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Let us consider a “random graph” r,:l,~v having n possible (labelled) 
vertices and N edges; in other words, let us choose at random (with equal 

probabilities) one of the 
t 1 

(I ; possible graphs which can be formed from 
N, 

the n (labelled) vertices PI, P?, . . ., P,, by selecting N edges from the 
i) ; 

possible edges Px (1 5 i < j 5 n), Thus the effective number of vertices of 
C,,,l- may be less than n, as some points Pi may be not connected in r,, X 
with any other point P,; we shall call such points Pi isolafed points. We 
consider the isolated points also as belonging to Z’7,,~Xy. r,,, X is called com- 
pletely connected if it effectively contains all points PI, Pt, . . . , P,, (i, e. if it 
has no isolated points) and is connected in the ordinary sense. In the present 
paper we consider asymptotic statistical properties of random graphs for 
11++ 30. We shall deal with the following questions: 

1. What is the probability of r,,. T being completely connected? 
2. What is the probability that the greatest connected component (sub- 

graph) of r,,, s should have effectively n-k points? (k=O, 1, . . .). 
3. What is the probability that rp,N should consist of exactly kf I 

connected components? (k = 0, 1, . + .). 
4. If the edges of a graph with n vertices are chosen successively so 

that after each step every edge which has not yet been chosen has the same 
probability to be chosen as the next, and if we continue this process until 
the graph becomes completely connected, what is the probability that the 
number of necessary sfeps v will be equal to a given number I? 

As (partial) answers to the above questions we prove ihe following 
four theorems. In Theorems 1, 2, and 3 we use the notation 

N,= 
(I 
-&n log n+cn 

1 
where c is an arbitrary fixed real number ([xl denotes the integer part of x). 
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Theorem 1. Let P,(n, N,) denofe the probability of r,,, A7c being corn-. 
pletety connected. Then we have 

Theorem 2. Let P,(n, NJ (k= 0, 1, . . .) denote the probability of the 
greatest connecfed component of r,,. A: consisting effectively of n-k poinfs. 
(Clearly P,(n, N,) has the same meaning as before.) Tiren we have 

(3) 
(e-oL)?<e-c-‘)f’ 

lim Pk(n, A&)= k, , 
ii-t-02 

i. e. the number of points outside the greatest connected componenf of r,,, N 
is disiributed in the limit according to Poisson’s law wifh mean value e-~2’, 

Theorem 3. Let I&($ N,) denote the probability of Tit: ~7~ consisting 
exactly of k + 1 disjoint connected components. (Clearly I&(n, I%) = Po(n, N,).) 
Then we have 

(4) lim Z&~(n, NJ = 
(e-l,.),;e-e. “L’ 

,l->+C 
k, , 

i. e. the number of connected components of r7,Ys diminished by one is in the 
limif distributed according to Poisson’s law with mean value e-zi!. 

Theorem 4, Let the edges of a random graph with possible vertices 

PI, p2, .‘., P,I be chosen successively among the possible edges PF; in such 
a manner, that at each stage every edge which has not yet been chosen has 
the same probability to be chosen as the next, and let us continue this process 
until the graph becomes (completely) connected. Let I’,, denote the number of 
edges of the resulting connected random graph r. Then we have 

(5) 

for 11; = O(n) and 

(6) lim P 
i 

’ I’,~-- + n log n 

1 
<x 

-al. 
=e-c - . 

)I ++a, n 

As regards the first question, previously P. ERDQS and H. WHITNEY have 

obtained some less complete results. They proved that if N > 

where e > 0 then the probability of r,?;N being connected tends to 1 if 
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n + + DO, but if N < G--E n log n with e > 0 then the probability of r,,, 3v 
( i 

being connected, tends to 0 if n --+ + 00. They did not publish their result. 
This result is contained in Theorem 1. 

Let G,,, N denote a graph having n vertices and N edges. Let C(n, N) 
denote the number of (completely) connected graphs GN. Of course the 
solution of the above problems would be easy if a simple formula were 
known for C(r;, N). As a matter of fact, e. g. the probability P(,(n, N) of I;,.,? 
being completely connected is given simply by 

Unfortunately such a simple formula is not known. The special case N= n-l 
has been considered already by A. CAYLEY [l] who proved that C(n, n-1) = 
= w-~ (for other proofs see 0. DZIOBEK [2], A. PR~IJFER [3], Ci. P~LYA [4]). 
For the general case, it has been shown by R. I. RIDDELL and G. E. UHLEG 
BECK [5] (see also E. N. GILBERT [SJ), that 

Relation (8) is a consequence of the following recursive formula for C(n, N): 

Unfortunately neither (8) nor (9) helps much to deduce the asymptotic pro- 
perties of C(n, N). In the present paper we follow a more direct approach. 

All four theorems are based on the rather surprising Lemma given below. 
Let us call the graph r?,, X~ with the n possible vertices P,, p2, . . ., P,, 

and N, edges, of type A, if it consists of a connected graph having n-k 
effective vertices and of k isolated points (k = 0, 1, . . .). Any graph m, Sc 
which is not of type A shall be called to be of type 2. Then the following 
lemma holds. 

Lemma. Let P(A, n, NJ denote the probability of I’,,, ~7~ being of type A. 
Then we have 

(10) lim P(A, n, N,) = 0. 
?I++@2 

Thus for a large n almost all graphs r,,,, are of type A. 
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PROOF OF THE LEMMA. Let M be a large positive number, which will 
be chosen later. All graphs G,,,x~ having the possible vertices PI, P?, . . ,, P, 
and NC edges, where N, is defined by (1) shall be divided into two classes: 
Those in which the greatest connected compone‘ni consists of not less than 
n-M points shall constitute the class Ex, all others the class EH. Let 
cM(EAV, n, NC) denote the number of graphs G,,, belonging to the class &, 
i. e. the number of graphs in which the greatest connected component con- 
sists of less then n-M points. 

If the graph consists of f connected components having Ii points 
(i= 1, 2,. . ., I-) then 

and therefore if L= max & we have 
(0 

L--l ,a -- 
2 -n 

2 A?, 
and thus L>---- n ’ 

this implies that 

Therefore we have 

because if the n--s points belonging to the greatest connected component 
of the graph are fixed, the a@--s) edges connecting one of the points of 
this component with a point outside this component can not belong to the 
graph. Thus, denoting by P(.&, n, NJ the probability of F,,:N, belonging to 
the class &, we have 

D 20 
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We obtain for n 2 n,, by using some elementary estimations, 

(14) 

0 ; 
-s{n-s) 

i;i i 
n NC e(3-2c)s 

s 

t 1 

0 2” 

5 S! for s&- 
L 

NC 
and 

0 2” -s(n-s) 
Hi i n NC 
s 

i 1 

0 

~ &2c)(n-s) 

2” 
= (n-s)! for 

NC 
We obtain from (13), (14) and (15) 

(16) 

Thus we have 

Thus to prove our Lemma it is sufficient to show that 
the class of those graphs which belong to both x - 

denoting by 2 EIOg log 1E 
and Elog~ogn and by 

P(AG,, logn) the probability that r,, ATC belongs to the class ~ElogloglL we have 

s&- 2 

for nSn,. 

Now we have 

(1% 

because if the n-s points forming the greatest connected component of a 
graph belonging to the class %Z loglOgra are fixed, then if r is the number of 
edges connecting some of the s points outside this connected component we 

must have ~ZG 1, and the r edges in question can be chosen in ways, 
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and the remaining NC- r edges which connect points of the connected com- 

ponent having n --s points can be chosen in less than ways. Thus 

we obtain 

which proves (18). Thus our lemma is proved. 
Now we turn to the proof of our theorems. 

PROOF OF THEOREM 1. Let 9’&,(12, N,) denote the number of completely 
connected graphs Gn, 3~~. Then 9$(,, IV,) is equal to the number of graphs 
G,,, XC of type A having no isolated points. Now let ‘%,‘(n, N,) denote the 
number of all graphs G,,, xc (including graphs of type A) having no isolated 
point. Then clearly 

As the Ieft hand side of (21) is contained between any two consecutive par- 
tial sums of the 
have 

(22) 

Thus we obtain 

(23) 

But clearly 

(24 

sum on the right of (al), and for any fixed value of k we 

lim 
Il-+fCC 

2 (-lye-“” 

k! 
= &” . 

I, =I, 

Thus, applying our Lemma, Theorem 1 follows, 
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PROOF OF THEOREM 2. According to our Lemma we have to consider 
only graphs of type A. Now the number of graphs G,, h-c of the type A 
having a connected component consisting of n-k points is clearly equal to 

0 ; 
multiplied by the number of connected graphs Gn+ x~. Thus it follows that 

(25) P,(n-k, NJ. 

Taking into account that for a fixed value of k 

lim 
Nc-;(n-k) lo&+-k) 

-ec 
12 *m n-k 

with respect to (22) and (2) we obtain the assertion of Theorem 2. I) 

PROOF OF THEOREM 3. As we may restrict ourselves to graphs of type 
A, Theorem 3 follows from Theorem 2 immediately. 

PROOF OF THEOREM 4. Clearly if ‘Y, = -2-n log n + 1 =N+ 1 then be- 
[’ I 

fore choosing the last edge, we had a disconnected graph G,z,s which can 
be made completely connected by adding one edge. With respect to our 
Lemma we may suppose that G,,,x consists of a connected graph having 
n-l vertices and an isolated point. As the last edge can be chosen in n-l 

ways among the remaining -N edges it follows from Theorem 2 

provided that J- IS bounded. 

1) Compare Theorem 2 with the following known result (see [7], Exercise No. 7 of 
Chapter IV, p. 134): If N balls are distributed at random in n boxes and R&I, N) denotes 
the probability that exactly k boxes remain empty, then we have for any fixed real x and 
for k=O, I,... 
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Thus (5) is proved. To prove (6) we have 
(5) for I < nx and obtain 

297 

only to sum the probabi- 

r~ e-t-*-tdf. 
J -m 

As however 

(28) 

2.r OD 
 ̂

J 

e-t-"-tdt - 

-i 

e-1'd11 = p-b 

.- m ,r-3;2 

Theorem 4 is proved. 
The following more general questions can be asked: Consider the ran- 

dom graph r,,. N(,~) with n possible vertices and N(n) edges. What is the 
distribution of the number of vertices of the greatest connected component 
of r,?, x(,~) and the distribution of the number of its components? What is the 
typical structure of r,?, A-(11j (in the sense in which, according to our Lemma, 
the typical structure of r?I,NP is that it belongs to type A)? We have solved 

these problems in the present paper only in the case N(n) = + n log n fen. 

We schall return to the general case in an other paper [S]. 
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