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On a limit theorem in combinatorical analysis 

By P. ERD6S (Budapest) and H. HANANI (Haifa) 

Given a set E of n elements and given positive integers k, 1, (Es ks n), we under- 
stand by M(k, I, n) a minimal system of k-tuples (subsets of E having k elements 
each) such that every I-tuple is contained in at least one k-tuple of the system. 
Similarly we denote by m(k, I, n) a maximal system of k-tuples such that every 
I-tuple is contained in at most one set of the system. The number of k-tuples in these 
systems will be denoted by M(k, I, n) and Z(k. I. 71) respectively. 

Further we denote 
k 

p(k, I, n) = i?(k, I, n) . 0 ,~(k,i,ll)=~(k,z,n).I. 
n 

0 1 
Trivially 

(1) v(k, E, n) s 1 sp(k, f, n) 

holds. It can also be easily verified that the equalities in (1) can hold only if 

(2) 

n-h 

( ) l-h 
k-h 

( ) 

= imeger, (h=O, 1, . . . . I- 1), 

l-h 
[see e. g. [4]). So far it has been proved that under condition (2) the equalities in 
(1) hold for I = 2, k = 3,4, 5 (see [5]) and for I= 3, k = 4 (see [4]). R. C. BOSE suggested 
that perhaps the equalities in (1) hold for 2=2 and every k if n satisfying (2) is 
sufficiently large. 

On the other hand it has been already conjectured by EULER [2] and proved 
by TARRY [9] that for I =2, k = 6 and II =36 the equalities in (1) do not hold though 
the condition (2) is satisfied. 

For general n the problem has been solved completely by FORT and H~DLLTND 
[3] for the case 1=2, k=3. 

ERDBS and R~NYI [l] proved that for every k 

13) lim ~1 (k, 2, n) = yk 
n-e 

exists with 
(4) lim yr = 1 

I.-- 
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and moreover that for k =p and k = p + 1 (where p is a power of a prime) 

0) yp=yp+j = 1. 

It can be easily seen that the two statements 

16) limp(k, 1, n)= 1, lim v(k, Z, n)=l 
II-+- n-t- 

are equivalent and it may be conjectured that (6) holds for every k and 1. 
We shall prove that (6) holds for I = 2 and every k and also for I = 3 and k =p -I- 1. 

Theorem 1. For every integer k (k s 2): 

l.7) limp(k,2,n)=limv(k,2,n)=l. 
n-s ll’== 

PROOF. By (6) it suffices to prove 

(8) lim Y(k, I& n)=I. 
II-+- 

We fix the integer k and assume that 

(9) limv(k, 2, n)= 1 --E. 
n-w 

We show that for every positive integer d 

ilO) 

Trivially 

lim v(k, 2, &) = lim v(k, 2, n) = 1 - E. 
n-b- izz 

ill> lim v(k, 2, L+Z) slim v(k, 2, n). - - n--r- “-- 

Further let t = dn + r, (rid) then 

and therefore 
Z(k, 2, t) zZ(k, 2, dn) 

VP, 2, t) Sv(k, 2, dn). 
dn(dn - 1) 

t(t _ 1) . 

Consequently 
lim v (k, 2, t) slim v(k, 2, A) 
nQ II-t- 

and from (11) (10) follows. 
Suppose that n=kg where g is a multiple of (k!)‘. Divide the set E having n 

elements into k sets Ej (i = 1, 2, . ..> k) of g elements each. It is well known [X, 51 
that there exist g2 k-tuples such that each of them has exactly one element in each 
Ei and any two of them have at most one element in common. 

We form the system m(k, 2, rz) by taking the mentioned g’ k-tuples and further 
by taking all the k-tuples of the systems m(k, 2, g) consrructed on each of the sets 
Ei (i==l. 2, . ..) k). 
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If g is sufficiently large we have by (9), v (k! 2, g) > 1 - 3 E and thus 

v(k, 2, n)> 
k(k - 1) 3 
n(n - I) 

S-I-~& 

which contradicts (10). 

Theorem 2. If p is a power of a prime then 

w lim~(~f1,3,rz)=limv(p+1,3,n)=l. 
,I-+z.x n-r== 

PROOF. We shall use the notion of a finite Mobius geometry introduced b> 
HANANI [6]. If p is a power of a prime then a Mobius geometry MG(p, rj is a set 
of p’ + 1 elements forming a Galois field in which circles are defined as bilinear 
transformations of any line of the corresponding finite Euclidean geometry EG’(p, r) 
to which the additional element m has been adjoined. It is proved that any triple 
of elements in MG(p, u) is included in exactly one circle and that every circle has 
p + 1 elements. Using this construction our proof will be basically on the same lines 
as the proof of the theorem for I=2 given by ERDBS and RBNYI [l] except for a 
simplification. 

By (6) it suffices to prove 

(13) limv(p+1,3,n) = 1. 
n-c-2 

For 11 = p’+ 1, iMG(p, r) exists and therefore 

(14) v(p+l, 3,p’+l) = 1. 

By a simple computation it can be verified that to every E ~-0 there exists an 1~ 
depending on E only such that 

(15) v(p + I, 3,IZ) r 1 -&, (p’+ 1 SH cp’(l +q)). 

Take all the prime-powers qi 

06) p’ = 40’41<=qZ~...~~4t~ip*(lfpl?. 

By the theorem of HOCHEEEL and INGHAM [7] we have for p’ sufficiently large 

(17) 4i+l -9i<qJ’8* 

For every i, (i =O, 1, . . . . t) form the Mobius geometrices MG(q,, s) where s runs 
through all the integers between (log qo)* and q#4, We have 

V(qi+l,J,&+l) = Iv (i=O, 1, .‘.) f) 
and by (15) and (16) 

(18) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

li=o, 1, . . . , f; (logq,)~~s~q~). 

From (17) it follows that for s K q,$14 

(19) qf(l+ 7) 3 q;, , 
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and therefore for 11 satisfying &c rl I q;+ *, (i =O. 1, . . . . t) it f0lb.v~ frcm (15) and 
iIf 

(20) Y(Jl + 1,3, n,) > 1 - 2E 

and consequently (20) holds for every rz satisfying 4; <7? 5-s:. 
Considering q,/$, 3 1 + JM and s :? (log qO)” it follows (cj,/y,j” ;- yv and therefore 

qs,+‘-=q;, ((log~o)z ~;ssq:;I). 

Consequently (20) holds for every FI satisfying 

(211 qt$osmK + 1 < 11 < qf%Y”. 

Denote by I, the interval defined in (31). It remains to be proled tha: li7r sufficiently 
large v the intervals I,. overlap. This means that 

which is evident. 

(p’+l)l(losP“- ‘I’]+ 1 < @fYl 
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