instead

of 100 we could have chosen any sufficiently large number) . The vertices of G are
the lattice points in S r . Two points of G are connected if their distance is > r-v 3.
As stated before G contains no triangle . First we estimate from below the number
of vertices of G . Consider all the unit cubes which are entirely contained in Sr .
Since the diagonal of the unit cube has length k'/ 2 , these cubes cover the sphere of
radius 99k '12 and therefore the volume of these unit cubes - that is their number -
is greater than (T (u + 1) < uu+ '/e u for u > u0 )

k k12

	

k k/2	~k1i

	

1

	

k k/z

	

k/299 k V} = 99 k	> - 99,n (2e).V(k2 2 ) k

Therefore by our lemma the number of lattice points in Sr i .e . the number of vertices
of G is greater than

k 99k(2e;r)k/2 .

	

( 5)

Consider next the set of independent points of G . The distance between any two of
them is less than or equal to 100(3k)'/2 . Consider next the set of all unit cubes which
have a vertex among these points. The diameter of this set formed by these unit
cubes is at most k'/2(100.3'/ 2 +2), and therefore by a well known theorems its volume is
not greater then the volume of the sphere of radius k' 12(50 .3' 1z+ 1) <90k'/2, or the
number of these cubes is less than the volume of the sphere of radius 90k'/ 2 i.e .

k/2
90kkklr(k	

/2
	2 < 90k(2ev) kl2 (I'(u + 1) > u u/eu for u > u0 ) .

2

But by our lemma the number of independent points is less than the number of cubes .
thus finally the maximum number of independent points of G is less than

90k (2en) kl ` .

Now choose k to be the greatest integer for which

90k(2e7r)kr2 > 1.

	

(6)

Then the maximum number of independent points of G is < 1, and from (5) and (6)
we obtain by a simple calculation that the number of vertices of G is greater than
I"", which completes the proof of (4) .
A graph is called k-chromatic if its vertices can be numbered by k integers so

that no two vertices which have the same number are connected, and this can not be
done with k- I integers . As far as I know Tutte was the first to construct for every
k a finite k-chromatic graph which contains no triangle . Denote by T (k) the smallest



24 P. ERDÖS

	

Bull. Res . Counc . of Israel

integer n, for which there exists a k-chromatic graph of n vertices which does not
contain a triangle . It easily follows from (1) that T(k) > csk 2 , Tutte's upper bound
for T (k) was very large . Several authors independently rediscovered Tutte's result,
but all of them (as far as I know) obtained very large upper bounds (g9(k) < c9k) .
It Is easy to see that (4) implies T (k) < kd10 .
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