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1. Summary. 

Throughout this paper, the symbol f denotes a polynomial 

(1) f (2) = iil[ (2 - 22,) 
VIZ I 

(written in the form f(x) = n (x -x,), when only real variables are under 

consideration). We are concerned primarily with the point set B = E (f) , 

defined as the set where the inequality 1 f (z)I < 1 is satisfied. 

In Section 2, we determine the infimum of the length of rhe longest 

interval in the se1 I? nI+ (L denotes the real axis) for the case where the 

X, lie on the interval I = I-1 , I] on L. Section 3 deals with the diameter 

of the set E nL, under the more general hypothesis that the x7, lie on the 

interval I, = [-I , Y] . 

In Section 4, we study the two-dimensional measure of the set E, 

under the restriction that all the 2, lie in the closute D of the unit disk D. 

We use a theorem of G. R. MacLane to show that the measure 1 B (f)I 

can be made arbitrarily small. We also deal briefly with the relation between 

the transfinite diameter of a closed set F and the infimum of II?(f) 1, 

under the hypothesis that all 2, lie in F. 

Section 5 is devoted to the problem of finding the greatest number 

of components thar the set E can have when the .z,) are required to lie 
- 

in D; Section 4 deals with the sum of the diameters of the components 

of E, under the hypothesis that all z\. lie in the disk D, : z i c; T. 

Section 7 concerns polynomials (1) for which the set B is connected. 

In Section 8, we consider two problems concerning the convexity of E and 

of the components of E, respectively. And in Section 9, we prove a theorem 
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on polynomials (1) whose maximum modulus on the unit circle is greater 

than (l+c)‘l, where c denotes a positive constant {independent of f). 

Many unsolved problems closely related to our theorems are stated 

in the text. 

2. The longest interval of EnL (all x,, on I). 

If all the xy lie on the interval I = [-1 , 11, then the inequality 

lEnI 2 1 is satisfied [2, p. 9571 ; equality holds only in the cases 

f (x) = (x & 1)” I Moreover, Steinberg and others [7] have shown that the 

set E contains one of the two open halves (-1 ) 0) and (0 , 1) of 1. 

The original proofs of the inequality and of the Steinberg extension were 

indirect, in the sense that they did not identify any particular segment of 

the interval I as belonging to the set E. We now give a further extension 

of the result. Our proof selects one of the open halves of 1 and shows 

thar it is contained in E. 

Theorem 1. Let the zeros xv of the polynomial (I) lie 

in 1, and let their centroid ?tlie in [0, I]. Then the set 

Ent contains an interval J which contains the open 

interval (0,l); moreover, the interval J contains at least 

?z2/2 of the x1., and ] Jl>fS. On the other hand, the set E 

does not meet the interval (-m , --1/T]. 

Before giving our proof, we remark that one might reasonably seek 

an identification, in terms other than the centroid of the xy , of an open 

half of the interval 1 which lies in E ; for E may also contain that half 

of I which does not contain the centroid of the zeros. In particular, one 

is tempted to conjecture that I? always contains that half of 1 which contains 

at least half of the xv ; but the example f (x) = (X - 1) (X -t- I/4)* liquidates 

this proposition. 

Our proof of the first part of the theorem depends on the simple 

fact that the function 

is convex. Since 0 2 xs 1, we see at once that F (1) = 1 -x2 1 ; also, 

since the xv lie in 1, F (0) 2 1. Simple considerations show that if 
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F (0) = I = F (1) , 

then f has the form (x2 - l)fi . In this case, the theorem is trivial; we 

note, incidentally, that here the set En15 consists of two open intervals, 

each of length 1/F. Throughout the remainder of the proof, we assume 

that f is not of the form (x2 - 1)“. 

The convexity of F implies that F (,x)< 1 throughout (0 , 1). If the 

K, are ordered so that XI 2 ~2 2 . . . 2 x,, then F (x) assumes its minimum 

at a point x = ~1, whose index satisfies the inequality lz>n/~, since 

F’ (x) = [M (x) - N (~)]/a, 

where M(X) and N(X) denote the number of xy lying to the left and to 

the right of X, respectively. The inequality between the geometric and the 

arithmetic means now gives the result that E contains the intervals (O , 1) 

and [XJ~ , 1). The component of En L which contains these two intervals 

will henceforth be called -1. 

Nexr we show that I./I > 1/g Let J contain the zeros x1, ~2, . . . . xk, 

where k >= ?z >~2/2, and let X* be the centtoid of these zeros. Let 

P(x) = fi (x-xx,), fl(X)=(X-Y)hP(X). 

“Gk+t 

Since x is the centroid of the zeros of ft as well as of the zeros of f, 

the interval J1 corresponding to the polynomial fl again contains the 

interval (0 , 1). For any real number x which lies outside the interval J, 

the relation 

whence if(~)’ 2 If, (x)1 . It follows that J> Jj , and hence that J 2 i-J1 . 

Let f2 (x) = (?G - l)h P Cx). Th en the centroid of the zeros of fz can 

not lie to the left of < and therefore the interval JT corresponding to f2 
contains the interval (0 , 1). To see that 1 J1 12 I Jz] , we note that the 

effect on I J1 I of moving the k zeros at x to 1 is the same as would 

have been the effect of moving all zeros of the factor P to the left through 
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a distance 1 -x. Now 

f 2 Iv% = (11’2 - 1y P (1/F) 2 (CG- l)“(f%- lyk< 1, 

and it follows that Jz contains the interval (0, VT] . 

To prove that the set E (f) does nor meet the interval (--=o , -1/y], 

it is sufficient to prove that ] f(-I/?) 12 1. We assert that, for 1x1 > 1, 

(2) If(~)Irl~-lI”l~+ll”-“, 

where h/rt = (1 + &2, that is, where the zeros of the “polynomial” on the 

right have the same centroid as the zeros of f. To see this, we note that 

rhe function v = log u is concave, and we consider any fixed value x (Ix: > 1). 

Let (% , y) be the centroid of $1 unit masses placed at the points 

([x-x& logIn--x,.1) f h o t e z&v-plane, and let (a , V) denote the centroid 

of two masses of A and $2 - 1. units placed at the points (:x-1(, lo&x-11) 
- 

and (IX +- 11, log 1% + l,), respectiveIy. Then ,?I = u, by the definition of h, 

and therefore q 2 v ; that is, 1 Vi - 
12 c ’ log x-x,,I 2 +[lJogIx-l I+(~+-h)~oglM- Lll. 

YEl 
The inequality (2) is hereby established. Since 12fl/2, we conclude that 

If (--l/F)] 2 (1./T + 1)” (l/2--- ~>a-~ 2 I , and the proof of Theorem 1 

is complete. 

For a discussion of the more general problem where the x1, lie in 

the interval 1, = [-Y , I], see [3]. 

3. The diameter of EnL (all x, on I,). 

We now turn our attention to the quantity diam (EnL), for the case 

where the zeros of f lie on the interval 1,. In particular, we consider the 

supremum 6 (Y) of this quantity. 

Theorem 2. 

S(Y) = 21/l fr? (09x3/4), 

8 (Y) .= 1 + 2v (3/4 s r< x). 
__- 

We nore that the value 21/l + 9 is attained by ]E nL ] , in the case 

f = x2 - Y’ ; the value 1 + 2r is approached in the case f = (x-r)fi (x4-r) 

(712 large). We also note that the theorem remains valid if the zeros of f 

are restricted merely to the disk fiV (see the proof of Theorem 9). 
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In proving our theorem, it is sufficient to consider the case where 

ali zeros of f lie at the two endpoints of I,; that is, we need only consider 

the functions 

g(x) = IX-7p 1x+71, 

where wz denotes a positive real number. Corresponding to any other case, 

we can write an inequality analogous to (2). 

To deal with the first part of the theorem, we proceed to show that 

for 0 2 P 5 s/4 the diameter of E (g)n L is greatest when 11% = 1. 

Let the numbers LE and b denote the lefr and right endpoints of 

E (g)n L, and let 

a = s - l/F+- , b = t + j/l + I*. 
~I_ 

Then, with the notation R = Y $ 1/l + 7’) we have the relations 

g(a) = (R-s)‘n(R-l-s) = I, 

g(b)=(R-‘+t)‘“(R+t)= 1. 

The quantities s = s (no) and t = t(m) are increasing functions of m, and we 

wish to show that s >t whenever m > 1. We shall do this by defining two 

functions W(S) and x (s), by means of the equations 

(R - s)“‘:s) (R-1 _ s) = 1 , 

(R-’ + s)“@) (R + s) = 1 ; 

with this definition, the relations s(m) >t (rpa) and 12 {s) > ‘YIZ (s) are equivalent. 

The equations defining rpt (s) and n(s) can be written in the form 

m(s) = 
-log (R-1 - s) 

log (R - s) 
(O~s<%=min[N-1 ,I?-‘]), 

‘og (R + 4 ,& (s) - 
-1ogFq 

(O~s<sl= 1 -R-l). 

We note that SI 5 SO, since 1 <R 5 2 . As s varies from 0 to SU, the 

function WI(S) increases from 1 to 03 ; similarly, as s varies from 0 to sl, 

the function n(s), increases from 1 to 0~. Therefore we need only show 

that 72 (s) > m (s) whenever 0 < s < SI . 

We write 

1~ (s) = - log (R- ’ - s) log (R - s) [G (s) - m (s)] 

= log (Ii + s) log (R - s) - log (R-l 4 s) log (R-l - s) . 
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For [fb[ <l, 

[log (1 + 2s) log (1 - I&)]’ = ‘““1’;; U, - lo”,“; U, , 

and therefore 

where 

It follows that 

where 

log(l +21)1og(1 -U) = - 
m aQ 2d2Q 

c 
- 

p=, fJ 
, 

al, = 1 -f+f-,** 4.1 
2p--1 . 

‘1’ (s) = 
m -4 

c 
2 s*fi 

pz1 P ’ 

i4, = ap (R2*- R-2fi) - (log R) (R@ f R-2fi) (p = 1, 2, . ..). 

The expansion is valid for all values s in the range 0 < S< sl = 1 - R-’ , 

since for such values the inequalities o<sR-‘<sR<R - 1 5 1 hold. 

Clearly, if we can show that all the coefficients -4, are positive, it will 

follow that q(s) >O, and hence that $2 (s) >m (s) . 

Now the inequality A, >O is equivalent to the condition 

(3) 
R’P- 1 

b(R)= ap R4P+1 - logR>o. 

To see that (3) holds, we note first that 

Rk’, (W = 
8afi pRQ 

(R’Q + 1)2 - 1 ; 

the right member is a decreasing function of R, for R> 1, and therefore 

k,(R) has no relative minimum in the interval I < R< 2, Since ka (I) = 0, 

the inequality (3) will be established for the entire range, when we have 

shown that k, (2) >0 . But 

a,-log2 b-J---- 
1 1 

2P 2p + 1 = 213(2p+l)’ 

and therefore 

J%(2)=% ;+2-4p- i 
-2-Q 

1 
1 

1 + a+-log2 > -2’-4p + 
21)(2p+l) > O‘ 

This establishes the inequality (3) hence the facts that 11 (s) >O in the 
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range O<S<SI , that ?r(s) >%(s) in this range, and that 
__- 

diam [E(g)fiL] < 2 1/l +r2 

if m>l. From this follows the first part of the theorem. 

To prove the second part of the theorem we consider, as before, the 

function 6 = ] x - Y I”‘] x + 71 (m > 0). Let s be a positive number such that 

g(r+S) = 1. Th en s”* (27+s) = 1, and therefore m = - log (2rfs) / log s . 

Again, it will be convenient to consider 112 as a function of s. We 

shall show that, for Y 2 3/4, 

g [7 + s - (1 + 291 2 1 , 

and from this the desired result will follow immediately. 

The last inequality can be written in the form 

log (2v+s) 
(1+27--s) --logs (l-S)& 1. 

Since 0 <s< 1 and Y 2 3/4, the left member of the inequality is a strictly 

increasing function of Y. Since the proof of the first part of the theorem 

has established the inequality (for each fixed value s in 0 <S< 1) in the 

case Y = 3/4, the inequality holds if 7 2 3/4 ; we note that equality cannot 

occur if ~3 3/4. This completes the proof. 

The remainder of this section is devoted to a subject which appears 

to be more difficult : the question of the measure 1 EnL 1 . 

P r o b 1 e m 1. To determine the supremum and the infimum of the 

quantity IEnL I, under the hypothesis that the xv lie on the interval I, 

(if no restriction is placed on the x,, , then the supremum is 4; see 

[6, p. 2291). The following theorem suggests the conjecture that if all the 

x,, lie on I, then (EnL l<2VrF. 

Theorem 3. If all the zeros of (1) lie at the endpoints 

of I, then lEflL1521/2. 

The case where all the xp lie at one endpoint of I is trivial, like- 

wise the case where an equal number of xy lie at each endpoint. It is 

therefore sufficient to consider the function g(x) = 1% + 1 I ] x - 11 m, for 

m> 1 . Clearly the set E (g)nL has exactly two components, and since 

g(x) takes the value 1 at 0, increases in the interval [-1 , -(m-l)/(m+l)], 

and decreases in the remainder of I, the left-hand component of E has 
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length less than I/*?--- (?rr - 1) /(a@ f 1) (see Theorem 1). Theorem 3 wiil 

therefore be proved when we have shown that 

Now 

and since the first factor is greater than I/?-l- 1 , it suffices to show that 

the second factor is not less than 1/2-- 1. 

The second factor has the value I/%-- I , when .nt. = 1 . Moreover, 

its logarithm Iz(m) has the derivatives 

h’ (m) = log 
( 
l/T -- -2-- 

) 
+ ml/z 

m -t 1 (m + I) (m -iTqq ’ 

h”(m) = 2 (VrZ- 1) (m - 1/T) 

(m -I- 1)2 (m + 1 - 1/T)’ ’ 

It follows from the last equation that It’(m) assumes its minimum for 

m>l at m=1/?; and . since Ii (VT) = log (2 - 1G) + 2 (Vii - 1) > 0 , 

it follows that h(m) is an increasing function, for GZ > 1 ; therefore 

t@@t > 1/y-- 1, for m > 1. This concludes the proof of the theorem. 

The infimum of the quantity ] .?J nL 1, for the polynomials f with 

all xy on 1, is less than 2 ; this can be seen from the example (X-i-1) (~-1)~ 

(m 2_ 3). Careful computations show that the i&mum can not be approached 

by polynomials of the form (X - l)& (X $ l>,,. 

We also note that if the zeros of f are merely required to lie on 

lr (Y 2 2), then the infimum of ] E (f)nL) is zero. To see this, it is 

sufficient to consider the Tchebycheff polynomial 2T*(~/2), and to move 

each of its zeros which Iies outside of Iz-~ to the nearer of the two end- 

points of Z’: . For Y > 2, the minimum value of ] E f7L I for fixed N is 

0 ((2/r)‘); for r = 2, we conjecture that IE~LI > a-‘. 

4. The measure of E (all zV in 0). 

In an earlier paper [2, p. 9581, it was stated that if the zV lie in 

the closure of the unit disk D, then the area of the set E(f) exceeds a 

certain positive universal constant. This statement was based on an erroneous 
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argument (never published) by Mr. Erod. A recent result of G. R. MacLane 

[5, Theorem A] shows that the statement is false. For MacLane’s theorem 

implies that if A is any simply connected domain in D whose closure meets 

neither the origin nor the unit circle C, then there exists an integer 

?JO = IZO (A) such that, for each n > nO, some function (1) with all 2%’ on C 

satisfies throughout A the condition [ f (z) ] > 2 . Since the area of A can 

be made arbitrarily close to X, it follows that inf IEnD] = 0, for the 

class of functions (1) with all zD on C. We shall now establish an inequaliy 

which extends this result slightly. 

Theorem 4. If all z,, lie in D, then iE1$4(n,EnD111/2. 

Corollary. For the class of functions (1) with all ZY on C, 

inf] E I = o . 

Suppose that f hds all its zeros in 0. Then the set E does not 

meet the set ] Z] > 2 . Also, it is geometrically clear that 

lfW)l < lfN2 -99~d611 
when O<Y< 1. Now let 

w (2) = w (Y@) = (2 - Y) et* ) 

and let dA, and dA, denote differentials of area in the w-plane and in the 

z-plane, respectively. Then 

dA, = FdA, , 

Since the coefficient of dA, is a decreasing function of Y, it follows that 

if B denotes a variable region in D, of fixed area S,, then the area S, 

of its image w(B) is at a maximum if B is the disk I a I <(SZ/~)‘/‘. 

In this extreme case, 

and the theorem follows immediately. 

Problem 2. To determine the polynomials (1) whose zeros lie in 

fi and which have the property that I E I takes on its least value o,, for 

the fixed degree n. Also, to obtain an estimate of a,,; for example, does 

there exist a positive constant c such that a,, >n+? We note that the 
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problem of maximizing the quantity ] E ] has been solved : even without 

any restriction on the distribution of the z,, the inequality [E 1 5 n: holds, 

and the supremum is attained only when the zy coincide (see Pcilya [6, p. 2801). 

We also call attention to a theorem of H. Cartan [i, p. 2731 : the set E 

can be covered with a family of at most 1~ circular disks the sum of whose 

radii is less than 2~ 

Pro b 1 e m 3. For the polynomials (1) with all zy in 0, let ,o, denote 

the radius of the largest disk which is necessarily contained in E. What 

is the asymptotic behavior of ,o, ? Does there exist a positive constant c 

such that pn >c/n ? The example f(z) == 2” - I shows that the constant c 

can not be greater than ~1.2. 

Instead of requiring that the z Y lie in 0, we may require that they 

lie on the unit circle C, and we may then ask after the one-dimensional 

measure of the set Enc. 

Theorem 5. For a polynomial (1) with all zV on C, the 

relation o<(E~C(<ZJC holds, and the constants 0 and 2~ 

are the best possible. 

We note first that ] E nCl can not vanish, since (I) has at least 

one zero on C. Also, IE n C 1 can not have the value 2n, since this would 

imply that I f(z) I ta es its maximum value for D at the origin. k 

TO show that IEnC 1 can be made arbitrarily small, we choose a 

positive number E, and we consider the auxiliary function g, (2) = zn - 1 . 

If we modify g,, by moving to z = 1 all of its zeros zV for which 

1 arg z, /<a, we obtain the function 

where the asterisk indicates that the product is to be taken over all indices 

corresponding to zeros that have been moved. Now, for 0 < U< 3 2 x, 

I ei* - 1 sin S/2 -___ = 
&6 _ era sin (8 - Cl)/2 ’ 

whence 

Iei*-l12 l- cos B 
2 

2 
-Iei6 -&+aI j,n,,--laI = cosu - cos 8 1 i- cos cl- . 
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This implies that as 8 -f m, 1 n* I+ 130 uniformly on C, ourside of the 

arc IargZj < E. Therefore lim s.~p~+~ IE (f.)nC 1 5 2~ , and since F is 

arbitrary, our assertion is proved. 

That 1 E nC 1 can be made arbitrarily close to 2rc can be proved 

similarly : the function g*(z) is modified by moving each of its zeros 2, 

with 0 < 1 arg~,I < E to the nearer one of the two points &. 

The problems considered in this section can be generalized by replacing 

the disk D and the circle C by the disk D, and the circle C, . An even 

more general point of view would simply require the zeros to lie on a 

fixed closed set F, In this connection, we prove the following result. 

Theorem 6. Let F be a closed set of transfinite dia- 

meter less than 1. Then there exists a positive number 

p(F) such that, for every polynomial (I) whose zeros lie 

in F, the set E(f) contains a disk of radius ,0(F). 

Suppose that F is a point set of transfinite .diameter less than 1 

(see [4, Sections 2 and 31). Then there exists a finite point set {fj/y (tie F) 

such that, for 8 (2) = ny (Z - tj), the inequality 1 g(z) I < 1 holds everywhere 

in F. Moreover, there exists a number ,o > o such that n I z - sjl < 1 for 

all B in F, whenever each point sj lies in the respective disk Hj of radius 

,o and center tj . 

Now let f(z) be any polynomial (1) whose zeros lie in the set F. 

On the boundary of each of the disks Hi, choose a point sf at which 

If @)I takes its maximum telative to Rj. Since 

ff f (9) = (--1P fi [(zv -s*) (2, - s*) ... (2, _ &$a)] , 
j=l I'=1 

and since the right member has modulus at most 1, at least one of the 

quantities f (s!) has modulus at most 1. It follows that I f (z)l < 1 thtough- 

out one of the disks Hi, as was to be proved. 

Pro b 1 em 4. Let F be a closed infinite point set, and let p(F) denote 

the infimum of I E(f)I, for polynomials (I) with all zeros in F. Is p(F) 

determined by the transfinite diameter of F ? In particular, is p(F) equal 

to 0 whenever the transfinite diameter of F is greater than or equal to 1 ? 

For the case where F is a line segment or a circular disk, the result 
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follows from the consideration of Tchebycheff polynomials in conjunction 

with Theorem 8, and from Theorem 4, respectively. 

5. The number of components of E. 

From Theorem 1 we see at once that if all the Z, lie on the interval 

1, then the number of components of E is at most 1 f [%,/2]. If the z,, 

are restricted merely to the disk 0, then the number of components of E 
may be equal to n (example: z” + 1) ; but the number of components of 

- 
the closure E is at most ‘YG - 1 (see [8)>. We shall now show that this 

result can not be improved, at Ieast when it is sufficiently large. 

Theorem 7. If PZ is sufficiently large and 

then the set E(P,) has iz-1 components. 

The polynomial-P, is obtained from the polynomial .P + 1 by replacing 

the two zeros nearest the point z = 1 by two zeros at z * 1. To show that 

it has the required property, we shall divide the plane into ?Z - I domains 

in such a way that each domain contains one of the zeros of P,, while 

1 P, (.z)I > 1 everywhere on the boundaries of the domains except at the 

origin. Since P’, (0) # 0, the origin is not a multiple point of the Iemniscare 

IPI, (z)I = I, and it will follow that E (P,,) has it - 1 componenrs. 

For each fixed index 12, we dissect the plane by means of the arcs 

and the $11 1 rays 

R,, : 2 = YPiV~‘~ (v = 1, 2, ,.., a - 1)) 

with the proviso that for those rays R ,Iy which lie in the open right-hand 

plane, the segment between the origin and the first of the curves I-,, and T”” 

which is encountered shall be deleted (see Figure 1). Clearly, it will be 

sufficient to deal with the range O< 8 2 n. 
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Figure 1. The dissection of the plane for PZ = 18. 

For convenience, we write 

Then 

To prove our theorem, we shall show that the inequality 

(4) IQ&>1 < Iz”+ 1 I 

holds everywhere on T,, , I?,, and the segments R,,, except at the origin. 

For r 30, 1 Q,, (rei*) 1 2 = 1 - ZY(P,, (r , a), where 

(5) 
2 (1 - cos x/72) [r (1 + cos +z> - (1 + 1”) cos a] 

CPnb,N=--- 
(1 - 2r cos \‘f f ?)? 

We begin with the rays R,,, on which cos 8 2 0, that is, with the 

rays in the closed left half-plane. Here cpn (V , 8) > o , and therefore 
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1 Q,,(Z) 12< 1 . Since Z, + 1 = I” $ 1, the inequality (4) holds for the rays 

R, under consideration. 

Next we deal with the curves rn and I”%. For 0 <Y < 1, the inequality 

1 Z” + 1 I’> 1 - 2~” is satisfied, and therefore (4) holds provided 

(6) cp, (Y ) 8) > P-l . 

We shall now show that (6) is satisfied on rlt. Since the denominator 

in the right member of (5) 1s sin* 8, and since the quantity in brackets 

in the numerator is 

COSB(COS+-COs’9) = cos~(sin21i-2~in’~), 

(6) will be established when we have shown that 

4 sin2 e 
i 
sin2 8 - 2 sin’-& 

1 
> cosn+ 9 I 

Since 2n-‘13 6 8 2 x/2, the left member is greater than n-‘i3 and the right 

member less than exp(-n”3), for all sufficiently large n; therefore (6) is 

established for all points on I?, . 

To estimate the value of ‘pll on C’, , we note that the denominator 

in (5) has the value 

I (1 - y)’ + 4Y sin’ + 2 
I 

< $ a* . 

The numerator has the value 

2(l--cos;)~(l+cos~-2cosii) - (l-Y)%OSit) 

= *sin’.(il-+) [&in’+- 2sin2-$j - Tcosil) 

for 1z >n, . It follows that rp,, (Y , 19) > (1 - E) .mz/5n2 r’t2. On the other hand, 

<(l+E) I-$ 
( I 

n 
~a---i < (1 + &)r)+8~2 . 

Therefore (6) is satisfied provided 23r2/5n2 82>e--n6/2. With the notation 

+~a = 2x1, this relation takes the form 11 10Jti2 e-xx. Since this inequality 

holds when J. = 1, and since the right member decreases monotonically when 

h >2/5~, the inequality (6) holds everywhere on I+,,, for sufficiently large n. 
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It remains only to deal with the rays R,,, in the right half-plane, 

Let ro ei6 be the initial point of such a ray. Then cpn (~0 , 8) >Y:-’ >O , 

since the point lies on one of the two curves I, and I’, . Also, it is easily 

seen from (5) that (P,, (1 , 8) >O. Since the expression in brackets in (5) 

is a quadratic function of Y, and since the coefficient of V* is negative, it 

follows that cpn (r , 8) > 0 for ~0 5 I 2 1. Therefore 1 Qn (z) 1 < 1, and hence 

iP,(z)/>i on R,,nB. Geometrical considerations show that 1 P,(z) 1 

increases as z moves from C to 03 along R,, . This concludes the proof. 

Remarks made at the beginning of this section show that if all zeros 

of (1) lie in D, then one component of E contains at least two zeros. 

P r o b 1 e m 5. If all the Z, lie in D, does there exist a path of length 

less than 2 which lies in E and joins two of the z,? 

Pro b 1 em 6. Suppose that F is a closed set of transfinite diameter 1, 

and that F is not contained in any closed disk of radius 1. Can the number 

of components of E (all 2, E F) be n? If the transfinite diameter of F 

is less than 1, does there exist a positive constant c (depending on F, 

or perhaps only on the transfinite diameter of F) such that E has at most 

(1 - C)~Z components, when n is large? 

6. The sum of the diameters of the components of E. 

The example f(z) = Z” - 1 shows that the sum of the diameters of 

the components of E can be as large as ~2’1”; we conjecture that it can 

not be larger, for polynomials (1) of degree IZ. 

If we make the restriction that the zeros of f must lie in the disk 

&, then, for IZ 2 3, the maximum S (I , 12) of the sum of the diameters 

of the componenrs of E appears to be a discontinuous function of Y, at 

r=1. In order to gain some insight into the matter, we study the 

supremum S(r) of the quantities S (r , n) (a = 1, 2, . ..). We begin with a 

preliminary proposition. 

Theorem 8. Let f(z)=llff(z -x8), where the xy are real 

and not all equal; and suppose that c~ is a positive 

number such that If(a)/ = If(- Then lf(~e~*)l >lf(la)l, 

except when sin$=o. 
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Corollary. If all the zy are real, then the sum of the 

diameters of the components of E is IEnLI. 

In proving the theorem, it is clearly sufficient to deal with the range 

O<B<n. Let 

H(8) = 2 1% I f wif> 1 = i: log (a2 + xi - 2m, cos 8) . 

Then H' (8) = 2~ sin 8 XX, / 1 ae’* - X, j* . The quantity 1 a@ - X, I is an 

increasing or decreasing function of 8 (0< 8< X) according as xv is positive 

or negative. In either case, X, / / a@- x, j2 is a decreasing function of 8, 

and the sum in our expression for H’(8) is a decreasing function of 8. 

It follows that H (8) has no relative minimum in the interval 0 < 8< TC , 

and the theorem is proved. 

Theorem 9. The function S(Y) has the following proper- 

ties: if OI,rs11/2, then S(~)=22/rl; if E>O and b is suf- 

ficiently small, then S(l--)>(1/2-&)(I-@) logl/b. 

If all the &, lie in the disk D,(r 2 l/2), then the set E conrains 

the disk D~,z, and elementary geometrical considerations show further that 

E is a star-shaped domain. Therefore the sum of the diameters of the 

components reduces to the diameter of E. Suppose now that for a fixed 

degree n the z, are distributed in such a way as to maximize the diameter 

of E. Let 1 be a Iine containing a line segment of maximal length with 

endpoints in E, Then the zy a 11 lie on h, since otherwise the diameter of E 

could be increased by replacing each z, by its orthogonal projection on 1. 

The first property now follows from Theorem 2. 

Next we consider the auxiliary polynomial Q(W) = (ze/* - s*)q(tt + s), 

where 4 is a positive integer, and where 0 <S < 1. For -s < w< s, 

loglQ(@l = m+ 1)&s + fllog 1 ( -$) + log(l+q; 

therefore the relation 

= (2q + 1)Iogs 

holds, and therefore 

log Q +- 
I!) 

+Uog(l-+) +log(l+-+) 

> c,qlogs + $ 
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when 4 is su6ciently large [we use the symbols ci(i = 1, 2, . ..) to 

denote universa1 positive constants]. Since the right member of the last 

inequality is o when s = exp (-G/@) it follows, that with this choice of 

s the inequality IQ (w)i > 1 hoIds everywhere on the vertical Iine Re w = s/zq. 

On the other hand, 

i i 
+- ’ log Q 

1 
i = (2q+ 1)logs c qlog 1 ( +) -f- lo+-+) 

< 
-$++-=07 

and therefore ] Q (w)] < 1 in the interval [s/q, S] . In other words, the 

set E (Q) has a component which contains the segment [s/q , a] on the real 

axis and does not meet the line Re w = s/2q. 

Now let f(z) = Q (2”). Th en the zeros of f lie on the circle 

-C3 IzI=r= s’P= exp- 
nq2 

Also, the set E(f) contains n line segments, each in a separate component, 

and each of length greater than P (1 - q-‘“), That is, 

S [expsj L= 12 bxpZ$) (1 -q-l/“). 

If we choose ?Z = [log q] and write 

expr$= l-bb,=l 
nq 

--b, 

we obtain the result 

S (1 - 6) > [log q] (1 - b) 
( 

1 - exp --logq . 

[log 41 1 
Now bq2 [log q] + CQ as q + m, and therefore 

logq = 
( ) 
++ll log& 

where q + 0 as q j. =. It follows that if 4 is sufficiently large, then 

S(1 -b) > +-cc (I -e-‘)log-;, 
i i 

b 
for the case where b is one of the numbers b, . Since F + 1 as q+*, 

4 
the proof is complete. 
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Pro b 1 em 7. If all the zeros of f lie in D,(r< 2), does the set E 

have a component with diameter greater than 2 -Y? 

Pro b I em 8. Let E (f) have the components Ej (j = I, 2, . . . . k) of 

diameters dj . Let Aj = max (0, dj - l), and let A(f) = ZAi\, . IS A(f) 

bounded, in the space of polynomials (1) ? 

Pro b 1 em 9. Let N(f) denote the number of components of E(f) 

which have diameter greater than 1, and Iet N, be the greatest value which 

N(f) can assume, for polynomials (1) of degree n with all zl, in D. Is the 

sequence {W, 1 bounded ? 

Pro bl e m 10. If f is of the form (l), does there exist a straight 

line h such that the projection of E on A has measure at most 2 ? If zo 
- - 

is a point of E lying on a line of support of E, does E contain a point z 

such that [Z-ZZO[ >= 2? 

Pro b 1 e m 11. Let A (f) denote the maximum of the lengths 

Al , IL, , ..-, 2.k of the boundaries of the components El, Ez , . . . , Ek of E (f). 

What is the infimum of A(f), for all f whose zeros lie in D ? 

Problem 12. For fixed degree n of f, is the length of the 

lemniscate 1 f (z)[ = 1 greatest in the case where f(z) = z” - 1 ? Is the 

length at least 2n, if E is connected? What is the infimum of the length 

for polynomials (1) whose zeros all lie in D ? 

1. Implications of connectedness of E. 

A polynomial (1) will be called a K-polynomial provided the set E 

is connected, a K-polynomial provided the set E is connected. It is easily 

seen that f is a K-polynomial if and only if If (z) 1 < 1 at all zeros off’, 

and a K-polynomial if and only if I f (z) I g 1 at alI zeros of f’ ; for if 

/ f(z) I< A at all zeros of f’, then none of the lemniscates 

if(z)i = B (BZA) 

has a multiple point, and conversely. 

We denote by K, (g,,) the class of all K-polynomials (&-polynomials) 

of degree ~1 ; by Ki we denote the class of all polynomials in l?,, for 

which 1 f (z)I = I at all zeros of f’. It is clear that K,>K,J, K,>I<*,, 
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and, for n 2 2, K,, nhr,: is empty. By ci;, (f) we denote the discriminant 

of f. The following theorem establishes a conjecture which was raised by 

33. Netanyahu and proved, independently, by W. H. Fuchs (oral communication). 

Theorem 10. If ~EK, (n>l), then (Ci;,(f)/<n”; if ffz,$, 

then ILD(f)l In’, and the equality holds if and only if 

fEKE. 

To prove the theorem, we write f’ in the form 

n-1 

f’(z) = 12 n (2 -z’,) . 
Then 

Remark. A similar argument shows that if I!? has 12 components, 

then I&?(f)l>n”. 

P r o b 1 e m 13. For a fixed value of n, what is the maximum value 

of /a( in the space of polynomials (1) with ,z~--zz,, 2 2 (I 2 F<v~-)? 

IS the maximum achieved if the z, are the vertices of a regular B-gon 

whose greatest diagonal has length 2 ? 

Pro b 1 em 14. if f is a K-polynomial, is E contained in a disk of 

radius 2, and can the center of the disk be placed at the centroid of the 

zeros ? 

Pro b 1 em 15. If f is a F-polynomial, what are the least possibIe 

diameter and the greatest possible width of E ? We conjecture that the 

answer is 2 in both cases (compare Problem 10). What can be said of the 

sum (or the product) of the diameter and the width? 

8. Two problems on convexity. 

Theorem 11. If the z, lie in a disk of radius 

sin n/8 
‘O = .l -t sin n/8 ’ 

then the set E is convex. 

Suppose that the ZV lie in the disk fir, and let r denote the lemnis- 

cate 1 f (2) 1 = 1 . We shall show that if r s ~0, then I’ can not have a 

point of inflection. 
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Suppose that .Z is a point of inflection of r, and that T is the directed 

tangent to IT at Z. For v = I, 2, . . . . $5, let ,oY = 1 z -z,I , and let oy denote 

the angle berween the directed line zv z and T. We denote by ,P = zw (t) 

the point O,I I‘ which lies at a directed distance t from Z, and we proceed 

to obtain estimates on the distances / Z* - zy / . 

Since the curve r is analytic and has curvature 0 at Z, the distance 

between Z* and the point where the segment Z,Z* (possibly extended) meets 

T is 0 (t’) . It follows that 

I 2% - z* ) = (0, + 2tp,ros a,, + t2p + 0 [t’) 

(If the point zy happens to lie on T, the point of intersection used in this 

argument is not defined ; but in this case, sin aY = 0, and the estimate on 

I .z, - Z* 1 is obviously valid.) Since 

n 

II 
,o,e = 1 , 

I’=, 

it follows further that 

IfWI = ri( t I+- lay cos ay + -$ sin2 aI, + 0 (t3) 

I’=1 1 Y I 

R 

Y-’ 

n 

=1+t 
c Ic 

sin2 CL, 
-+ 

c 

cos uy CDS a, 

w; 1 + 0 p). Y YZl YCl 
l$J<VQ 

PP Pv 
But since If 1 is constant on r, the coefficient of t in the last member 

is 0; and this implies, in turn, that the coefkient of t2 can be written in 

the form 

Also, it is geometrically obvious that 1 z/ 2 1 - Y, and hence that 

7 
JUa-“v/~2sin-‘- 

1-Y 

for all p and Y. Since the coefficient of t is 0, this implies that each of 

the angles Zfl, differs from n by less than 4 sin-‘* . We deduce that if 
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P 
sin-’ - 

1-Y 
S-$3 

the coefficient of t’ in the expansion of If (2’) 1 is positive. This contradicts 

the relation If (2”) 1 = 1, for small values of t, and the theorem is proved. 

The example f(z) = (z - r)* (z f I) (m large) shows that Theorem 11 

does not remain true if r. is replaced by a constant greater than 112. 

The following question, raised by H. Grunsky (private communication), 

is related to our theorem. 

P r o b 1 em lb. Let ~x,~)~,~ be a set of distinct points, and let 

w 

f (2) = n (z - +Jk.u , 

where the k, are positive integers. Let c be a constant small enough so 

that the lemniscate [ f (z)I = c consists of VB distinct loops. Are all the 

loops convex ? 

9. Polynomials whose maximum modulus on C is large. 

Theorem 12. For any positive constant c, let ‘i@(c) 

denote the class of polynomials (I) whose zeros lie in b 

and whose maximum modulus on C is greater than (I+c)“. 

Then there exist two constants c~==c,(c)<I and c~=c~(c)>o 

such that, for each f in p(c), the inequality If(z)l<c: 

holds on a subset of D whose measure is at least Q. 

Let c be a positive constant for which the theorem is false (without 

loss of generality, we may assume that C< 4). Then there exists a sequence 

(fi(~)] cfi of degree mi) such that I f j (1) I > (1 + c)“; and such that the 

measure of the set in D where ]jj (z) ) < cl”i tends to 0 as j + 00, for 

every CI L-0. We shall show that the existence of such a sequence {ff/ 

entails a contradiction. 

It is clear that nj+m, Also, for ~10, the number of zeros 

of fj in the disk /zill- E can be assumed to be O(rCj); for 

otherwise we can select a subsequence of (fj] such that for each fj in the 

subsequence the disk 1~12 l- E contains at least hnj of the zeros of fj; 

then, throughout the disk 1 z I < 71, the inequality 

Ifitz)) < 1(1 - E + 7))” (1 + ‘~)‘-~;“j 
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is satisfied. If q = 71 (E , h) is sufficiently small, then the content C, of the 

braces is less than 1 ; that is, 1 fi(~) 1 < ~‘5 throughout the disk D, , for each 

fi in the subsequence. 

For each’ E >0 and each j, let gi (2) = gj (Z , E) = II (2 - Zh) , where 

the product ranges over all factors for which zh is a zero of fj lying in 

the domain /zI>l--E. Clearly, the degree rni of gj is rzj- o (ni), and 

consequently 

[gjCl>l 2 Ifitl>l2-‘(“i) ; 

that is, Igi(l)l>(l +C/2)‘9, if %i>n(~). 

Let R = R, denote the disk / z - (1 - 5~) ! < F. We assert that if E is 

small enough, then 

;gj(z)jl 1 +f” ( 1 
throughout R. ‘To show this, we consider the ratio 

v (2 e d = -I 
z - i& 
1 _ zh / P 

where z lies in R and l-~E<I.zh/il. If zh lies to the right of the line 

x=1- 2E, then cp (2 , zh) > 1. Since the line X = 1 - 2E meets the circle 

(zj = l- E at y=&I/E(2 - 3~)) the relations 

1-z 
cp (z , Zh) = I 1 - 1--2’ 

h 

hold for a11 .Q, to the left of the line x = I - 2~. Hence the reinion 

holds for all zh and all z in R, provided E is small enough. In other words, 

we can choose 8 small enough so that (7) holds for all 

large j and for all z in R,. 
To obtain our contradiction, it will be sufficient to show that, for 

l- 118/2<K 1 - $X/2 , an inequality 

1 f j (2) 1 C CTj 

holds on a set of measure greater than Cq, on the circle I z / = 1. Since 

/ f j (2) 2 [ gj (2) 1 2”i’T, 

it is clearly sufficient to prove the corresponding proposition for gj (z) . 
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Let Nj denote a large integer whose precise value remains yet to be 

chosen, and let cp =- ze21c’PjNi ($ = 1, 2, . . . . Nj) . Then 

Therefore we can choose Ni large enough so that, for 

all 2 in our annulus, 

(8) 

NOW the disk R contains at least cs Nj of the points Cp, where the 

positive constant C; depends on 8, but not on Y. For these points, it follows 

from (7) that 

lgj(Zfi)j 2 1 ++ mi; 
( ) 

from this it follows that 

(9) 

where the asterisk indicates that all factors for which rp lies in R are to 

be omitted from the product. 

Since the zeros of gj lie outside of the disk .1 z 12 1 -E, while 

1 <* ’ = r< 1 - dE, each of the factors in the left member of (9) is greater 

than (SE)?. Now let Qj be the number of factors which are less than 

(I -c/8)csnrj. Then 

Since (8) is satisfied for all .Z in our annulus, there exists a positive constant 

p (independent of Z) such that Qj/ Nj > p for all j sufficiently large, 

It follows that on each circle / x 1 = r in our annulus, the inequality 

holds on a set of measure at least 2i~+ This completes the proof. 
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(Added in $roof). The sequence {N,} in Problem 9 is not bounded. 

To see this, it is sufficient to move the two zeros e’“/” and eAX!* of the 

polynomial Z” + 1 a short distance 8 (along the unit circle) toward the 

point z = 1. As this is done, the [(n-1)/2] leaves of the rosette E which 

lie in the left half-plane lose their point of contact (and the other leaves 

of the rosette coalesce). If E >O and 6 is small enough, then each of the 

resulting components of z has diameter greater than 2’/+‘- E, and there- 

fore N, >- n/2 . 

Let the restriction that iz,I 5 1 be removed, and for C>O let N,(C) 

denote the supremum of the number of components of E whose diameter 

is greater than 1 + C. Is the sequence (-V,(C)} bounded, for each fixed 

value of C? 


