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1. Introduction. Let I, 01, 02, . . , , 8, be real numbers 
linearly independent over the rational field and let al, ti2, . . . , ti n 
be arbitrary real numbers. Then, toeachN > Oand E>O, 

there correspond integers 

x >N, ylt y2s...syn 

which satisfy the set of inequalities 

(A) Iyi W eiX+o(iI’E, (i= 1, 2,..., 4. 

This is one form of Kronecker’s theorem [4-j aura, since N can 
be chosen arbitrarily large, it follows that there are an infinity 
of integer sets (x, yl, -. . , y,) with x > 0 satisfying (A). For 
n > 2, it is not possible to strengthen this result by replacing 

the & in (A), throughout, by any function y/(x) which tends to zero 
as x-m (see, e.g., 15) , Kap VII,37, Satz 6). But, in the case 
n = 1, it is well known that there are an infinity of integer pairs 
(x, y) satisfying 

(B) I Y- Gxi-c41<~,x>om 

Here, the approximating function c/x is of the correct order of 
magnitude and indeed the exact value for c has been determined 
(see [l], for details and references to earlier work). However, 
an elementary geometrical argument 221, shows that we can, in 
fact, solve (A) with an infinity of integer sets satisfying the ad- 
ditional condition 

(x3 Yl> Y2’...’ yn)= 1. 

It is natural then to raise the question, analogous to (B), of find- 
ing an approximating function l,!/(x) such that the inequality 
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is satisfied by an infinity of coprime integers (x, y) with x > 0. 

We remark that it is easy to obtain V(x) = 0(x1-‘), for any posi- 
tive 6, and that by Brun’s method, one can improve this to 

y(x) = opy)=), 

for some positive constant c. As we do not know the correct 
order of magnitude for vx) as x+J~, the following estimate is 

of some interest: 

THEOREM. For any given irrational number 8 and any 
real number CC, there exists an absolute constant h such that 

(1) x~Y”QX++n( 1%X 2 
log log x 1 

is satisfied by infinitely many coprime integers X, Y with X > 0. 

We observe that the result is significant only when Uf 0, 
since if o( = 0 we can take Y = pn, X = qn, where pn/qn is any 
convergent to the continued fraction for 8, and then X 1 Y - 8X 1 
< 1, w, Yl = I for each n. Now, the interest of our result 

lies mainly in the condition imposed upon X and Y, Without the 
restriction (X, Y) = 1, the approach by continued fractions, for 
instance, would give O( 1) as X -3 Q, , on the right of (1). This, 
in fact, is the starting point for our proof of the theorem and we 
introduce the relative primality condition by means of the follow- 
ing lemma. 

LEMMA. Let x, y be given integers with 0 4 x 4 y and 8’ 
denote any real number satisfying 0 G 8’ < 1, Let &i = f. 1 (i = 1, 2) 
be specified. Then, for certain increasing functions m = m(x), 
n = n(x) with 1 C m 4 n, m (x) + aas x-00, there exist integers 
u, v satisfying 

(2) o<u- 8% < m, OCvcn 
and 

(3) [x + qu, y-t E2V) = 1. 

A result of this kind has been obtained recently by Erdtls [3] with 

(4) m=n= c log x/log log x; 
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C being a suitably large absolute constant. It seems likely that 
this result can be improved but not, so far as we can see, by 
the same method. To illustrate the scope of the argument, our 

proof is presented in terms of m and n; it gives 

in place of the function on the right of (1). 

2. --- Proof of the theorem, By replacing Y by -Y, if neces- 
sary, we may suppose that 8 > 0, We can assume that d # 0, 

since otherwise there is nothing to prove. Let Pn- 1 /qn- 19 Pn/qn 

denote consecutive convergents to 8 and put 

(5) 
Then 

(6) 

8’ = -(pn - Sn ‘)/(Pn-l- qn,1 ‘)= 

pnqn- 1 -Pn-lqn= n=(-l) 8 n-l 
3 

(7) 

and 

(8) 0 < 8’ < I, 

by properties of regular continued fractions. Let 

(9) 
and put 

(10) 

then, since pnqn-l - ~~-14, = +- 1, we can solve the equations 

PnY - qnt = Q’ n 

Pn-17 - 9”-1{ = ‘n 

with integers f, 7. In particular 

and since q,, 1 qn 1 [ Hl -4n [S,-1&]1< qw we have 
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(11) (cx’ - l)q/C r < (OC’ -I 1)s. 

We now take X, Y to be of the form 

(12) x= ~+uqn-l+v¶nP 

(13) y=t f”Pn-l+vPn* 

where u, v are non-negative integers. Observe that X, Y are 
relatively prime if, and only if, 

(14) l = (Pnx - qny* Pn,lx - qn- ly) 

= (Pn? - QnJ + Jn”s Pn- l? - qn-15 - Anv) 

= <la;1 f u, la,1 zk v) 

for a certain choice of the f signs. Now, by (8) and the lemma 
we can choose non-negative integers u, v to satisfy (14) and 

(15) OQu-Q’v<m(\Qnl), OCv<n(lQnl), 

provided that 0 < IQ,\ < [ q 1 S Since qn > n for all n, we have 

for all sufficiently large n. By (5), (7), (12), (13), we have 

where 

and 
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(P, - qn “)‘I 

%l I 

< 2 + 2(&Q l), 

by (7), (10) and (11). Hence, by (15), 

XIY- oxtot[ ((u+vto(‘t l)(u- O’v+20(‘+4) 

= O{(m(]~/) + n(lQnr)) m(lQ,l 1) , 

=O(dIQnI)n(IQnI)}t 

= 0 (m(X) n(X)) , as n3 03 , 

since (12), (ll), (9) and (10) give, successively, 

for all sufficiently large n. We remark that the constant implied 
by the 0- symbol does not depend on o( and the theorem itself 

follows immediately on substituting the values for m and n, given 
in (4). 
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