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1. Let S denote a set of points in the plane, JV(S) the number of points in 
S. More than 25 years ago we have proved [2] the following conjecture of 
E sther K l e in —Szekeres:

There exists a positive integer f (n) with the property that if N (S) >  / (n) 
then S contains a subset P with N  (P) =  n such that the points of P form a 
convex n-gon.

Moreover we have shown that if /„ (n) is the smallest such integer then

/0(n) iS [2 n 4| and conjectured that /0(n) =  2"~2 for every n > 3.1 We are 
n —  2)

unable to prove or disprove this conjecture, but in § 2 we shall construct a set 
of 2n~2 points which contains no convex n-gon. Thus

2"-2^ / 0 (n)<

A second problem which we shall consider is the following: It was proved 
by Szekeres [3] that

(i) In any configuration of N — 2n + \ points in the plane there are three 
points which form an angle (< n) greater than (1 — 1/n +  \/nN 2)n.

(ii) There exist configurations of 2n points in the plane such that each 
angle formed by these points is less than (1 — 1/n) n -f  e with e >  0 arbitrarily 
small.

The first statement shows that for sufficiently small e >  0 there are no 
configurations of 2" +  1 points which would have the property (ii). Hence in 
a certain sense this is a best possible result; but it does not determine the exact 
limiting value of the maximum angle for any given N(S).

Let a (m) denote the greatest positive number with the property that in 
every configuration of m points in the plane there is an angle p  with

(1) P a (m).

* This paper was written while P. E rdős was visiting at the University of Adelaide. 
1 The conjecture is trivial for n = 3; it was proved by Miss K l e in , for n = 4  and by 

E. M akai and P. T úrán  for n = 5.



5 4 P . E R D Ő S A N D  G. S Z E K E R E S

From (i) and (ii) above it follows that a (m) exists for every in > 3 and that for
2n <m < , 2n+1,

(2) [1 — 1 In + 1 In (2" + l)2] n < a (in) < [1 — l/(n + 1)] n.

Two questions arise in this connection:
1. What is the exact value of a (m).
2. Can the inequality (1) be replaced by

(3) £ >  a (m)

For the first few values of in one can easily verify that

«(3) =  — n, a (4)
J

1 3
— n, oi (5) =  — n, a (6) =  a (7) = a (8)
2 5

and that the strict inequality (3) is true for m = 7 and 8. For 3 ^  m <, 6 the 
regular in -gons represent configurations in which the maximum angle is equal 
to a (m); but we know of no other cases in which the equality sign would be 
necessary in (1).

In § 4 we shall prove
T heorem 1. Every plane configuration of 2n points (ri ^  3) contains an angle 

greater than (1 — l/rc)jr.
The theorem shows in conjunction with (ii) above that for n > 3, a (2n) = 

= (1 — 1 \ri) n and that the strict inequality (3) holds for these values of m. 
The problem is thus completely settled for m = 2n, n > 2.

It is not impossible that a (m) =  (1 — 1/n) n for 2n~1 <  m <  2n, n > 4, 
and that (3) holds for every m >  6. However, we can only prove that for 
0 <  k <  2n~1, a (2" — k) > (1 — 1/n) n — k nf2 (2n — k) (Theorem 2).

Finally we mention the following conjecture of P. E rdős : Given 2"+1 points 
in n-space, there is an angle determined by these points which is greater than
1
2

Jr. For n =  2 the statement is trivial, for n =  3 it was proved by N. H.

K uiper nad A. H. Boerdijk .2 For n >  3 the answer is not known; and it seems 
that the method of § 4 is not applicable to this problem. **

2. In this section we construct a set of 2"~2 points in the plane which con
tains no convex n-gon. For representation we use the Cartesian (x, y) plane. 
All sets to be considered are such that no three points of the set are collinear. 

A sequence of points

(xv, y„), v ?= 0,1, . . . ,  k, x0< x 1< . . .  < xk

is said to be convex, of length k, if

Vv- ■yv- 1 < y*+i — y.
xv V+l ■

for v =  1, . . . ,  k— 1;

2 Unpublished.
** ( Added in proof: This conjecture was recently proved by D anzer and G rünbaum 

in a surprisingly simplex way.)
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concave, of length k, if the same is true with the inequality sign reversed. It
k +  l — 21

was shown in [2] that a set of more than
k — 1

a concave sequence of length k or a convex sequence of length l. We have also
Ik I i _2

stated, without proof, that there exists a set Skl of / (k, l) =

points must contain either 

re also 

points
k — 1

which contains no concave sequence of length k and no convex sequence of 
length l. We shall first construct an explicit example of such a set. Sk, consists 
of points

r / \i i (k + l — 2][X, gkl(x)], X = 1 , . . . ,
1

where gkl (x) is defined inductively as follows:

( a )  ftn(l) = g u (l) = 0 .

(b) If k > 1, l > 1 , then

gM=gk.i-iM for l ^ x
k + l — 3 

k — 1

gkl (x)= gk. x — k + l — 3 
k — 1

+  cu for
k + l — 3 

k — 1
<  x ^ k + l  — 2 

k — 1

where

cu -  Max

CM1+

(k + l — 3 i (k + l — 2) ( k + l — 3)i
k — 1

gk,t- 1
! * - i

rH1

k — 2 J)

Clearly the construction is such that gkl (x) is monotone increasing and every 
slope in Skl is positive.

Now if A denotes the set of the first f (k, l — l) — points of

Skl and B the set of the last f (k — 1,1) points then a concave sequence in Skl 
which contains two points in A cannot contain a point in B and a convex sequen
ce in Skl which contains two points in B cannot contain a point in A. For

the maximum slope in A is< g M„1
k + l  — 3 

k — 1
and the maximum slope in B

is <  gk-i.i | p  ^  1 2 3| I so ffiat 0  is entirely above any line connecting points

of A and A is entirely below any line connecting points of B, by the definition 
of ckl. Hence the maximum concave sequence in Skl has length k — 1 and the 
maximum convex sequence has length l — 1.
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To construct a set S of 2n~2points which contains no convex n-gon, we 
proceed as follows: Let

IT , 1 j n — 2\ , (n — 2)\\n — k ------ n~/c +2 \k— ll

n —* +  y p *+i.«-*-1
n — 2 

k
+

n — 2]
k I

(k = 1, . . n—2), and define Sk, k = 1, . . n — 1 as follows:
Set =  Sl n- lt

k k \
Sk + 1  = Sk'„-k + j ;  (« — Í)ait— £  ai » k = l ,-  n — 2.

;=i i=i I

Then
n—1

S =  US,
fc=i

has the required property.
The number of points in S is

ny x n - 2
k~~l k — 1

=  2"-2,

so we only have to show that every convex polygon in S has less than n sides. 
Note that consists of the point (1,0) alone and (x, y) 6 Sk, k >  1 implies 
x >  0, y <  0. Also

n —2|
fzk + 1, n — k — 1

(n — k) ak +  

((n — 2
°k gKn~k L - l

n — 2 
k

—  >
1

n — k-\----
2

(n — k) ak-
n — 2
k — l)

< (k=  1, . . n — 2),
n — k-

so that the slope of any line connecting S, and Sk+1 is less than — 1 / n — k +  - 

and greater than — I j  Jn +  k — ^  J. Therefore the slope of any line connecting 

S, and S„ 1 < k <1 <, n — 1 is less than — 11 in — k +  ^
■2

and greater

than — 11 n — l +
1

/
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Suppose now that Ph (i =  1, . . . ,  r) is a non-empty subset of Skj, 1 < kx <
r

< . . .  <_kr<. n— 1 and such that P =  U forms a convex polygon. Since
1 =  1

the slope of lines within each Sk, is positive, Pt for 1 <  i < r consists of a single 
point and P1 must form a concave sequence, Pr a convex sequence. But then 
the total number of points in P is at most

k\ +  (kr — k2 — 1) +  (n — kr) — n — 1.

3. The proof of Theorem 1 requires a refinement of the method used in 
[3], and in this section we set up the necessary graph-theoretical apparatus.

We denote by C<N> the complete graph of order N, i. e. a graph with JV 
vertices in which any two vertices are joined by an edge. If G is a graph, then 
S (G) shall denote the set of vertices of G. If A is a subset of S (G), then G|A 
denotes the restriction of G to A. An even (odd) circuit of G is a closed circuit 
containing an even (odd) number of edges.

A partition of G is a decomposition G =  Gx +  . . .  + Gn into subgraphs 
Gj with the following property: Each G, consists of all vertices and some edges 
of G such that each edge of G appears in one and only one G,- (G; may not con
tain any edge at all). We call a partition G =  Gx +  . . .  +  Gn even if it has the 
property that no G; contains an odd circuit.

L emma 1. If a graph G contains no odd circuit then its vertices can be divided 
in two classes, A and B, such that every edge of G has one endpoint in A and one 
in B.

This is well-known and very simple to prove, e. g. [1], p 170.
L emma 2. If C<N> = Gx + . . . +  Gn is an even partition of the complete 

graph C(N) into n parts then N <. 2n.
This Lemma was proved in [3]; for the sake of completeness we repeat 

the argument. Since Gx contains no odd circuit we can divide S (C(N>) in classes 
A and B, containing Nx and N2 vertices respectively, such that each edge of Gx 
connects a point of A with a point of B. But then Gx +  . . .  +  Gn induces 
an even partition Gf> -f . . .  +  Gf, of G’ = C(N) | A and since G’ is a complete 
graph of order Nlf we conclude by induction that JVX < 2n~1. Similarly N2 < 2n~1 
hence N = + N2<. 2n.

To prove Theorem 1 we shall need more precise information about the 
structure of even partitions of C(N), particularly in the limiting case of N — 2n. 
The following Lemmas have some interest of their own; they are formulated 
in greater generality than actually needed for our present purpose.

L emma 3. Let N =  2" and C(N> =  Gx +  . . .  -f G„ an even partition of 
C(N> into n parts. Then the total number of edges emanating from a fixed vertex 
p € S (C(N)) in Gy, +  . . .  +  Gj., where 1 <. j1< j 2<  . . .  <  j, < n, is at least 
2‘— 1 and at most 2n — 2n~‘.

Clearly the order in which the components G,- are written is immaterial, 
therefore we can assume in the proof that j, =  u, v =  1, . . . ,  i. We also note 
that the first statement follows from the second one by applying the latter to 
the complementary partition GI + 1 + . . .  + Gn and by noting that the number 
of edges from p in Gt -f . . .  +  G„ is 2" — 1. We shall prove the second state-
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meat in the form that there are at least vertices in S (C(n)) (including p 
itself) which are not joined with p in Gx +  . . .  -f- G,-. The statement is trivial 
for n ■= 1; we may therefore assume the Lemma for n — 1.

By assumption, Gx contains no odd circuit. Therefore by Lemma 1 we 
can divide its vertices into two classes, A and B, such that no two points 
of A (or of B) are joined in Gx. Both classes A and B contain 2n~1 vertices; 
for otherwise one of them, say A, would contain more than 2n~1 vertices and 
C(N)| A would have an even partition G'% +  . . .  +  G'n into n ■— 1 parts, contrary 
to Lemma 2.

Let A  be the class containing p. Hence there are at least 2n~1 vertices with 
which p is not joined in Gv This proves the Lemma for 1=1.  Suppose i >  1 
and consider the partition G'% +  . . .  + G„ of C(N>| A, induced by G1 +  G2 +  • • • 
-f Gn. Since the order of C<N>| A is 2n~1, we find by the induction hypothesis 
that there are at least 2n~1~('~1> =  2n~‘ vertices in A to which p is not joined 
in G'2 +  . . .  Ar G’i- But p is not joined with any vertex of A in Glt therefore it 
is not joined with at least 2n~‘ vertices in Gx +  . . .  +  G,.

In the special case of i = 1 we obtain
Lemma 3.1. Let N — 2n and C(N) =  Gx +  . . .  +  Gn an even partition. 

Then every p is an endpoint of at least one edge in every Gt.
If JV <  2n, then Lemma 3.1 is no longer true, but the number of vertices 

for which it fails cannot exceed 2n — N. More precisely we shall prove
Lemma 4. Let N =  2" — k, 0 <.k <. 2n, and C(N) =  Gx +  . . .  + Gn 

an even partition of C(N> into n parts. Denote by v (p), p <E S =  S (C(N)) the number 
of graphs G,- in which there is no edge from p. Then

V (2”(p> — 1) ^  k.
PtS

Proof. For n =  1 the statement is trivial, therefore assume the Lemma 
for n — 1. Let qlt . . . ,  qj be the “exceptional” vertices in Gx from which there 
are no edges in Gt and denote by Q the union of vertices qi} i =  1, . . . ,  /. 
(Q may be empty). By Lemma 1, S is the union of disjoint subsets A, B and Q 
such that every edge in Gx has one endpoint in A and one in B. Denote by A1 
the union of A and Q, by B1 the union of B and Q. Let a and b be the number 
of vertices in A and B respectively. Then a +  b +  j — 2n — k and a + / < 2n~ \  
b + / ^  2n~1 by Lemma 2, applied to C(N> \ Al and C(JV)j Bv Write a = 2n~1 — 
— / —- ATj, b = 2n~1 — / — k2 so that kx > 0, k2 > 0 and 2n — / — kx — k2 = 
=  2 n — k,

(4) k — j -j- -j- k2.

By applying the induction hypothesis to C(N)|^  and to the partition 
Gá +  . . .  + G„ induced by G2 4- . . .  +  G„, we find

2  (2"(p) — 1) +  2 1 (2',(p>-1— 1) < ki
p i A  p t Q

for some p. (p) > v (p). Therefore a fortiori

V (2HP) — 1) +  v  (2>’(p)-i _  l) < kt
p i  A  p i Q  • '.> í
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and similarly

v  (2*p> — 1) +  £ (2Kp)-1— 1) /c2.
p  p  ( ( ?

Hence
2 1 (2tP> — l) — j<zk1 + k% = k — j

p (S

by (4), which proves the Lemma.
4. Before proving Theorem 1 we introduce some further notations and defi

nitions. To represent points in the Euclidean plane £ we shall sometimes use 
the complex plane which will also be denoted by E. If qlt p, q2 are points in E, 
not on one line and in counterclockwise orientation, the angle (<  n) formed 
by the lines pqx and pq2 will be denoted by A (qi p q2).

A set of points S in E is said to have the property Pn if the angle formed by 
any three points of S is not greater than (1 — 1/n) n. We shall briefly say that 
S is Pn or not Pn according as it has or has not this property.

A direction a in £ is a vector from 0 to eia on the unit circle. An n-partition 
of E with respect to the direction a is a decomposition of £ — {0} into sectors 
Tk, k == 1, . . . ,  2n where Tk consists of all points

z =  rei(l+f'), r > 0, (k — 1)— q><k — .
n n

With every set of points S =  {p1} . . . ,  pN} and every n-partition of £ with 
respect to some direction a we associate a partition C(N) =  Gx +  . . .  +  Gn 
of C(N> in n parts according to the following rule: p,„ p„ are joined in G, if and 
only if the vector from pfl to p„ is in one of the sectors Th Tn+i.

The following Lemma was proved in [3].
L emma 5. If the set S is Pn then the partition C(N) = Gx + . . .  +  Gn associated 

with any given n-partition of E is necessarily even.
We shall also need
L emma 6. If px p2 . . .  pn are consecutive vertices of a regular ti-gon P and q 

is a point distinct from the centre and inside P then there is a pair of vertices 
(ph pj) such that A (pjq pj) >  (1 — 1/n) n.

The proof is quite elementary; if p, is a vertex nearest to q and if q is in 
the triangle p,- pj p/+1 then at least one of the angles A (pj q p,), A (p, q p]+1) 
is >  ( 1— 1 fn) 7t.3

Lemma 5 and Lemma 2 give immediately the result that a set of 2n + 1 
points in the plane cannot be Pn. Our purpose, however, is to prove Theorem 1 
which can be stated as follows:

T heorem 1*. A set of 2n points in the plane is not Pn.
P roof. Let S be a set of N = 2n (n >  2) points in the plane, p1; p2, . . . ,  pk 

the vertices of the least convex polygon of S, in cyclic order and counterclock
wise orientation. We can assume that no three vertices of S are collinear, other
wise S is obviously not Pn. We distinguish several cases.

3 See Problem 4086, Amer. Math. Monthly, 54 (1947), p. 117. Solution b y  C. R. P h e l p s .
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Suppose first that there is an angle A{pi- 1pipi+-l) <  (1 — 1/n) or. Let a 
be the direction p,p,+1 and a-(a) the n-partition of E with respect to a. Then 
there are no points of S in the sectors Tx and Tn+1 corresponding to cr (a), 
hence there is no edge from the vertex p,- in the component G„ of the associated 
partition C(N> =  Gx +  . . .  + Gn. We conclude from Lemma 3.1 that Gx -f • • • 
+ Gn is not an even partition, hence by Lemma 5, S is not Pn.

Henceforth we assume that all angles A (p ,-x pi p,+1) are equal to (1 —1 /n) n 
so that the least convex polygon has 2n vertices. For convenience let these 
vertices be (in cyclic order and counterclockwise orientation) p1q1p2(h ■ •. pnqnr 
and denote by a( the side length p,-̂ - and by bt the side qiPi+x-

Suppose that all angles A (pi^1pi pi+1) and A(qi- 1qiqi+1) are equal to 
(1 — 2/n) n. Then an elementary argument shows that the triangles pi^1qi- 1 p,, 
<7,_i Pi qh P/qiPi+i etc are similar, hence

ai-1 __ bt-1 _  ai __ 
ai bt ai+1

which implies ax — a2 — . . .  =  ant bx = b2 — . . .  = bn. We conclude that 
PxP2. . . p n is a regular n-gon.

Now let q be any point of S inside the least convex polygon. If q is inside 
the triangle p,<7,p,+i then clearly A{ptqpi+x) >  (1 — l/n)ir. Therefore we 
may assume that each q inside the least convex polygon is already inside px ■ ■ ■ pn- 
Since n > 3, there are at least two such points, hence we may assume that q 
is not the centre. But then by Lemma 6, A (p;- q pj) >  (1 — 1/n) n for suitable 
i and /.

The last remaining case to be considered is when not all angles 
A (pi-x Pi Pi+x) are equal; then for some i, A (p,_x p( p/+1) <  (1 —2/n) it. Since 
A (Pi-x qt-x Pi) =  A (Pi qt pi+1) =  (1 — 1 In) jr, we may assume that there are 
no points of S inside the triangles p,_x qt- x pt and p,- qt pi+1. But then if a is the 
direction of pt pi+1 and cr (a) the corresponding n-partition of E, 
C(N'> = G1+ ■ ■ ■ +Gn the partition of C(N> associated with cr (a), then in Gn-x +  Gn 
there are only two edges running from ph namely p,W, î and p,-^. By 
Lemma 3 (with i =  2, ]\ — n — 1, /2 =  n), C(N) =  Gx +  . . .  +  G„ is not an 
even partition and by Lemma 5, S is not Pn.

Finally we prove
T heorem 2. In a plane configuration of N =  2" — k points (0 <  k <  2n_1) 

there is an angle > (1 — 1/n — fc/2JV)sr.

Proof. Suppose that all angles formed by the points of S are < (1 — 1 /n) tt —

----- d — 6’ where d = k n/N and Ő' >  0. Let p € S and
2

<p =  99(p) = A{qxpq2) <: (1 — l/n)jr — ~  <5— b',qxZS, q2£S

the maximum angle at p. If there are several such angles, make an arbitrary 
but fixed choice.
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Let a = a (p) be the direction of pqx so that there are no lines pq, q € S 
in the sectors

z =  ±re«*+9\  0<6><( 1  — ---- - d  — d'.
2

If S has JV =  2" — k points, then there are N pairs of directions +  a (p). 
Hence there is a direction p such that at least k -f 1 directions eva (p„), v =  0, 1, 
. . k, ev = +  1 are in the interval

P <  e, a (p„) <  p +  ő +  ő'.

By a slight displacement of p we can achieve that all directions in S should
3

be different from the direction p -\----b.
4

Consider now the n-partition a-\p + — ő |of E with respect to p + — 6

and construct the associated partition C(N) =  Gx +  • • • +  Gn with the following
3 1

modification: Every p q with direction between p -f — b and p +  b +  — ő' shall

1 71
be joined in Gn instead of Gx and every p q with direction between p -1—- b -\----

2 n
3 nand p -\—  b H----shall be joined in G2 instead of Gv With this modification
4 n

it is still true that the partition C(N) =  Gx +  . . .  +  Gn is even if S has no angle 

greater or equal to (1 — 1/n) n — b — S'. But it is easy to see that the vertices

3
p, are not joined with any vertex of C(JV> in Gv For if p +  — S <  e„a(p,)<

<p  +  Ő +  — S' then the edges emanating from pv in the sectors T1; Tn+1 are count- 
3

3
ed to G„; and if p <  e* a (pv) <  P -\----S, the only possible edges from pv

4
7t 3 jr

in the sectors Tlt Tn+1 are in directions between p -\----S H-----and p -\----- S4----
2 n 4 n

and these are counted to G2. Thus we have a contradiction with Lemma 4 and 
the Theorem is proved.

N ote added in  proof. In the case of k =  1, Theorem 2 can be improved as 
follows.

T heorem 3. Every plane configuration of 2" — 1 points {n > 2) contains 
an angle not less than (1 — l/n)jr.

The theorem shows in particular that a (2n — 1) =  (1 — 1/n) n, but we 
cannot decide whether the strict inequality (3) is valid for m =  2n — 1.
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P roof. Suppose N (S) = 2n — 1 and all angles in S are less than (1 — 1/n) n. 
Let q be an interior point of S, that is one which is not on the least convex poly
gon. Let

A (qiqq2) = (1 — l/n)jr— 8, d > 0

be the largest angle at q. If ft is the direction of qqv a — ft H----6, cr (a) the

corresponding n-partition of E, C(JV) =  Gx +  . . .  +  Gn the partition of C(N> 
associated with cr (a), then clearly there are no edges from q in Gv We conclude 
from Lemma 4 and Lemma 5 that from all other vertices of S there is at least 
one edge in every G, (r =  1, . . . ,  n). We show that this leads to a contradiction.

Let P = (pv . . . ,  pm) denote the least convex polygon of S. Since each 
angle in P is less than (1 — 1 /n) jt, we have m < 2 n — 1. Therefore if 7\, . . . ,  T2„ 
are the sectors of cr («) there is a p,- such that if Pi^Pi is in Tk_x then pipi+1 
is not in Tk. But then there is no edge from p, in Gk, as easily seen by elemen
tary geometry.
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