ON SOME EXTREMUM PROBLEMS IN ELEMENTARY GEOMETRY

By
P. ERDÓS and G. SZEKERES*

Mathematical Institute, Eötvös Loránd University, Budapest and University Adelaide (Received May 20, 1960)
Dedicated to the memory of Professor L. Fejér

1. Let S denote a set of points in the plane, $N(S)$ the number of points in S. More than 25 years ago we have proved [2] the following conjecture of Esther Klein-Szekeres:

There exists a positive integer $f(n)$ with the property that if $N(S)>f(n)$ then S contains a subset P with $N(P)=n$ such that the points of P form a convex n-gon.

Moreover we have shown that if $f_{0}(n)$ is the smallest such integer then $t_{0}(n) \leq\binom{ 2 n-4}{n-2}$ and conjectured that $f_{0}(n)=2^{n-2}$ for every $n \geq 3 .{ }^{1}$ We are unable to prove or disprove this conjecture, but in § 2 we shall construct a set of 2^{n-2} points which contains no convex n-gon. Thus

$$
2^{n-2} \leq f_{0}(n) \leq\binom{ 2 n-4}{n-2}
$$

A second problem which we shall consider is the following: It was proved by Szekeres [3] that
(i) In any configuration of $N=2^{n}+1$ points in the plane there are three points which form an angle $(\leq \pi)$ greater than $\left(1-1 / n+1 / n N^{2}\right) \pi$.
(ii) There exist configurations of 2^{n} points in the plane such that each angle formed by these points is less than $(1-1 / n) \pi+\varepsilon$ with $\varepsilon>0$ arbitrarily small.

The first statement shows that for sufficiently small $\varepsilon>0$ there are no configurations of $2^{n}+1$ points which would have the property (ii). Hence in a certain sense this is a best possible result; but it does not determine the exact limiting value of the maximum angle for any given $N(S)$.

Let $\alpha(m)$ denote the greatest positive number with the property that in every configuration of m points in the plane there is an angle β with

$$
\begin{equation*}
\beta \geq \alpha(m) \tag{1}
\end{equation*}
$$

* This paper was written while P. Erdős was visiting at the University of Adelaide.
${ }^{1}$ The conjecture is trivial for $n=3$; it was proved by Miss Klein, for $n=4$ and by E. Makai and P. Turán for $n=5$.

From (i) and (ii) above it follows that $\alpha(m)$ exists for every $m \geq 3$ and that for $2^{n}<m \leq 2^{n+1}$,

$$
\begin{equation*}
\left[1-1 / n+1 / n\left(2^{n}+1\right)^{2}\right] \pi \leq \alpha(m) \leq[1-1 /(n+1)] \pi . \tag{2}
\end{equation*}
$$

Two questions arise in this connection:

1. What is the exact value of $\alpha(m)$.
2. Can the inequality (1) be replaced by
(3)

$$
\beta>\alpha(m)
$$

For the first few values of m one can easily verify that

$$
\alpha(3)=\frac{1}{3} \pi, \alpha(4)=\frac{1}{2} \pi, \alpha(5)=\frac{3}{5} \pi, \alpha(6)=\alpha(7)=\alpha(8)=\frac{2}{3} \pi,
$$

and that the strict inequality (3) is true for $m=7$ and 8 . For $3 \leq m \leq 6$ the regular m-gons represent configurations in which the maximum angle is equal to $\alpha(m)$; but we know of no other cases in which the equality sign would be necessary in (1).

In § 4 we shall prove

Theorem 1. Every plane configuration of 2^{n} points ($n \geq 3$) contains an angle greater than $(1-1 / n) \pi$.

The theorem shows in conjunction with (ii) above that for $n \geq 3, \alpha\left(2^{n}\right)=$ $=(1-1 / n) \pi$ and that the strict inequality (3) holds for these values of m. The problem is thus completely settled for $m=2^{n}, n \geq 2$.

It is not impossible that $\alpha(m)=(1-1 / n) \pi$ for $2^{n-1}<m<2^{n}, n \geq 4$, and that (3) holds for every $m>6$. However, we can only prove that for $0<k<2^{n-1}, \alpha\left(2^{n}-k\right) \geq(1-1 / n) \pi-k \pi / 2\left(2^{n}-k\right)$ (Theorem 2).

Finally we mention the following conjecture of P. ERDÓs : Given $2^{n}+1$ points in n-space, there is an angle determined by these points which is greater than $\frac{1}{2} \pi$. For $n=2$ the statement is trivial, for $n=3$ it was proved by N. H. Kuiper nad A. H. Boerdijk. ${ }^{2}$ For $n>3$ the answer is not known; and it seems that the method of $\S 4$ is not applicable to this problem. ${ }^{* *}$
2. In this section we construct a set of 2^{n-2} points in the plane which contains no convex n-gon. For representation we use the Cartesian (x, y) plane. All sets to be considered are such that no three points of the set are collinear.

A sequence of points

$$
\left(x_{v}, y_{v}\right), \nu=0,1, \ldots, k, \quad x_{0}<x_{1}<\ldots<x_{k}
$$

is said to be convex, of length k, if

$$
\frac{y_{v}-y_{v-1}}{x_{v}-x_{v-1}}<\frac{y_{v+1}-y_{v}}{x_{v+1}-x_{v}} \quad \text { for } v=1, \ldots, k-1 ;
$$

[^0]concave, of length k, if the same is true with the inequality sign reversed. It was shown in [2] that a set of more than $\binom{k+l-2}{k-1}$ points must contain either a concave sequence of length k or a convex sequence of length l. We have also stated, without proof, that there exists a set $S_{k l}$ of $f(k, l)=\binom{k+l-2}{k-1}$ points which contains no concave sequence of length k and no convex sequence of length l. We shall first construct an explicit example of such a set. $S_{k l}$ consists of points
$$
\left[x, g_{k l}(x)\right], x=1, \ldots,\binom{k+l-2}{k-1}
$$
where $g_{k l}(x)$ is defined inductively as follows:
\[

$$
\begin{equation*}
g_{k 1}(1)=g_{1 l}(1)=0 . \tag{a}
\end{equation*}
$$

\]

$$
\begin{equation*}
\text { If } k>1, l>1 \text {, then } \tag{b}
\end{equation*}
$$

$$
g_{k l}(x)=g_{k, l-1}(x) \quad \text { for } 1 \leq x \leq\binom{ k+l-3}{k-1},
$$

$$
g_{k l}(x)=g_{k-1 ; 2}\left[x-\binom{k+l-3}{k-1}\right]+c_{k l} \text { for }\binom{k+l-3}{k-1}<x \leq\binom{ k+l-2}{k-1}
$$

where
$\left.c_{h l}=\operatorname{Max}\left\{\begin{array}{c}k+l-2 \\ k-1\end{array}\right) g_{k, t-1}\left(\binom{k+l-3}{k-1}\right),\binom{k+l-2}{k-1} g_{k-1, l}\left(\binom{k+l-3}{k-2}\right)\right\}$.
Clearly the construction is such that $g_{k l}(x)$ is monotone increasing and every slope in $S_{k l}$ is positive.

Now if A denotes the set of the first $f(k, l-1)=\binom{k+l-3}{k-1}$ points of $S_{k l}$ and B the set of the last $f(k-1, l)$ points then a concave sequence in $S_{k l}$ which contains two points in A cannot contain a point in B and a convex sequence in $S_{k l}$ which contains two points in B cannot contain a point in A. For the maximum slope in A is $<g_{k, l-1}\left(\binom{k+l-3}{k-1}\right)$ and the maximum slope in B is $<g_{k-1, l}\left(\binom{k+l-3}{k-2}\right)$ so that B is entirely above any line connecting points of A and A is entirely below any line connecting points of B, by the definition of $c_{k l}$. Hence the maximum concave sequence in $S_{k l}$ has length $k-1$ and the maximum convex sequence has length $l-1$.

To construct a set S of 2^{n-2} points which contains no convex n-gon, we proceed as follows: Let

$$
\begin{aligned}
& a_{k}=2 \operatorname{Max}\left\{\left(n-k-\frac{1}{2}\right) g_{k, n-k}\left(\binom{n-2}{k-1}\right)+\binom{n-2}{k-1},\right. \\
&\left.\left(n-k+\frac{1}{2}\right) g_{k+1, n-k-1}\left(\binom{n-2}{k}\right)+\binom{n-2}{k}\right\}+1
\end{aligned}
$$

($k=1, \ldots, n-2$), and define $S_{k}, k=1, \ldots, n-1$ as follows:
Set $S_{1}=S_{1, n-1}$,

$$
S_{k+1}=S_{k, n-k}+\left(\sum_{i=1}^{k}(n-i) a_{i},-\sum_{i=1}^{k} a_{i}\right), k=1, \ldots, n-2 .
$$

Then

$$
S=\bigcup_{k=1}^{n-1} S_{k}
$$

has the required property.
The number of points in S is

$$
\sum_{k=1}^{n-1}\binom{n-2}{k-1}=2^{n-2}
$$

so we only have to show that every convex polygon in S has less than n sides. Note that S_{1} consists of the point $(1,0)$ alone and $(x, y) \in S_{k}, k>1$ implies $x>0, y<0$. Also

$$
\begin{gathered}
\frac{a_{k}-g_{k+1, n-k-1}\left(\binom{n-2}{k}\right)}{(n-k) a_{k}+\binom{n-2}{k}}>\frac{1}{n-k+\frac{1}{2}}, \\
\frac{a_{k}-g_{k, n-k}\left(\binom{n-2}{k-1}\right)}{(n-k) a_{k}-\binom{n-2}{k-1}}<\frac{1}{n-k-\frac{1}{2}} \quad(k=1, \ldots, n-2),
\end{gathered}
$$

so that the slope of any line connecting S_{k} and S_{k+1} is less than $-1 /\left(n-k+\frac{1}{2}\right)$ and greater than $-1 /\left(n+k-\frac{1}{2}\right)$. Therefore the slope of any line connecting S_{k} and $S_{l}, \quad 1 \leq k<l \leq n-1$ is less than $-1 /\left(n-k+\frac{1}{2}\right)$ and greater than $-1 /\left(n-l+\frac{1}{2}\right)$.

Suppose now that $P_{i},(i=1, \ldots, r)$ is a non-empty subset of $S_{k_{i}}, 1 \leq k_{1}<$ $<\ldots<k_{r} \leq n-1$ and such that $P=\bigcup_{i=1} P_{i}$ forms a convex polygon. Since the slope of lines within each S_{k}, is positive, P_{i} for $1<i<r$ consists of a single point and P_{1} must form a concave sequence, P_{r} a convex sequence. But then the total number of points in P is at most

$$
k_{1}+\left(k_{r}-k_{1}-1\right)+\left(n-k_{r}\right)=n-1 .
$$

3. The proof of Theorem 1 requires a refinement of the method used in [3], and in this section we set up the necessary graph-theoretical apparatus.

We denote by $C^{(N)}$ the complete graph of order N, i. e. a graph with N vertices in which any two vertices are joined by an edge. If G is a graph, then $S(G)$ shall denote the set of vertices of G. If A is a subset of $S(G)$, then $G \mid A$ denotes the restriction of G to A. An even (odd) circuit of G is a closed circuit containing an even (odd) number of edges.

A partition of G is a decomposition $G=G_{1}+\ldots+G_{n}$ into subgraphs G_{i} with the following property: Each G_{i} consists of all vertices and some edges of G such that each edge of G appears in one and only one G_{i} (G_{i} may not contain any edge at all). We call a partition $G=G_{1}+\ldots+G_{n}$ even if it has the property that no G_{i} contains an odd circuit.

Lemma 1. If a graph G contains no odd circuit then its vertices can be divided in two classes, A and B, such that every edge of G has one endpoint in A and one in B.

This is well-known and very simple to prove, e. g. [1], p 170.
Lemma 2. If $C^{(N)}=G_{1}+\ldots+G_{n}$ is an even partition of the complete graph $C^{(N)}$ into n parts then $N \leq 2^{n}$.

This Lemma was proved in [3]; for the sake of completeness we repeat the argument. Since G_{1} contains no odd circuit we can divide $S\left(C^{(N)}\right)$ in classes A and B, containing N_{1} and N_{2} vertices respectively, such that each edge of G_{1} connects a point of A with a point of B. But then $G_{1}+\ldots+G_{n}$ induces an even partition $G_{2}^{\prime}+\ldots+G_{n}^{\prime}$ of $G^{\prime}=C^{(N)} \mid \mathrm{A}$ and since G^{\prime} is a complete graph of order N_{1}, we conclude by induction that $N_{1} \leq 2^{n-1}$. Similarly $N_{2} \leq 2^{n-1}$ hence $N=N_{1}+N_{2} \leq 2^{n}$.

To prove Theorem 1 we shall need more precise information about the structure of even partitions of $C^{(N)}$, particularly in the limiting case of $N=2^{n}$. The following Lemmas have some interest of their own; they are formulated in greater generality than actually needed for our present purpose.

Lemma 3. Let $N=2^{n}$ and $C^{(N)}=G_{1}+\ldots+G_{n}$ an even partition of $C^{(N)}$ into n parts. Then the total number of edges emanating from a fixed vertex $p \in S\left(C^{(N)}\right)$ in $G_{j_{1}}+\ldots+G_{j_{i}}$, where $1 \leq j_{1}<j_{2}<\ldots<\dot{j}_{i} \leq n$, is at least $2^{i}-1$ and at most $2^{n}-2^{n-i}$.

Clearly the order in which the components G_{i} are written is immaterial, therefore we can assume in the proof that $j_{v}=v, v=1, \ldots, \mathrm{i}$. We also note that the first statement follows from the second one by applying the latter to the complementary partition $G_{i+1}+\ldots+G_{n}$ and by noting that the number of edges from p in $G_{1}+\ldots+G_{n}$ is $2^{n}-1$. We shall prove the second state-
ment in the form that there are at least 2^{n-i} vertices in $S\left(C^{(n)}\right)$ (including p itself) which are not joined with p in $G_{1}+\ldots+G_{i}$. The statement is trivial for $n=1$; we may therefore assume the Lemma for $n-1$.

By assumption, G_{1} contains no odd circuit. Therefore by Lemma 1 we can divide its vertices into two classes, A and B, such that no two points of A (or of B) are joined in G_{1}. Both classes A and B contain 2^{n-1} vertices; for otherwise one of them, say A, would contain more than 2^{n-1} vertices and $C^{(N)} \mid A$ would have an even partition $G_{2}^{\prime}+\ldots+G_{n}^{\prime}$ into $n-1$ parts, contrary to Lemma 2.

Let A be the class containing p. Hence there are at least 2^{n-1} vertices with which p is not joined in G_{1}. This proves the Lemma for $i=1$. Suppose $i>1$ and consider the partition $G_{2}^{\prime}+\ldots+G_{n}^{\prime}$ of $C^{(N)} \mid A$, induced by $G_{1}+G_{2}+\ldots$ $+G_{n}$. Since the order of $C^{(N)} \mid A$ is 2^{n-1}, we find by the induction hypothesis that there are at least $2^{n-1-(i-1)}=2^{n-i}$ vertices in A to which p is not joined in $G_{2}^{\prime}+\ldots+G_{i}^{\prime}$. But p is not joined with any vertex of A in G_{1}, therefore it is not joined with at least 2^{n-i} vertices in $G_{1}+\ldots+G_{i}$.

In the special case of $i=1$ we obtain
Lemma 3.1. Let $N=2^{n}$ and $C^{(N)}=G_{1}+\ldots+G_{n}$ an even partition. Then every p is an endpoint of at least one edge in every G_{i}.

If $N<2^{n}$, then Lemma 3.1 is no longer true, but the number of vertices for which it fails cannot exceed $2^{n}-N$. More precisely we shall prove

Lemma 4. Let $N=2^{n}-k, \quad 0 \leq k<2^{n}$, and $C^{(N)}=G_{1}+\ldots+G_{n}$ an even partition of $C^{(N)}$ into n parts. Denote by $\nu(p), p \in S=S\left(C^{(N)}\right)$ the number of graphs G_{i} in which there is no edge from p. Then

$$
\sum_{p \in S}\left(2^{v(p)}-1\right) \leq k .
$$

Proof. For $n=1$ the statement is trivial, therefore assume the Lemma for $n-1$. Let q_{1}, \ldots, q_{j} be the "exceptional" vertices in G_{1} from which there are no edges in G_{1} and denote by Q the union of vertices $q_{i}, i=1, \ldots, j$. (Q may be empty). By Lemma $1, S$ is the union of disjoint subsets A, B and Q such that every edge in G_{1} has one endpoint in A and one in B. Denote by A_{1} the union of A and Q, by B_{1} the union of B and Q. Let a and b be the number of vertices in A and B respectively. Then $a+b+j=2^{n}-k$ and $a+j \leq 2^{n-1}$, $b+j \leq 2^{n-1}$ by Lemma 2, applied to $C^{(N)} \mid A_{1}$ and $C^{(N)} \mid B_{1}$. Write $a=2^{n-1}$ -$-j-k_{1}, b=2^{n-1}-j-k_{2}$ so that $k_{1} \geq 0, k_{2} \geq 0$ and $2^{n}-j-k_{1}-k_{2}=$ $=2^{n}-k$,

$$
\begin{equation*}
k=j+k_{1}+k_{2} . \tag{4}
\end{equation*}
$$

By applying the induction hypothesis to $C^{(N)} \mid A_{1}$ and to the partition $G_{2}^{\prime}+\ldots+G_{n}^{\prime}$ induced by $G_{2}+\ldots+G_{n}$, we find

$$
\sum_{p \in A}\left(2^{\mu(p)}-1\right)+\sum_{p \in Q}\left(2^{\mu(p)-1}-1\right) \leq k_{1}
$$

for some $\mu(p) \geq \nu(p)$. Therefore a fortiori

$$
\sum_{p \in A}\left(2^{n(p)}-1\right)+\sum_{p \in Q}\left(2^{\imath(p)-1}-1\right) \leq k_{1}
$$

and similarly

$$
\sum_{p \in B}\left(2^{v(p)}-1\right)+\sum_{p \in Q}\left(2^{v(p)-1}-1\right) \leq k_{2} .
$$

Hence

$$
\sum_{p \in S}\left(2^{\circ(p)}-1\right)-j \leq k_{1}+k_{2}=k-j
$$

by (4), which proves the Lemma.
4. Before proving Theorem 1 we introduce some further notations and definitions. To represent points in the Euclidean plane E we shall sometimes use the complex plane which will also be denoted by E. If q_{1}, p, q_{2} are points in E, not on one line and in counterclockwise orientation, the angle $(<\pi)$ formed by the lines $p q_{1}$ and $p q_{2}$ will be denoted by $A\left(q_{1} p q_{2}\right)$.

A set of points S in E is said to have the property P_{n} if the angle formed by any three points of S is not greater than $(1-1 / n) \pi$. We shall briefly say that S is P_{n} or not P_{n} according as it has or has not this property.

A direction α in E is a vector from 0 to $e^{i \alpha}$ on the unit circle. An n-partition of E with respect to the direction α is a decomposition of $E-\{0\}$ into sectors $T_{k}, k=1, \ldots, 2 n$ where T_{k} consists of all points

$$
z=r e^{i(\alpha+q)}, r>0,(k-1) \frac{\pi}{n} \leq \varphi<k \frac{\pi}{n}
$$

With every set of points $S=\left\{p_{1}, \ldots, p_{N}\right\}$ and every n-partition of E with respect to some direction α we associate a partition $C^{(N)}=G_{1}+\ldots+G_{n}$ of $C^{(N)}$ in n parts according to the following rule: p_{μ}, p_{v} are joined in G_{i} if and only if the vector from p_{μ} to p_{v} is in one of the sectors T_{i}, T_{n+i}.

The following Lemma was proved in [3].
Lemma 5. If the set S is P_{n} then the partition $C^{(N)}=G_{1}+\ldots+G_{n}$ associated with any given n-partition of E is necessarily even.

We shall also need
Lemma 6. If $p_{1} p_{2} \ldots p_{n}$ are consecutive vertices of a regular n-gon P and q is a point distinct from the centre and inside P then there is a pair of vertices $\left(p_{i}, p_{j}\right)$ such that $A\left(p_{i} q p_{j}\right)>(1-1 / n) \pi$.

The proof is quite elementary; if p_{i} is a vertex nearest to q and if q is in the triangle $p_{i} p_{j} p_{j+1}$ then at least one of the angles $A\left(p_{j} q p_{i}\right), A\left(p_{i} q p_{j+1}\right)$ is $>(1-1 / n) \pi .^{3}$

Lemma 5 and Lemma 2 give immediately the result that a set of $2^{n}+1$ points in the plane cannot be P_{n}. Our purpose, however, is to prove Theorem 1 which can be stated as follows:

Theorem 1*. A set of 2^{n} points in the plane is not P_{n}.
Proof. Let S be a set of $N=2^{n}(n>2)$ points in the plane, $p_{1}, p_{2}, \ldots, p_{k}$ the vertices of the least convex polygon of S, in cyclic order and counterclockwise orientation. We can assume that no three vertices of S are collinear, otherwise S is obviously not P_{n}. We distinguish several cases.

[^1]Suppose first that there is an angle $A\left(p_{i-1} p_{i} p_{i+1}\right)<(1-1 / n) \pi$. Let α be the direction $p_{i} p_{i+1}$ and $\sigma(\alpha)$ the n-partition of E with respect to α. Then there are no points of S in the sectors T_{1} and T_{n+1} corresponding to $\sigma(\alpha)$, hence there is no edge from the vertex p_{i} in the component G_{n} of the associated partition $C^{(N)}=G_{1}+\ldots+G_{n}$. We conclude from Lemma 3.1 that $G_{1}+\ldots$ $+G_{n}$ is not an even partition, hence by Lemma $5, S$ is not P_{n}.

Henceforth we assume that all angles $A\left(p_{i-1} p_{i} p_{i+1}\right)$ are equal to $(1-1 \mid n) \pi$ so that the least convex polygon has $2 n$ vertices. For convenience let these vertices be (in cyclic order and counterclockwise orientation) $p_{1} q_{1} p_{2} q_{2} \ldots p_{n} q_{n}$, and denote by a_{i} the side length $p_{i} q_{i}$ and by b_{i} the side $q_{i} p_{i+1}$.

Suppose that all angles $A\left(p_{i-1} p_{i} p_{i+1}\right)$ and $A\left(q_{i-1} q_{i} q_{i+1}\right)$ are equal to $(1-2 / n) \pi$. Then an elementary argument shows that the triangles $p_{i-1} q_{i-1} p_{i}$, $q_{i-1} p_{i} q_{i}, p_{i} q_{i} p_{i+1}$ etc are similar, hence

$$
\frac{a_{i-1}}{a_{i}}=\frac{b_{i-1}}{b_{i}}=\frac{a_{i}}{a_{i+1}}=\ldots
$$

which implies $a_{1}=a_{2}=\ldots=a_{n}, b_{1}=b_{2}=\ldots=b_{n}$. We conclude that $p_{1} p_{2} \ldots p_{n}$ is a regular n-gon.

Now let q be any point of S inside the least convex polygon. If q is inside the triangle $p_{i} q_{i} p_{i+1}$ then clearly $A\left(p_{i} q p_{i+1}\right)>(1-1 / n) \pi$. Therefore we may assume that each q inside the least convex polygon is already inside $p_{1} \ldots p_{n}$. Since $n \geq 3$, there are at least two such points, hence we may assume that q is not the centre. But then by Lemma $6, A\left(p_{i} q p_{j}\right)>(1-1 / n) \pi$ for suitable i and j.

The last remaining case to be considered is when not all angles $A\left(p_{i-1} p_{i} p_{i+1}\right)$ are equal; then for some $i, A\left(p_{i-1} p_{i} p_{i+1}\right)<(1-2 / n) \pi$. Since $A\left(p_{i-1} q_{i-1} p_{i}\right)=A\left(p_{i} q_{i} p_{i+1}\right)=(1-1 / n) \pi$, we may assume that there are no points of S inside the triangles $p_{i-1} q_{i-1} p_{i}$ and $p_{i} q_{i} p_{i+1}$. But then if α is the direction of $p_{i} p_{i+1}$ and $\sigma(\alpha)$ the corresponding n-partition of E, $C^{(N)}=G_{1}+\ldots+G_{n}$ the partition of $C^{(N)}$ associated with $\sigma(\alpha)$, then in $G_{n-1}+G_{n}$ there are only two edges running from p_{i}, namely $p_{i} q_{i-1}$ and $p_{i} q_{i}$. By Lemma 3 (with $i=2, j_{1}=n-1, j_{2}=n$), $C^{(N)}=G_{1}+\ldots+G_{n}$ is not an even partition and by Lemma $5, S$ is not P_{n}.

Finally we prove
Theorem 2. In a plane configuration of $N=2^{n}-k$ points $\left(0<k<2^{n-1}\right)$ there is an angle $\geq(1-1 / n-k / 2 N) \pi$.

Proof. Suppose that all angles formed by the points of S are $\leq(1-1 / n) \pi$ -$-\frac{1}{2} \delta-\delta^{\prime}$ where $\delta=k \pi / N$ and $\delta^{\prime}>0$. Let $p \in S$ and $\varphi=\varphi(p)=A\left(q_{1} p q_{2}\right) \leq(1-1 / n) \pi-\frac{1}{2} \delta-\delta^{\prime}, q_{1} \in S, q_{2} \in S$
the maximum angle at p. If there are several such angles, make an arbitrary but fixed choice.

Let $\alpha=\alpha(p)$ be the direction of $p q_{1}$ so that there are no lines $p q, q \in S$ in the sectors

$$
z= \pm r e^{i(\alpha+\theta)}, \quad 0<\Theta<(1-1 / n) \pi-\frac{1}{2} \delta-\delta^{\prime}
$$

If S has $N=2^{n}-k$ points, then there are N pairs of directions $\pm \alpha(p)$. Hence there is a direction β such that at least $k+1$ directions $\varepsilon_{v} \alpha\left(p_{p}\right), \nu=0,1$, $\ldots, k, \varepsilon_{v}= \pm 1$ are in the interval

$$
\beta<\varepsilon_{v} \alpha\left(p_{v}\right)<\beta+\delta+\frac{1}{3} \delta^{\prime} .
$$

By a slight displacement of β we can achieve that all directions in S should be different from the direction $\beta+\frac{3}{4} \delta$.

Consider now the n-partition $\sigma\left(\beta+\frac{3}{4} \delta\right)$ of E with respect to $\beta+\frac{3}{4} \delta$ and construct the associated partition $C^{(N)}=G_{1}+\ldots+G_{n}$ with the following modification: Every $p q$ with direction between $\beta+\frac{3}{4} \delta$ and $\beta+\delta+\frac{1}{3} \delta^{\prime}$ shall be joined in G_{n} instead of G_{1} and every $p q$ with direction between $\beta+\frac{1}{2} \delta+\frac{\pi}{n}$ and $\beta+\frac{3}{4} \delta+\frac{\pi}{n}$ shall be joined in G_{2} instead of G_{1}. With this modification it is still true that the partition $C^{(N)}=G_{1}+\ldots+G_{n}$ is even if S has no angle greater or equal to $(1-1 / n) \pi-\frac{1}{2} \delta-\delta^{\prime}$. But it is easy to see that the vertices p_{v} are not joined with any vertex of $C^{(N)}$ in G_{1}. For if $\beta+\frac{3}{4} \delta<\varepsilon_{\nu} \alpha\left(p_{v}\right)<$ $<\beta+\delta+\frac{1}{3} \delta^{\prime}$ then the edges emanating from p_{v} in the sectors T_{1}, T_{n+1} are counted to G_{n}; and if $\beta<\varepsilon_{v} \alpha\left(p_{v}\right)<\beta+\frac{3}{4} \delta$, the only possible edges from p_{v} in the sectors T_{1}, T_{n+1} are in directions between $\beta+\frac{1}{2} \delta+\frac{\pi}{n}$ and $\beta+\frac{3}{4} \delta+\frac{\pi}{n}$ and these are counted to G_{2}. Thus we have a contradiction with Lemma 4 and the Theorem is proved.

Note added in proof. In the case of $k=1$, Theorem 2 can be improved as follows.

Theorem 3. Every plane configuration of $2^{n}-1$ points ($n \geq 2$) contains an angle not less than $(1-1 / n) \pi$.

The theorem shows in particular that $\alpha\left(2^{n}-1\right)=(1-1 / n) \pi$, but we cannot decide whether the strict inequality (3) is valid for $m=2^{n}-1$.

Proof. Suppose $N(S)=2^{n}-1$ and all angles in S are less than $(1-1 / n) \pi$. Let q be an interior point of S, that is one which is not on the least convex polygon. Let

$$
A\left(q_{1} q q_{2}\right)=(1-1 / n) \pi-\delta, \quad \delta>0
$$

be the largest angle at q. If β is the direction of $q q_{1}, \alpha=\beta+\frac{1}{2} \delta, \sigma(\alpha)$ the corresponding n-partition of $E, C^{(N)}=G_{1}+\ldots+G_{n}$ the partition of $C^{(N)}$ associated with $\sigma(\alpha)$, then clearly there are no edges from q in G_{1}. We conclude from Lemma 4 and Lemma 5 that from all other vertices of S there is at least one edge in every $G_{i}(i=1, \ldots, n)$. We show that this leads to a contradiction.

Let $P=\left(p_{1}, \ldots, p_{m}\right)$ denote the least convex polygon of S. Since each angle in P is less than $(1-1 / n) \pi$, we have $m \leq 2 n-1$. Therefore if $T_{1}, \ldots, T_{2 n}$ are the sectors of $\sigma(\alpha)$ there is a p_{i} such that if $p_{i-1} p_{i}$ is in T_{k-1} then $p_{i} p_{i+1}$ is not in T_{k}. But then there is no edge from p_{i} in G_{k}, as easily seen by elementary geometry.

References

[1] König, D., Theorie der endlichen und unendlichen Graphen, (Leipzig, 1936).
[2] Erdős, P. and Szekeres, G., A combinatorial problem in geometry, Compositio Math.; 2 (1935), 463-470.
[3] Szekeres, G., On an extremum problem in the plane, Amer. Journal of Math., 63 (1941), 208-210.

[^0]: ${ }^{2}$ Unpublished.
 ** (Added in proof: This conjecture was recently proved by Danzer and Grünbaum in a surprisingly simplex way.)

[^1]: ${ }^{3}$ See Problem 4086, Amer. Math. Monthly, 54 (1947), p. 117. Solution by C. R. Phelps.

