THE MINIMAL REGULAR GRAPH CONTAINING A GIVEN GRAPH

P. Erdős, University College, London, and P. Kelly, University of California, Santa Barbara

Let G be an ordinary graph of order n which is not regular and whose maximum degree is $v>0$. Let H denote any regular graph of degree v which contains a subgraph isomorphic to G. We seek the minimal order possible for H. Let x_i denote the degree of the ith vertex in G, so $v - x_i$ is the "deficiency" of that vertex; let $\sigma = \Sigma (v - x_i)$ be the sum of the deficiencies and d be the maximum deficiency.

Theorem. The necessary and sufficient condition that $m + n$ be the minimal order possible for H is that m be the least positive integer such that:

1. $m \geq \sigma / v$;
2. $m^2 - (v+1)m + \sigma \geq 0$,
3. $m \geq d$ and
4. $(m+n)v$ is an even integer. The maximum value of m is n, and for each $n > 3$ there exists a graph G such that $m = n$.

Proof. Necessity. It is known that finite graphs H exist, so there is a minimal solution, say a graph H of order $m+n$, and $(m+n)v$ is clearly an even integer.

Let G' be the subgraph of H isomorphic to G and let A be the subgraph induced on the vertices of H not in G'. Then in H there are σ joins between the subgraphs G' and A. Since each of the m vertices of A receives at most v of these σ joins, $mv \geq \sigma$, and clearly $m \geq d$.

Denote by $m(A)$ the number of joins in A. The sum of the degrees of the vertices of A, as points of A, must be $mv - \sigma$, hence

(i) \[m(A) = \frac{1}{2}(mv - \sigma). \]

Then from $m(m-1)/2 \geq m(A)$, it follows that

(ii) \[m^2 - (v+1)m + \sigma \geq 0, \]

so all four conditions are necessary.

To establish the sufficiency, let m be the least positive integer satisfying conditions (1)-(4). Define a graph H by beginning with G and m extra independent points a_1, a_2, \ldots, a_m. Let p_1, p_2, \ldots, p_k denote the points of G with positive deficiencies d_1, \ldots, d_k. Let the completion of G be done in the following way. First, p_1 is completed by joins to the points $a_1, a_2, \ldots, a_{d_1}$ in succession. Then p_2 is completed by joins to successive points a_i, starting with a_{d_1+1}, which is taken cyclically to be a_1 if $d_1 = m$. These completions are possible because $m \geq d$. The degrees attained by points of A in this construction cannot differ from one another at any stage by more than one. So this is also true when the points of G are all complete.

Now let $\sigma/m = h + r/m$, where h and r are nonnegative integers and where $r < m$, and $h < v$ if $r > 0$. Then when the vertices of G have been completed the
set A of vertices a_i, $i = 1, \ldots, m$, consists of r points of degree $k+1$ and $m-r$
points of degree k. Since there are as yet no joins between points in A, any point
of the greatest remaining deficiency $v - k$ can be completed if $v - k \leq m - 1$. But
condition (2) can be written in the form

$$(iii) \quad v - \frac{\sigma}{m} \leq m - 1,$$

from which it follows that

$$(iv) \quad v - k \leq m - 1 + r/m.$$

Because $0 \leq r/m < 1$, while $v - k$ and $m - 1$ are integers, (iv) implies that

$$(v) \quad v - k \leq m - 1.$$

Thus there are in A sufficient points so that each point individually can be com-
pleted.

Finally, the collective completion of all the points in A will be possible if
the sum of the deficiencies is an even integer, that is, if

$$(vi) \quad r(v - k - 1) + (m - r)(v - k) = mv - \sigma$$
is even. But

$$(vii) \quad mv - \sigma = mv - [nv - 2m(G)] = (m + n)v - 2[nv - m(G)].$$
By assumption $(m + n)v$ is even, hence $mv - \sigma$ is even and the completion of all
points in A is possible.

Since $\sigma < nv$, the condition $m \geq \sigma/v$ cannot force $m > n$. Similarly $m^2 - (v + 1)m + \sigma \geq 0$ always holds for $m = v + 1$, and $v + 1 = n$. Condition (3) cannot force m to
exceed $n - 1$. The maximum possible value $m = n$, satisfying conditions (1) and
(2) cannot be increased by condition (4), since $(m + n)v = (n + n)v$ is necessarily
even. Thus in all cases $m \leq n$.

If $n > 3$, let G be the graph obtained from a complete graph of order n by
deleting one join. Then $v = n - 1$ and $\sigma = 2$, and the condition

$$(viii) \quad m^2 - nm + 2 \geq 0$$
implies that $m \geq n$.

The second author received support for this work from grant NSF-G23718.