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A gruph consists of a finite set of vertices some pairs of which are adjacent, 
i.e., joined by an edge. No edge joins a vertex to itself and at most one edge joins 
any two vertices. The degree of a vertex is the number of vertices adjacent to it. 
The complete k-graph has k vertices and @ edges. 

We shall say that a graph G has property (n, k), where n and k are integers 
with 25 kSn, if G has n vertices and the addition of any new edge increases 
the number of complete k-graphs contained in G. For example, let Ar{n) denote 
a graph with n vertices and n(k - 2) - (‘,I) edges which consist of a complete 
(k-2)-graph each vertex of which is also joined to each of the n - (k - 2) remain- 
ing vertices. A&z) contains no complete k-graphs but it is easily seen that with 
the addition of any new edge a compIete k-graph is formed. Hence, &(n) has 
property b, k). 
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We wish to determine the “minimal (n, k) graphs,” i.e., those graphs with 
property (n, k) and with the minimal number of edges. We prove the following 
result. 

THEOREM 1. For every pair of integers n and k, with 2 5 k 6 n, the only minimal 
(n, k) graph is dk(n). 

We will apply Theorem 1 to prove a conjecture of Erdijs and Gallai (see 
[l]). A set of vertices is said to represent the edges of a graph if each edge con- 
tains at least one of these vertices. A graph G is said to be edge p-critical if the 
maximal number of vertices necessary to represent all the edges of G is 9, but 
if any edge is omitted the remaining edges can be represented by p - 1 vertices. 
For example the complete (pi-l)-graph is edge p-critical. In [l] it is conjectured 
that an edge p-critical graph can have at most e:‘) edges. Theorem 1 immedi- 
ately implies this conjecture. In fact we prove 

THEOREM 2. Every edge p-critical graph has at most (“z’) edges and the only 
edge p-critical graph with (ps’) edges is the complete (p-l- 1)-graph. 

Finally we would like to state a conjecture. A bipartite graph (k, Z) is a bi- 
partite graph having k green and 1 blue vertices. A complete bipartite graph 
(k, k) is a graph where ail green and blue vertices are adjacent. We now say 
that a bipartite graph (n, m) has property (n, m, k, k) if any new edge increases 
the number of complete bipartite (k, k) graphs in our graph (we assume kSn, 
k Sm). 

Problem. Is it true that every (la, m) graph with property (ti, m, k, k) has 
at least (k - 1) (n+m - k + 1) edges? 

A weaker conjecture would be that every bipartite graph (n, m) which con- 
tains no complete bipartite (k, k) but which loses this property when any new 
edge is added has at least (k - 1) (n+m - kf 1) edges. 

One of the difficulties of proving these conjectures may be that the obvious 
extremal graphs are certainly not unique, which fact may make an induction 
proof difficult. One can easily formulate the analogous conjecture for property 
(n, m, k, E), but we leave this to the reader. 

Proof of Theorem 1. We first show that Ah(n) is a minima1 (n, k) graph and 
then we show that it is the only one. We begin by establishing the inequality 

(1) h(n) 2 j/&t - 1) + (k - 2), fern= k+ 1, k+2,**-, 

wherefk(4t) denotes the number of edges in a minima1 (n, k) graph. 
Let G be any minimal (n, k) graph where nL kfl. There exist nonadjacent 

vertices in G, say p and 4, as the complete n-graph is clearly not a minimal (n, k) 
graph. Since G+(p, CJ), the graph obtained from G by adding an edge joining 
p and 4, contains at least one more complete k-graph than G, it must be that p 
and 4 are both adjacent to all the vertices of some complete (K-2)-graph. Hence, 
if we let G* denote the graph obtained from G by removing q and then joining 
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fi by an edge to every vertex which originally was adjacent to p but not to p, 
it follows that G* has at least k-2 fewer edges than G. We may assert that G* 
has property (a - 1, k). For if a and b are nonadjacent vertices in G*, both 
different from p, then the addition of the edge (a, b) still forms at least one new 
complete k-graph since none of the complete k-graphs formed by adding (a, b) 
to G could have contained both p and CJ and in G* the vertex p can serve wherever 
p was required before; in the remaining cases the addition of a new edge to G* 
forms the same new complete k-graphs as were formed by the addition of the 
same edge to G. Since G* contains at least fk(n - 1) edges, inequality (1) now 
follows. 

It is obvious that fb(k) = G) - 1. This combined with (1) implies that 

k 
(2) f&z) L 0 2 

-l+(n- k)(k - 2) = Iz(k - 2) - , 

for n = k + 1, k + 2, . *a. 

But Ak(n) is an example of a graph having property (n, k) and with only 
n(k-2) - (“,I) edges. Therefore, it must be that Ah(n) is a minimal (n, k) graph 
and that equality holds throughout in (1) and (2). 

We now use induction to show that Ah(n) is the only minimal (n, k) graph. 
For any fixed admissible value of k this is certainly the case when n = k. Assume 
that the assertion is valid whenever kdn<m, for some integer m, and consider 
any minimal (m, k) graph G. From the fact that equality holds in (1) it is not 
difficult to see that G*, constructed as before, must be a minimal (m- 1, k) 
graph. IHence, we may suppose that G* is the same as Ak(m-1). 

If in G* the vertex p, using the same notation as before, is one of the k - 2 
vertices adjacent to every other vertex in G*, then in G it must be that q is 
adjacent to all the other k -3 such vertices and to one of the remaining vertices, 
This is so that the addition of the edge (p, q) to G will form at least one new com- 
plete k-graph. Each of the other m-k vertices is adjacent to either p or q but 
not both for otherwise p and q would be mutually adjacent to more than k-2 
vertices and G would contain more than fh(m) edges. We may suppose that one 
such vertex h is not adjacent to p. But it is now easily seen that the addition 
of the edge (p, h) would not form a new complete k-graph in G, contradicting 
the definition of G. The only alternative is that p is one of the vertices of degree 
k-2 in G*. From the definition of G* it now follows that G differs from G* only 
by the presence of the vertex q of degree k-2 which is adjacent to the same 
k-2 vertices as in p, This implies that G is the same as Ak(m) which completes 
the proof of the theorem. 

We may restate the above theorem in the following slightly weaker form: 
Of all graphs with n vertices which contain no complete k-graphs, where 
2 5 k 5 n, but which lose this property when any new edge is added, the graph 
Ak(n) and only that graph has the minimal number of edges. This statement 
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could be considered as the dual of the theorem of Turin in [2], which treats the 
corresponding problem of determining those graphs with this property which 
have the maximal number of edges. 

Proof of Theorem 2. If G has n vertices and is edge p-critical then it is easy to 
see that the maximum number of vertices, no two of which are adjacent, is 
n -p, i.e., the complementary graph of G does not contain a complete (n-p + l)- 
graph. But, since G is edge p-critical, if we add any edge to the complementary 
graph it will contain a complete (rc-p+l)-graph. Hence, by Theorem 1, the 
number of edges in G is at most 

n 

0 [ 2 - 
n(n - p - 1) -(“;“)]=(y 1) 

with equality only for the complete (p + II-graph, which proves Theorem 2. 
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