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1. Introduction 

The (linear, separable) Brownian motion process has been studied more than 
any other stochastic process. It has many applications and, at least since 
Bachelier, probabilists have been at(tract,ed by its delicate and curious proper- 
ties. It furnished, in the hands of N. Jyiener, the first instance of a satisfactorily 
defined nondiscrete stochastic process n-ith continuous time parameter, and it 
is this work on Browninn motion (also known as Wiener space) that suggested 
t,he, now universally adopted, method of A. N. Kolmogorov for defining sto- 
chastic processes. Moat advanced books on probability devote some space to t,his 
process but the more delicate results are beyond their scope. A notable exception 
is P. L&y [2] which contains a x.ery profound study of t,he process. However, 
though the proof of our principal result could be expedited by appealing to some 
advanced work on Brownian motion xe preferred a presentation using only the 
simpler and better known properties of the process. 

The Brownian motion process can be described as a probability space whose 
elements are all continuous functions defined on the whole real line and vanish- 
ing at the origin. The principal aim of this paper is to pro\-e the, to US rather 
unexpected, result that the probabilify of the set of fw&ions uAich increase at least 
at one point is zero. [A function is said to increase at a point if its values slightly 
to t#he right (left) of this point are not smaller (larger) t,han its value at the 
point,.] 

A formal statement of this result, will be given in the nest section and its 
significance will be discussed in the following one. Section 4 will give an inter- 
esting, though wrong and leading to a wrong result, heuristic argument. The 
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next three sections will be devoted to the proof of the main result, while Dhe 
last section will present some remarks. 

2. Statement of main result 

Notwithstanding its being so well known we will define the Brownian motion 
process, using the occasion to introduce notations employed in the sequel. 

The separable Brownian process may be defined as a probability space 
(Q, (A, P) whose elements w E 0 consist of all real functions z,(t) defined and 
continuous on --oo < t < a) and satisfyiug 

(2.1) ZJO) = 0; 

whose measurable sets are the elements of the sigma field generated by the sets 

(2.2) B(s, t; a) = {cd:zJt) - 2,(s) < a>, 

--oo<s<t<w,---ccl<a<w 

completed wit.h respect to the measure P defined hereafter; and whose proba- 
bility measure P is determined by 

(2.3) 

and 

for any finite number of triplets (si, ti; a,), provided the open intervals (a,, ti), 
where i = 1, due, n, are disjoint. Throughout this paper (w: . . .} denotes the 
set of w satisfying . . . . Sometimes w: is omitted for brevity; this is doue system- 
atically in the braces following the probability sign P. 

These conditions imply that the process is (strongly) Markovian. We also note 
in particular the symmetric distribution of t)he increments given by (2.3); t(he 
translat8ion invariance, that is, the fact that t,he mapping 

(2.5) -L(l) 4 Td(f + lo) - a&I), --m <t<m, 

is, for every - ~0 < f. < Q) , a measure preserving mapping of fi onto itself; and 
the homogeneity relation, that is, the property that the mapping 

(2.6) &(t) --+ L so(&), --63 <t<w, 
u 

is, for every u z 0, a measure preserving mapping of fi onto itself. All these 
propert,ies of the Brownian process will be repeatedly used without specific 
mention. 

Next we define carefully the notion of a point of increase (which might actu- 
ally be better named a point of nondecrease). 

DEFINITIOK. A point to is said to be a point Qf increase of size ~3, where A > 0, 
of the real function f(t) I if f(t) is e me in the interval to - A 5 t s to + A awl d f d 
satisjks 
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(3.7) max f(t) = f(td = fb se;+Af(C. lo -A sf sfo 

Also to is said to be a point of increase off(t) or, equivalently, f(t) is said to increase 
at to, if to is a point of increase of size A of f(t) for some A > 0. 

We can now state our main result. 
THEOREM 1. Almost all Brownian paths are nowhere increasing, that is, 

(2.59 P{d,t) has at least one point of increase} = 0. 

3. Discussion 

It is important to distinguish carefully between those properties of the process 
which hold almost surely (that is, with probability 1) everywhere and those that 
hold almost surely almost everywhere (that is, except for a set of t-possibly 
depending on wf Lebesgue measure zero). The latter kind of result is usually 
much easier to establish; indeed, it is in general sufficient to prove that a prop- 
erty holds almost surely for t = 0, apply (2.5) to deduce that it holds almost 
surely for any prescribed to and then use Fubini’s theorem to conclude that it 
holds almost surely almost everywhere. And, of course, if a property holds almost 
surely almost everywhere it may yet fail to hold almost surely everywhere. 

A pretty obvious but pertinent example is the following. It is immediate that 
P{xw(t) $0 for 0 5 t 5 A} = 0 for every A > 0; hence the set of (local) maximum 
points of xu(f) is, almost surely, a null set. On the other hand it is perhaps even 
more immediate that P{xw(t) is monotone throughout an interval of length 1) = 0 
and hence, zW(t) being continuous, P{xo(t) has at least one maximum} = 1. In- 
deed, it can be shown with very little effort that the set of points of maximum is, 
almost surely, of the power of the continuum in every nonempty open interval. 

To prove that a property holds almost surely everywhere we must usually find 
a way to reduce the problem to one involving a countable number of points. -4 
simple illustration is furnished by the following: 

(3.1) 
p 

-I 
lirn sup Is(t + h) - 2,(t) I 
0 <iA+0 h 

=ooforallt =l. 
> 

To establish (3.1) it is sufficient to prove that for every K > 0, A > 0, almost 

surely, there are no points t for which IzJt + h) - z@(t)1 5 Kh holds for all 
0 5 h s A. Moreover, it is enough to show this for 0 2 t 5 1. Assume to the 
contrary there exists such a point t. Then, if (i - 1)/n 5 t $ i/n, for i = 1, 2, 
. . . , n, and n is sufficient,ly large we would have 

(3.2) 
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These t(hree conditions are independent, and their joint probability is smaller 
than [1H/(27rn)193. This is a bound for the probability that any specific inter- 
val Hi - W n i n contains a point t with the above property. Since the unit , / 1 
interval contains n such small intervals the probability that there is a point 1 
with the indicated property in (0, 1) is < constant n-1’2. This being true for all 
large n, the proof is achieved. 

An elaboration of the same argument can yield not only (3.1), which implies 
almost sure nonderivability everywhere, but also stronger results, for example, 
the fact that the Brownian paths almost surely satisfy nowhere a Lipschitz con- 
dition of any order LY > I/-. 3 All these results, the f&t ones showing the almost 
sure strong oscillatory character everywhere of the Brownian process, are due to 
Paley, Wiener and Zygmund [-I]. (See L&y [3] for further results of this nature.) 

It will be not(iced that the proof of (3.1) was deduced from the fact that having 
bounded right-hand derivatives at a point 1: implies certain properties of z@(t) in 
small intervals close to t and not nmessarily containing it [otherwise the independ- 
ence could not have been used to estimate the probability of (3.2)]. The property 
of being a point of increase is much more delicate and its trapping is considerably 
more troublesome. 

4. A wrong heuristic argument 

il most useful tool in the study of Brownian motion is the so-called reflection 
principle (which is, indeed, of wider applica.bility since the translation invariance 
is not needed and only the symmetric distribut’ion of the increments, but not 
their specific form, is invoked). This principle a.sserts that the mapping (reflec- 
tion at T, where r 2 0) 

is a measure preserving transformation of Q onto itself. 
A well known importsant consequence of the measure preserving character of 

(-1.1) is t.he formula 

(4.2) P { max xw(2) > 2&l- = 
ogj7 

u >= 0, T > 0. 

Indeed, the set whose probability is evaluated may be written as a union of 
three disjoint sets 

i 
w: ma5 .rY(t) > 21, z,(T) > u‘l 

OitsT J 

(4.3) U 
i 
w: max s,(t) > U, x,(T) = ‘t( 

OStST I 
U 

i 
w: max .xC(t) > 7(. s,(T) < 7cl. 

OstST - I 
But the second of these sets has proba,bility zero while the other two are mapped 
on one another by reflect,ion at 7, where 7 = 7, is the smallest positive value of 
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f for which r@(t) = v. Hence the probability in question is twice the probability 
of the first set in (4.3)) which is identical with (o:z,(T) > U} and the result 
follows from (2.3). 

Now it is observed at once that if T is a point where r,(f) has a (local) maxi- 
mum then reflection at 7 n-ill transform it into a function for which 7 is a point 
of increase. Since there are, almost surely, many maxima, it would seem to follow 
that’ there are also many points of increase. 

It is, however, easy to discern a gap in this argument. Ke deliberately stated 
t,he reflection principle somewhat vaguely. To make it operative T = rW must be 
what is called a Markov time, t,hat is, besides being a random variable (that is, 
a measurable function of U) it must be defined in terms of s,(t) for 1 d TV. This 
is certainly the case if 7w = min {t:t 1 0, zW(t) = U> (first crossing time) and 
hence the derivation of (4.2) is correct. But the fact that 7 is a point of maximum 
depends necessarily on the behavior of CL(~) slightly to the right of 7. 

One yet feels that the above objection could be circumvented. Though simple 
attempts such as reflecting at the first crossing time of a preassigned height fail 
(since the set of values at the points of maxima though, almost surely, of the 
power of t’he continuum is yet of measure zero), it seems that it should be possi- 
ble to salvage the argument by more elaborate devices. 

After all why should a path CL(~), at every point to for which z,(to - h) S xU(tO) 
for sufficiently small h > 0, “prefer” going down, thus creating a maximum, over 
going up? (Of course, to the right of “most” such points the path does neither; 
it oscillates.) 

In view of t,hese considerations the theorem stated in section 2 is somewhat 
surprising. It turns out that the above attempt,ed disproof is, not only delicately 
but quite definitely, wrong. We thought it instructive to bring the heuristic ar- 
gument since it constitutes a fine example of the pitfalls courted by disregarding 
the Markovian injunction. It is also the only natural example known to us where 
the reflection principle, indiscriminately applied, yields wrong results. 

In the last section we shall say a few words of explanation, based on our proof, 
about this perplexing preference of maxima over points of increase. 

6. Outline and reduction of the proof 

To est,ablish the theorem it, is enough t,o prove that, for any given A > 0, 

(5.1) P-:X,(~) has at least one point of increase of size A) = 0, 

since the event in (2.8) is the intersect,ion of the events in (5.1) with A = l,Q, 
l/3, .‘.. Moreover, by the homogeneity property, (5.1) for one A > 0 implies 
it for all A > 0. Thus it is enough to prove (5.1) for a specified A; we choose 
A = 2, 

Furthermore, by the translation invariance, 

(5.2) P(x,(t) has at least one point of inc.rease of size 2 in (0, 1): = 0 
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implies the same statement without the restriction “in (0, l).” Hence the proof 
of the theorem is reduced to that of (5.2). To simplify the writing we shall intro- 
duce the following notation, for --03 < a $ b < 0~ , 

(5.3) KJ(a, b) = ,TFJ* 4q, 
-- 

(5.4) U% 6) = ag;b d>. 

Then (5.2) may be rewrit,ten as 

(5.5) P{M,(t - 2, t) 5 &(t, t + 2) for at least one t in (0, 1)) = 0. 

We now int,roduce the even& 

(5.G) 
1 ( 

ii k-1 
AP) = w:.Mu ; - 2, - < A 

n > ( 
= Y x1,“-L+2 , 

n n >I- 

n = 1, 2, . . . ; k = 1, 2, . . ., 2n. 

Clearly, the event described in (5.5) implies at least one of the events 
A:“’ . . . 1 , AF’. Hence (5.9, and our theorem, would follow from 

(5.7) lim PfkCjlL4F)j = 0. 
n=m 

Let cl, CZ, * * . , ~10 denote universal finite positive constants. It is quite easy to 
establish (see lemma 3) that 

(5.8) P(*4gQ} < > 72 = 1,2, -“; 

however, this does not suffice to prove (5.7). Since, on the other hand, 

by lemma 4, something more will be necessary. The idea is to show that the 
occurrence of an event -4p’ increases t,he a priori probability of 9!“:1 occurring. 
It will be more expeditious to work with expectations. Put’ 

(5.10) 

and 

(5.11) 

Then (5.7) is equivalent t,o 
(5.12) lim I’{Sp’ 2 11 = 0. 

n=s 
Let E denote espectation. Since 
(5.13) E(Sgy 2 E(sg’ISp 2 l)P(S2’ 2 l} 
and since, by (5.8), 
(5.14) E(Sh??) < %I, 
equation (5.12) would follow from 

(5.15) lim E(S@lISF) 2 1) = ot. 
n=m 
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Thus our problem is reduced to proving (5.15) and this will constitute our main 
effort. 

From now on n is kept fixed; therefore the superscript in A$“, YP), Sp will be 
omitted and the dependence on n will not be explicitly displayed in the random 
variables and events defined hereafter. 

It is not difficult to show that P(&+ n Ak+,) = E(YkYk+,) > cs/nj for j 2 1, 
which implies E(&S,IYk = 1) > (G/G) log n, by (5.9). Unfortunately, very little 
can be deduced from this fact since the conditioning events are not disjoint. It 
will be necessary to proye an analogous result with the disjoint conditioning 
events 

k-l 

(5.16) BI, = Ak - ,v, A, = {I-k = 1; f-l [As, = l> ) 1; = 1, 2, . a I, n. 

To abbreviate we put 

(5.17) 
1 if Yk = Xn: = 1 

ZI, = 
0 otherwise 

lc = 1, 2, . - ‘) n 

and shall establish a result concerning E(&~Z, = 1) from which we shall be 
able to deduce (5.15) and thus complet,e the proof. 

6. Lemmas 

These lemmas are formulated in a form suited to our needs and their generality 
and sharpness can easily be augment)ed. On the other hand we went to some 
trouble to prove them more or less elementarily. We mention in particular that 
lemma 8 should be directly deducible from Doob’s result’s [l] (though Ohis may 
not be too easy since the convergence of the series in [I] get,s very poor when 
small parameters are involved). 

LEMMA 1. For every A 2 E > 0 we h~uce 
li2 

(6.1) P{&(E, E f A) 2 O> > $ ; 
0 

. 

PROOF. From (4.2) we obtain 

(6.2) 

P{ii,(~, E + A} 2 0) = -& a~ km P{A,(O, A) 2 -u,\z,(E) = u} exp (2) dzc 

=7k 2 
1/2nA 

exp 
-z? 

(-> 2A 
dz exp 

--I2 
(4 2E 

du 

1 2 EA -- =- - 
-\/2ae t/znA e + A 
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LEMMA 2. For every A 2 e > 0 we hcwe 

(6.3) 

and (6.3) follows from the preceding lemma. 
LEMMA 3, Tl'e h.aw, for ecery E > 0, A > 0, 

(6.5) P(Mu(-- A, 0) 4 &(E, E + A)] < 2. 

PROOF. Again by (4.2) we have 

(6.6) P{Mm(-A, 0) 5 Aw(e, E + A)) 

m P(&(-A, 0) S u}P(&(E, E + A) 

2 O~X~(E) = u> exp 

REMARK. Inequality (6.5) with t = l/n and A = 2 - l/n yields (5.8). 
LEMMAS. 4. For every A >= E > 0 we have 

(6.7) P(Mw( - A, 0) 5 d,(e, E + A)} > c2 ; 

PROOF. As before 

(6.8) P(Mu(-A, 0) 5 A,(E) E + A)} 

_,-;-;),,(;,;+A)} 

and (6.7) follows from (6.1). 
REMARK. Inequality (5.9) follows from (6.7) with E = l/n and A = 2 - l/n. 
LEMMA 5. lve have, for all 0 5 u 5 l/2, 

(6.9) 
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1’1100F. The complementary proba.bility to t,hat in (6.9) is 

The second probability in (6.10) is smaller t,han the probability that zw(t), con- 
sidered for all t 2 0, att’ains the value 1 - u before it does the value -u. This 
is well known to be exactly U. Recalling the classical problem of the gambler’s 
ruin, calling it. p(u), the assertion follows immediately from p(u) + ~(1 - u) = 1 
a’nd ~[(uI + 11?)/2] = [P(Q) + p(u~)]/2. From t.his and (4.2) it follows that 

(6.10) is smaller than 1 - (2/v/z) Jo” exp (-22) dz + U. Hence the probabilit’y 

in (69) is greater than 

(6.11) 

This proves lemma ii for sufficiently small U. Since the left side of (6.9) is clearly 
symmetric about u = l/2 and monotone from 0 to l/2 [because of the continuity 
of ro(t)] the result is fully established. 

LEMMA G. We have, for all 0 S u 2 l/2, 

(6.12) 1'(-76 - t g L,(t) 2 1 for 0 5 t 5 11.&(l) = 0) 2 C&. 

PROOF. To prove (6.12) we have to use the result that the probabilities in 
the ISed” Brownian motion process [that is, conditioned by ~~(1) = 0] may be 
evaluated by remarking that the mapping (1 + t)~,[t/(l + t)] 3 zw(t) is a 
measure preserving mapping of the tied process on (0, 1) onto the ordinary 
process on (0, = ). (See, for example, Levy [2], [3] or Doob [I] ; the result is easily 
verified on observing that t’he two processes are Gaussian and comparing the 
covariance functions.) Therefore the probability in (6.12) is equal t,o 

(6.13) 

min P i --u - t 5 ru(t) 5 1 + t for t 2 I ‘zU 1. 
2’ 0 2 

=o 
-us051 > 

which, by (6.9), is greater than 

(6.14) 

and the second factor is P(IzJt)l s l/2 + t for t 2 O> > 0 (we omit the proof 
of this well known fact which can be derived directly or, also, by use of the trans- 
formation mentioned in the beginning of the proof of this lemma). 

LEMMA 7. We have, for all y 2 1 and 0 5 u 5 l/2, 
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(G. 15) P(-n s AJO, 1) 5 &(O, 1) 5 1 + y/G(l) = $I3 2 Ml. 

PROOF. Remarking (see, for example, Levy [2], [3]) that the process condi- 
tioned by zU(l> = y is transformed into that conditioned by ~(1) = 0 on re- 
placing zU(l) by zW(l) - ty we see that the probability t’o be evaluated is 

(6.16) PI-u - ty 5 sw(t) 5 1 + (1 - t)l~ for 0 5 t 5 llzo(t> = 01, 

and (6.15) follows at once from (6.12). 
LEMMA 8. We have, for all 0 S u j l/2 and 0 5 c 5 l/2, 

(6.17) P{ -u 5 A,(O, 2) 5 JL(O, 2) 5 r&42) + v, z&42) 2 2) 2 WV. 

PROW. The probabilit,y to be evaluated is greater than t&he product 

(6.18) Pi-u s A,(O, 1) 5 M&,(0, 1) 5 x0(l) + 1, &o(l) 22 11 

PI-1 s A&, 2) - L&(l) 2 MJl, 2) - a,(2) 5 v, G(2) - &9(l) 2 11 

which, by the previous lemma, is greater than 

(6.19) C&P{&Jl) 2 l}C52/P{L(2) - &u(l) 2_ 11. 

LEMMAY. We have, for all 6 > 0 and 0 S u S (tj/8)1’2 and 0 i v S (6/8)“‘, 

(6.20) P{-u 6 &Jo, 6) s M,(O, 8) I x,(6) + v, ZJS) 2 4) 2 c7 y 

PROOF. This follows at. once from (6.17) and the homogeneity property. 

7. Completion of the proof 

Returning to the not.ations of section 5 we shall est,imate E(Yk+JZk = 1) = 
P<Ak*jpk}. 

Since Ak = (Yk = l} implies h,[i/n, (i - 1)/n + 21 = h,(i/n, k/n) for 
i = 1, 2, aa., h: - 1 and k = 1, 2, *‘a, n we may write Bk = Al, fi CI; where 

(7.1) Ck = w:Jf” L 2,%+ 
1 ( 12 

)>.1,(~7~)fori = 1,2, . . ..k-- l}. 

Therefore, 

(7.2) P(Bk) = P(CJ 

where 

(7.3) 

[All this is possible since Crc is determined in terms of XL(~) for t s Jz/n.) 
Similarly, we may wi%e, for j = 1, 2, . . . , 2n - k, 

(7.4) Bk n dktj = CJ: f7 C& n CI:,~ n CL,> 

where 
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(7.11) Ok,;- = 

Hence 

(7.12) p(~, n A~+$} 2 P(Cr n Ckrj n L&1 - PfQ - DkJ - p@ - D%. 

We have 

where FL(u) is given by (7.3). The int)egrnnd in (7.13) is greater than the product 

(7.14) 
jdru 6. -tu<n, b/+j---l 

0 n - ( n ‘11 

By lemmas 9 and 2 with 6 = (j - l)/ n and v = l/t/n and E = l/n, this is, for 

j > 1, not smaller than c,c~u/(~ - l)dFfor u s [(j - 1)/8n]1/2. Hence 

/ 

[(j -1) /Ew* 

(7.15) u dFk(th). 
a 

BY (4.2), 
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(7.16) 

and, t,herefore, 

(7.17) 

for values of j for which j > 1 + 6 log n. Combining (7.12), (7.15) and (7.17) 
we obtain 

(7.18) P(Bk n Al,+> > -5 W3 
s 

[ij-l)/Swp 

0 
u dFk(U) - $ 

for all values of j satisfying 

(7.19) 1 + 6 log n < j 5 2n - k. 

Returning to (7.2) we have 

(7.20) 

s 

[(j-1)/&%11'" 

P(Bk} 5 P(Ck> 
0 

~(*~(%,~~~a)~~~(~)-U)dh(zl) 

+ P {L (:) - 3&(~) > (my}. 

By (4.2) t,he integrand in this expression is smaller than 

(7.21) P~*-(~,~+l)~~~(~)-~)=~I”c-~~/zdu~~, 

while, as before, the last summand is for sufficiently large n certainly less than 
l/n3 < l/n2 forj satisfying (7.19). Thus we have from (7.20) that 

(7.22) P(B,) < P(G) 
s 0 

t(‘-1”8n’1’a~ #k(u) + $ 

for ,j satisfying (7. luj. Hence we have, for these values of ;j, 

(7.23) either P{BJ < $ or P{Bk) < 2P{Ck} 
J 

‘(j-“‘snl”n u dFk(u). 
0 

From this and (7.18) we obtain the inequality 

(7.24) 
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whenever 

(7.25) 

and j satisfies (7.19). 
Since R, = (2, = 1) and As+j = {Yk+j = l}, we have from (7.24) 

(7.26) E(&lBk) > c C 
1 

1 +G log 7% <j 52n -k 2(jCT 1) - G 1 
whenever (7.25) holds. Therefore we have for 1~ = 1, 2, * . s, n and all n > c9 
sufficiently large 

(7.27) E(S%$L) > Cl0 log VJ 

for the values of k satisfying (7.25). 
Denoting by B the union of those Bk for which (7.25) is valid we deduce from 

(7.27) and the disjointness of the Bk that 

(7.28) E(&,1B) > coo log n. 

Now, 

(7.29) p(B) 2 p(B,} = p{-41) I; 

by (5.9) while 

(7;30) P 

since the B, not in B have each probability 52/d. As 

we have from (7.28), (7.29) and (7.30), 

(7.32) 

for n > c9. 

Since the conditioning in (7.32) is exactly X, 2 1, inequality (7.32) implies 
(5.15) thus completing the proof of theorem 1. 

8. Remarks 

8.1. Very slight modifications are required in the details of our proof that, 
for any given real number a, the functions zo(t) + at are also almost surely 
nowhere increasing (this may also be deduced directly from theorem 1). There- 
fore, almost surely, there are no points t for which zw(t + h) - z,,(L) + ah has 
the same sign as h, for all --h(t, U) < h < h(t, w), with h(t, W) > 0. Hence 

(8.1) lim inf z”(t + h, - zw(t> < _ 

h = a 
h-0 
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almost surely everywhere. This, being true for every Q, implies that the lower 
derivative of zU(l) is - 00. 

Since throughout, we may have trcat,cd points of decrease equally well as 
points of increase we have 

THEOREM 2. Almost all Brownian paths have everywhere lower derivative --3o 
and upper derizlatize +a, that is, 

(8.2) 

r llim illf z,(’ + h) - x,(f) zJt + h) - x,(f) 

1 h+O h 
= -=, limsup 

h 
=wforallt =l. 

h+O > 

8.2. From this theorem and (3.1) it follows that the four derived numbers 
D-, D-, D+, D+ of zw(t) satisfy, almost surely, everywhere the relat,ions 

(8.3) 
max (ID-I, ID-I) = max (!D+l, ID+/) = max (D-, D+) = =? 

min (D-, D+) = - m 

The asymmetry between interchanging left and right, (- and +) and lower and 
upper (subscript and superscript) is apparent. This is again of the same nature 
as that discussed in section 4 and similar to that occurring in the Denjoy-Young- 
Saks theorem in an entirely nonprobabilistic context. If a function f(t) has a 
(strict) maximum of size A at a point $0 then it5 cannot have other maxima be- 
tween to - A and to + A; however, if to is a point of increase it does not preclude 
other arbitrary near points from being also points of increase. As a matter of 
fact it makes it “easier” for them to be points of increase, since the fact that 
to is a point of increase of size A makes part of the conditions in the definition of a 
point of increase redundant. Hence, maxima of prescribed size necessarily occur 
separated whereas points of increase tend to occur, if at all, in bunches. It is 
precisely these considerations that mere utilized in our proof of theorem 2 and 
that lie behind the apparent paradox discussed in section 4. 

8.3. Our results can be extended to certain other stochastic processes. They 
also can be sharpened somewhat; we mention the problem to what extent can 
h in the denominator in (8.2) be replaced by an odd function approaching zero 
less rapidly than h. Another interesting question is whether theorem 1 remains 
valid if instead of considering points of increase we consider points t where 
[zo(t + h) - z,(t)]h 1 0 for all sufficiently small h for t + h is rat’ional (t need 
not be rational). 
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