Remarks on number theory III
On addition chains

by

P. Erdős (Budapest)

Consider a sequence \(a_0 = 1 < a_1 < a_2 < \ldots < a_k = n \) of integers such that every \(a_i \) (\(i \geq 1 \)) can be written as the sum \(a_i + a_j \) of two preceding elements of the sequence. Such a sequence has been called by A. Scholz (1) an addition chain. He defines \(l(n) \) as the smallest \(k \) for which there exists an addition chain \(1 = a_0 < a_1 < \ldots < a_k = n \).

Clearly \(l(n) \geq \log n / \log 2 \), the equality occurring only if \(n = 2^m \). Scholz conjectured that

\[
\lim_{n \to \infty} l(n) \frac{\log 2}{\log n} = 1
\]

and A. Brauer (2) proved (1). In fact Brauer proved that

\[
l(n) \leq \min_{1 < r < m} \left\{ \left(1 + \frac{1}{r} \right) \frac{\log n}{\log 2} + 2^r - 2 \right\}
\]

where \(2^m \leq n < 2^{m+1} \). From (2) by choosing \(r = \left(1 - e \right) \frac{\log \log n}{\log 2} \) it follows that

\[
l(n) < \frac{\log n}{\log 2} + \frac{\log n}{\log \log n} + o \left(\frac{\log n}{\log \log n} \right).
\]

In the present note I am going to prove that (3) is the best possible. In fact I shall prove the following

THEOREM. For almost all \(n \) (i. e. for all \(n \) except a sequence of density 0)

\[
l(n) = \frac{\log n}{\log 2} + \frac{\log n}{\log \log n} + o \left(\frac{\log n}{\log \log n} \right).
\]

In view of (3) it will suffice to prove that for every ε the number of integers m satisfying

$$\frac{n}{2} < m < n, \quad l(m) < \frac{\log n}{\log 2} - (1-\varepsilon) \frac{\log n}{\log \log n}$$

is $o(n)$. In fact we shall prove that the number of integers satisfying (4) is less than $n^{1-\eta}$ for some $\eta = \eta(\varepsilon) > 0$.

To prove our assertion we shall show (as the stronger result) that the number of addition chains

$$1 = a_0 < a_1 < \ldots < a_k$$

satisfying

$$\frac{n}{2} < a_k < n, \quad k < \frac{\log n}{\log 2} + (1-\varepsilon) \frac{\log n}{\log \log n}$$

is less than $n^{1-\eta}$ for some $\eta > 0$ ($\eta = \eta(\varepsilon)$).

An addition chain is clearly determined by its length k and by a mapping $\psi(i), 1 \leq i \leq k-1$, which associates with i two indices $j_1(i)$ and $j_2(i)$ not exceeding i. To such a mapping there corresponds an addition chain if and only if for every i, $a_{j_1(i)} + a_{j_2(i)} > a_i$. We split the indices i, $2 \leq i \leq k-1$, into three classes. In the first class are the indices i for which $a_{i+1} = 2a_i$. In the second class are the i's for which $a_{i+1} < 2a_i$ and $a_{i+1} \geq (1+\delta)^r a_{i+1-r}$ for every $r > 0$ ($\delta = \delta(\varepsilon)$ is a sufficiently small positive number). In the third class are the i's for which $a_{i+1} < 2a_i$ and $a_{i+1} < (1+\delta)^r a_{i+1-r}$ for some $r > 0$. Denote the number of i's in the classes by u_1, u_2, u_3. $u_1 + u_2 + u_3 = k-1$.

Assume now that (5) is satisfied, we are going to estimate the number of addition chains satisfying (5). First we show that (5) implies

$$\hat{a}_2 + u_3 = o(k).$$

To prove (6) observe that if $a_{i+1} \neq 2a_i$ then $a_{i+1} \leq a_i + a_{i-1}$. Thus from $a_i \leq 2a_{i-1}$ we obtain

$$a_{i+1} \leq 3a_i - 1.$$

Thus from (5) and (7), since there are at least $\frac{1}{2}[(u_2 + u_3)] = \frac{1}{2}(k-u_1 -1)$ intervals $(i-1, i+1), 1 \leq i \leq k-1$, which are disjoint half-open (i.e. open to the left) and for which i is in the second or third class, we have

$$\frac{n}{2} < a_k < 2^{u_1+1} 3^{(k-u_1)/2} = 2^k \cdot \frac{2}{(\frac{1}{2})^{(k-u_1)/2}} < 2^{k-(u_2+u_3)/100}$$

or $k > \frac{\log n}{\log 2} \left(1 + \frac{u_2}{100} \right) - 1$, which contradicts (4) if (6) is not satisfied.
The number of ways in which we can split the indices \(i \) into three classes having \(u_1, u_2, u_3 \) elements \((u_1 + u_2 + u_3 = k - 1)\) equals \(\binom{k-1}{u_2} \times \binom{u_2+u_3}{u_2} \). Now since \(u_2 + u_3 = o(k) \), \(\binom{u_2+u_3}{u_2} < 2^{u_2+u_3} = (1+o(1))^k \), also \(\left(\binom{k}{u_2+u_3} \right)^{\binom{k}{u_2}} = (1+o(1))^k \). Further for \(u_2 \) and \(u_3 \) we have at most \(k^2 \) choices. Thus the total number of ways of splitting the indices into three classes is \((1+o(1))^k\). Henceforth we consider a fixed splitting of the indices into three classes.

For the \(i \)'s of the first class \(a_{i+1} = 2a_i \), and thus \(a_{i+1} \) is uniquely determined. If \(i \) belongs to the second class then from \(a_{i+1} \geq (1+\delta)^r a_{i+r-1} \) it clearly follows that there are at most \(c_1 = c_1(\delta) \) \(a \)'s in the interval \((\delta a_i, a_i)\). From \(a_{i+1} \geq (1-\delta)a_i \) it follows that only the \(a_i \)'s of the interval \((\delta a_i, a_i)\) have to be considered in defining \(a_{i+1} \). Thus there are at most \(c_1^2 \) choices for \(a_{i+1} \), and hence for the number of addition chains satisfying (5) the contribution of the \(i \)'s of the second class it at most \(c_1 c_2 = (1+o(1))^k \).

The number of possible choices given by the \(u_3 \) indices of the third class is less than \(\binom{k^2}{u_3} \). To see this observe that the indices \(i_1, i_2, \ldots, i_{u_3} \) which belong to the third class have already been fixed and our sequence is completely determined if we fix the indices \(j_{i_1}^{(1)}, j_{i_2}^{(2)}, j_{i_3}^{(3)}, \ldots, j_{i_{u_3}}^{(u_3)} \) which define \(a_{i_1+1}, a_{i_2+1}, \ldots, a_{i_{u_3}+1} \). Because of \(a_{i_1+1} < a_{i_2+1} < \cdots < a_{i_{u_3}+1} \) their order is determined uniquely (this is easy to see by induction). The total number of pairs \((u, v), 1 \leq u \leq v \leq k\), equals \(\binom{k}{3} + k < k^2 \), whence the result.

Thus we have proved that the number of addition chains satisfying (5) is less than

\[
\sum_k \binom{k}{u_2} \sum_{u_3} \binom{k^2}{u_3},
\]

where the summation is extended over all possible choices of \(k \) and \(u_3 \), satisfying (5). Now we show

\[
u_3 < \left(1 - \frac{\epsilon}{2}\right) \frac{\log n}{\log \log n}.
\]

To prove (9) observe that if \(i \) is in the third class then for some \(r_i > 0 \)

\[
a_{i+1} \leq a_{i+1-r_i}(1+\delta)^{r_i}.
\]

The intervals \((i+1-r_i, i+1)\) cover all the \(i \)'s of the third class. From these intervals we form (in a unique way) a set of non-overlapping
intervals \((u_s, v_s), \ s = 1, 2, \ldots, t,\) which contain all the intervals \((i+1-r_i, i+1),\) where \(i\) is in the third class.

A simple argument shows by (10) and the construction of the intervals \((u_s, v_s)\) that

\[
a_s u_s \leq a_s (1 + \delta)^2 (u_s - v_s).
\]

The intervals \(u_s < x \leq v_s, \ 1 \leq s \leq t\) cover all the \(i's\) of the third class. Thus

\[
\sum_{s=1}^{t} (v_s - u_s) \geq u_3.
\]

From (5), (11), (12) and \(a_{i+1} \leq 2a_i\) we infer that

\[
\frac{n}{2} \leq a_k \leq 2^{k-u_3} (1 + \delta)^{2u_3} < 2^{k-u_3(1-\varepsilon/2)}
\]

for sufficiently small \(\delta = \delta(\varepsilon).\) Thus from (13)

\[
k - u_3 \left(1 - \frac{\varepsilon}{2}\right) > \frac{\log n}{\log 2} - 1.
\]

(14) and (5) clearly implies (9).

From (5), (9) and (8) we infer that the number of addition chains satisfying (5) is less than

\[
(1 + o(1))^\log A
\]

where

\[
A = \left[\frac{\log n}{\log 2} + (1 - \varepsilon) \frac{\log n}{\log \log n}\right], \quad B = \left[(1 - \varepsilon) \frac{\log n}{2 \log \log n}\right].
\]

Now

\[
\left(\frac{A}{B}\right)^e \leq \left(\frac{A}{B}\right)^{e^n} = (1 + o(1))^{\log n} \left(\frac{A}{B}\right)^B
\]

\[
= (1 + o(1))^{\log n B(1 + o(1))} = n^{1 - \varepsilon/2 + o(1)}.
\]

From (15) and (16) we finally infer that the number of addition chains satisfying (5) is less than \(n^{1 - \varepsilon/2 + o(1)} < n^{1 - \eta} \) for \(\eta < \varepsilon/2,\) which completes the proof of our Theorem.

It would be of interest to obtain a more accurate estimation of \(l(n)\) and in particular to try to obtain an asymptotic distribution function for \(l(n),\) but I have not succeeded in making any progress in this direction.

We can modify the definition of an addition chain as follows: a sequence \(1 = a_1 < a_2 < \ldots < a_k = n\) is said to be an addition chain of
order r if each a_j is the sum of r or fewer a_i's where the indices do not exceed j. Denote by $l_r(n)$ the length of the shortest addition chain of order r with $a_k = n$. Using a modification of the method of Brauer and of this note we can prove that for all n

$$l_r(n) < \frac{\log n}{\log r} + \frac{\log n}{(r-1)\log \log n} + o\left(\frac{\log n}{\log \log n}\right),$$

and that for almost all n

$$l_r(n) = \frac{\log n}{\log r} + \frac{\log n}{(r-1)\log \log n} + o\left(\frac{\log n}{\log \log n}\right).$$

Peter Ungár in a letter has asked me the following question: Define $l'(n)$ as the smallest k for which there exists a sequence $a_0 = 1, a_1, a_2, \ldots, a_k = n$ where for each j, $a_j = a_u \pm a_v$, $u \leq j$, $v \leq j$ ($a_2 < a_3 < \ldots$ is not assumed here). The problem has arisen in trying to compute x^n with the smallest number of multiplications and divisions. Clearly $l'(n) \leq l(n)$ and it can be shown that our Theorem holds for $l'(n)$ too.

Reçu par la Rédaction le 20. 8. 1959