ON A COMBINATORIAL PROBLEM

P. ERDÖS

Let \mathfrak{F} be a family of sets. \mathfrak{F} is said by E. W. Miller [3] to possess property B if there exists a set B such that

$$\begin{array}{ll} F \cap B \neq \emptyset & \text{for every } F \in \mathfrak{F} , \\ F \notin B & \text{for every } F \in \mathfrak{F} . \end{array}$$

Miller used the letter B in honour of Felix Bernstein, who in the early years of this century proved that the perfect sets have property B and using this "constructed" a totally imperfect set of power continuum (that is, a set of power continuum which does not contain a perfect set). I put constructed in quotation mark, since he used the axiom of choice (in fact, without the axiom of choice the existence of a totally imperfect set has never been proved).

Several other well known theorems can be formulated in terms of property B. For example, a well known theorem of van der Waerden states that if we split the integers into two classes, then at least one class contains for every k an arithmetic progression of k terms. This theorem can be formulated as follows: The family of all arithmetic progressions of k terms does not have property B.

Hajnal and I [2] recently published a paper on the property B and its generalizations. One of the unsolved problems we state asks: What is the smallest integer m(p) for which there exists a family \mathfrak{F} of finite sets $A_1, \ldots, A_{m(p)}$, each having p elements, which does not possess property B?

For p=1 there is no problem since m(p)=1. Trivially m(2)=3 and by trial and error we showed m(3)=7. $m(3) \leq 7$ is shown by the set of Steiner triplets (1,2,3), (1,4,5), (1,6,7), (2,4,7), (2,5,6), (3,4,6), (3,5,7). It is easy to see that every set which has a non-empty intersection with each of these sets must contain at least one of them. By a somewhat longer trial and error method we showed m(3) > 6. Thus m(3)=7. The value of m(p) is not known for p>3 and it does not seem easy to determine m(p) even for p=4. We further observed that $m(p) \leq \binom{2p-1}{p}$ by defining the family \mathfrak{F} as the set of all subsets taken p at a time of a set of 2p-1 elements.

We shall now show that for all $p \ge 2$:

(1)
$$m(p) > 2^{p-1}$$

and for every $\varepsilon > 0$ if $p > p_0(\varepsilon)$:

(2) $m(p) > (1-\varepsilon)2^p \log 2.$

 \overline{A}_k will denote the number of elements of A_k , and $A_i \setminus A_j$ will denote the set of those elements of A_i which are not contained in A_j . Instead of (1) and (2) we shall prove the following

THEOREM 1. Let $\{A_i\}, 1 \leq i \leq k$ be a family \mathfrak{F} of finite sets, $\overline{A_i} = x_i \geq 2$. If

$$\sum_{i=1}^k \frac{1}{2^{\alpha_i}} \leq \frac{1}{2}$$

or

(4)
$$\prod_{i=1}^{k} \left(1 - \frac{1}{2^{\alpha_i}}\right) \ge \frac{1}{2}$$

holds, then \mathfrak{F} has property B.

(1) clearly follows from (3) and (2) from (4). In fact (4) clearly implies (3), and we include (3) only because its proof is very simple.

I do not know the order of magnitude of m(p) and cannot even prove that

(5) $\lim_{p \to \infty} m(p)^{1/p}$

exists. Quite possibly the limit in (5) is 2.

Put $\bigcup_{i=1}^{k} A_i = T$, $\overline{T} = n$. If \mathfrak{F} is a family of sets, \mathfrak{F} will denote the number of sets in the family. Denote by \mathfrak{F}_T the family of sets S for which

(6)
$$S \subset T, A_i \cap S \neq \emptyset, A_i \notin S, 1 \leq i \leq k.$$

We have to show that if (3) holds then $\overline{\mathfrak{F}}_T > 0$ (since this implies that the family of sets A_i , $1 \leq i \leq k$ satisfying (3) has property B). Denote by \mathfrak{F}_i the family of sets S satisfying

(7)
$$S \subset T, A_i \subset S \text{ or } A_i \cap S = \emptyset.$$

Clearly an $S \subset T$ is in the family \mathfrak{F}_T if it is in none of the families \mathfrak{F}_i , $1 \leq i \leq k$ (that is, it satisfies (6) if it does not satisfy (7) for any $i, 1 \leq i \leq k$). By a simple sieve process we thus have

(8)
$$\overline{\overline{\mathfrak{F}}}_T \geq 2^n - \sum_{i=1}^k \overline{\overline{\mathfrak{F}}}_i + 1$$
.

The proof of (8) is indeed easy. 2^n is the number of all subsets of T, and to obtain $\overline{\mathfrak{F}}_T$ we have to subtract away all the sets of \mathfrak{F}_i , $1 \leq i \leq k$. But the sets which contain $A_1 \cup A_2$ have been subtracted away twice and there is at least one such set (namely T), which explains the summand +1 on the right of (8). We evidently have

(9)
$$\overline{\mathfrak{F}}_i = 2^{n - \alpha_i + 1}$$

since clearly there are $2^{n-\alpha_i}$ sets $S \subset T$ satisfying $A_i \subset S$ and $2^{n-\alpha_i}$ sets satisfying $A_i \cap S = \emptyset$. From (8) and (9) we have $\overline{\mathfrak{F}}_T \geq 1$ if (3) is satisfied. This proves the first statement of Theorem 1.

To prove the second statement we need the following

LEMMA. Let $T \subseteq T_1$, $\overline{T}_1 = m \ge n$. The number of subsets $S \subseteq T_1$ which do not contain any of the sets A_i , $1 \le i \le k$ is greater than or equal to

(10)
$$2^m \prod_{i=1}^k \left(1 - \frac{1}{2^{x_i}}\right),$$

with equality if and only if the sets A_i are pairwise disjoint.

We use the set $T_1 \supset T$ only to make our induction proof easier. Denote by $f(A_1, \ldots, A_j; T_1)$ the number of subsets S of T_1 not containing any of the sets A_i , $1 \leq i \leq j$, and by $f(A_1, \ldots, A_j; A_{j+1}, T_1)$ the number of sets $S \subset T_1$ which contain A_{j+1} , but do not contain any of the sets A_i , $1 \leq i \leq j$.

If the sets A_i are pairwise disjoint, we evidently have

(11)
$$f(A_1,\ldots,A_k;T_1) = 2^{m-n}\prod_{i=1}^k (2^{\alpha_i}-1) = 2^m\prod_{i=1}^k \left(1-\frac{1}{2^{\alpha_i}}\right),$$

since we obtain the sets $S \subset T_1$, $A_i \notin S$, $1 \leq i \leq k$ by taking the unions of all the proper subsets of the sets A_i with any subset of $T_1 \setminus T$. Thus there is equality in (10).

Assume next that the sets A_i are not pairwise disjoint, say $A_1 \cap A_2 \neq \emptyset$. If k=2, a simple argument shows that

$$f(A_1, A_2; T_1) = 2^m - 2^{m-\alpha_1} - 2^{m-\alpha_2} + 2^{m-n} > 2^m \left(1 - \frac{1}{2^{\alpha_1}}\right) \left(1 - \frac{1}{2^{\alpha_2}}\right),$$

where $n = \overline{A_1 \cup A_2} < \alpha_1 + \alpha_2$. Thus for k = 2 (10) holds with the sign of inequality. Assume next that if we have any k-1 ($k \ge 3$) sets which are not pairwise disjoint, then (10) holds with the sign of inequality. We shall show that the same is true for k sets $A_1, \ldots, A_k, A_1 \cap A_2 \neq \emptyset$.

By a simple argument we have

(12)
$$f(A_1,\ldots,A_k;T_1) = f(A_1,\ldots,A_{k-1};T_1) - f(A_1,\ldots,A_{k-1};A_k,T_1)$$
.

By our induction hypothesis we have

(13)
$$f(A_1,\ldots,A_{k-1};T_1) > 2^m \prod_{i=1}^{k-1} \left(1-\frac{1}{2^{\alpha_i}}\right).$$

Further clearly

(14)
$$f(A_1,\ldots,A_{k-1};A_k,T_1)=f(A_1 \setminus A_k,\ldots,A_{k-1} \setminus A_k;T_1 \setminus A_k).$$

To every subset S' of $T_1 \ A_k$ which does not contain any of the sets $A_i \ A_k$, $1 \le i \le k-1$, we make correspond 2^{α_k} subsets S of T_1 which do not contain any of the sets A_i , $1 \le i \le k-1$. It suffices to consider the sets

$$(15) S' \cup S'', S'' \subseteq A_k.$$

Clearly if two subsets S_1' and S_2' of $T_1 \setminus A_k$ are distinct, all the sets (15) are distinct. Thus we have

(16)
$$f(A_1 \setminus A_k, \ldots, A_{k-1} \setminus A_k; T_1 \setminus A_k) \leq \frac{f(A_1, \ldots, A_{k-1}; T_1)}{2^{\alpha_k}}.$$

From (12), (13), (14), and (16) we obtain

$$f(A_1,\ldots,A_k;T_1) \ge f(A_1,\ldots,A_{k-1};T_1) \left(1-\frac{1}{2^{\alpha_k}}\right) > 2^m \prod_{i=1}^k \left(1-\frac{1}{2^{\alpha_i}}\right),$$

which proves the Lemma.

The Lemma in fact follows immediately from the following special case of a theorem of Chung [1]: Let E_i , $1 \leq i \leq k$ be k events of probability β_i , \overline{E}_i denoting the event (of probability $1-\beta_i$) that E_i does not happen. Assume that for every i, $2 \leq i \leq k$:

(17)
$$P(E_1 \cup \ldots \cup E_{i-1} \mid E_i) \geq P(E_1 \cup \ldots \cup E_{i-1}),$$

where P(E | F) denotes the conditional probability of E happening if we know that F has happened. (17) implies

(18)
$$P(\overline{E}_1 \cap \ldots \cap \overline{E}_k) \ge \prod_{i=1}^k (1-\beta_i),$$

with equality only if there is equality in (17) for every $i, 2 \leq i \leq k$. We obtain our Lemma by defining the event E_i as the event that $S \subset T_1$ contains A_i .

To complete the proof of Theorem 1 we have to show that if A_i , $1 \leq i \leq k$ satisfies (4), then $\overline{\mathfrak{F}}_T > 0$ (see the proof of (3)). Clearly $2^n - f(A_1, \ldots, A_k; T)$ equals the number of subsets S of T for which $A_i \subset S$ holds for some $i, 1 \leq i \leq k$, and it also equals the number of subsets $S \subset T$ for which $A_i \subset T \setminus S$ for some $i, 1 \leq i \leq k$. Denote by L the number of subsets $S \subset T$ for which $A_{i_1} \subset S$ and $A_{i_2} \subset T \setminus S$ for some i_1 and i_2 .

A simple argument shows that

(19)
$$\overline{\mathfrak{F}}_T = 2^n - 2\left(2^n - f(A_1, \ldots, A_k; T)\right) + L.$$

If the sets A_i are not pairwise disjoint, then (4), (19) and our Lemma implies $\overline{\mathfrak{F}}_T > 0$. If the sets A_i are pairwise disjoint (in fact if $A_1 \cap A_2 = \emptyset$), then L > 0 since $A_1 \subset A_1$, $A_2 \subset T - A_1$. Thus in any case (4) implies $\overline{\mathfrak{F}}_T > 0$ and hence Theorem 1 is proved.

By slightly more complicated arguments we could prove the following

THEOREM 2. Let A_1, A_2, \ldots be a finite or infinite sequence of finite sets satisfying

$$\overline{\overline{A}}_i \ge 2$$
 and $\prod_i \left(1 - \frac{1}{2^{\alpha_i}}\right) \ge \frac{1}{2}$,

and A_1', A_2', \ldots a finite or infinite sequence of infinite sets. Then the family $\{A_i\} \cup \{A_i'\}$ has property B.

Now one can ask the following problem which I cannot answer: Let $\{A_i\}$ be a finite or infinite family of finite sets which does not have the property B and for which $\overline{\overline{A}}_i \ge p \ge 2$ for all *i*. What is the upper bound $C^{(p)}$ of $\prod_i (1-2^{-\alpha_i})$ and the lower bound C_p of $\sum_i 2^{-\alpha_i}$? Very likely $C^{(2)} = \frac{27}{64}$ and $C_2 = \frac{3}{4}$. Probably

$$\lim_{p \to \infty} C^{(p)} = 0, \quad \lim_{p \to \infty} C_p = \infty.$$

If $f(A_1, \ldots, A_k; T) > 2^{n-1}$, our proof immediately shows that the family $\{A_i\}$, $1 \leq i \leq k$ has property B, but if $f(A_1, \ldots, A_k; T) = 2^{n-1}$, the family $\{A_i\}$, $1 \leq i \leq k$ does not have to have property B, for instance if it consists of the subsets taken p at a time of a set of 2p-1 elements.

A family of sets \mathfrak{F} is said to have property B(s) if there exists a set B such that $F \cap B \neq \emptyset$ and $\overline{F \cap B} < s$ for every F of \mathfrak{F} .

Hajnal and I asked [2] what is the smallest integer m(p,s) for which there exists a family \mathfrak{F} of sets A_i , $1 \leq i \leq m(p,s)$ not having property B(s) and satisfying $\overline{A}_i = p$, $1 \leq i \leq m(p,s)$. Clearly m(p,p) = m(p), and we remarked that $m(p,s) \leq \binom{p+s+1}{s}$.

Using the methods of this note we can show that positive absolute constants c_1 and c_2 exist so that

$$(1+c_1)^s < m(p,s) < (1+c_2)^s$$
.

P. ERDÖS

REFERENCES

- K. L. CHUNG: On mutually favorable events. Annals of Math. Stat. 13 (1942), pp. 338-349.
- [2] P. ERDÖS and A. HAJNAL: On a property of families of sets. Acta Math. Acad. Hung. Sci. 12 (1961), pp. 87-123; see in particular problem 12 on p. 119.
- [3] E. W. MILLER: On a property of families of sets. Comptes Rendus Varsović 30 (1937), pp. 31-38.