
SOME REMARKS ON RAMSAY' S THEOREM

P . Erdős

A special case of a well known theorem of Ramsay [3]
states that an infinite graph either contains an infinite complete
subgraph or it contains an infinite independent set ; in other
words there exists an infinite subset of its vertices so that
either every two of them are joined by an edge or no two of
them are joined by an edge . Thus if we have a graph whose
vertices are the integers, and which has no infinite complete
sub-graph, it certainly has an infinite independent set . The
question can now be asked if there exists an independent set
whose vertices n 1 < n2 < . . . do not tend to infinity too fast .

It is quite clear however, that no such theorem can hold .
To see this let 1 = m_1 < m_2 < ... be a sequence of integers

tending to infinity sufficiently fast. Two integers u and v
are joined in our graph G if and only if for some i,
mi \leq u < v < m i+1. Clearly G contains no infinite complete

subgraph (in fact it contains no infinite connected subgraph),
but every infinite independent sequence n_1 < n_2 < ... satisfies

n_i \geq m_i for all i.

On the other hand the following simple remark is perhaps
not entirely without interest .

Let G be a graph whose vertices are the integers and
which contains no triangle . Then there exists an infinite
independent sequence n_1 < n_2 < ... so that

\frac{k^2}
(1)	n_k < (1 + o(1)) {2}

holds for infinitely many k .

Before we prove (1) we remark that it can not be
strengthened to a statement like : n_k \leq f(k) holds for all k,
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where f(x) is an arbitrary function (increasing as fast as we
please) . To see this, let to each i correspond an interval
(x,, y,) where

(2)

	

f(i) < x_i, f(x_i) < y_i, y_i < x_{i+1}.

The intervals (x_i,y_i) clearly do not overlap . Let further,

(3)

	

(a_k, b_k), f(a_k) =b_k, a_{k+1} > y_{b_k}	k = 1, 2, .. .
k

be a sequence of non-overlapping intervals . The vertices
i and j are joined if and only if for some k

(4)	a_k<i<b_k x_i< j<y_i.

(2), (3) and (4) imply that G contains no triangle ; in fact it
contains no path of length three, and no independent sequence
satisfies n_k < f(k) for all k .

Now we prove (1) . Put A(x) = \Sum 1 . (1) then means that
n <xi

there is an independent sequence for which

(5)

	

A.(x) > (1 + o(1)) \sqrt{_2x}

holds for infinitely many x . To prove (5) denote by S(i) the
set of vertices joined to i, and by Nx(i) the number of elements

of S(i) which are < x. Clearly S(i) is an independent set
(for otherwise G contains a triangle) . Thus, if for some i
and infinitely many x

N (i) > x3/4 ,x

then (5) is clearly satisfied . Thus we can assume that for all i
there is an x (i) so that for x < x (i)

0

	

0

(6)

	

N (i) < x3/4x -
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Let now m_1 < m_2 < ... satisfy

(7)
	m_{k+1} > 2^{m_k}, m_{k+1} > max x_o (j) .

j\leq m_k

Denote by G k the graph spanned by those vertices

m_k < j \leq m_{k+1} which are not joined to any i \leq m_k. By (6)

and (7) Gk has at least

m_{k+ 1} - m_k m_{k+ 1}^{3/4}	= (1+o(1) )m_{k+ 1}

vertices . By a well known theorem [1] G k contains an

independent set having at least (1+o(1)) \sq rt{2m_{k+1}} elements and,

since clearly any two vertices of G_{k_1} 	and G_{k_2}	are independent,

we obtain an independent sequence which satisfies (5) for
x = m_k, k \to\infty; hence (1) is proved.

Using the methods of [2] we can show that there is a graph
G which contains no triangle and every independent sequence
n_1 < n_2 < ... satisfies for every \epsilon > 0 and k > k_o(\epsilon )

n_k > k^{2-\epsilon}

Thus (1) can not be improved very much .

By the same method we could easily prove that if G does
not contain a complete k-gon then it has an independent sequence
n_1 < n_2 < ... satisfying

A(x) > c_k x^{1/k-1}

for infinitely many x. The general theorem of Ramsay states
that if in an infinite set S we have a system of k-tuples so that
there is no infinite S 1\in S all whose k-tuples are in our system,
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then there is an infinite independent S_ 2, in other words an

infinite S_2 \in S which does not contain any of our k-tuples.

Here the following result holds, the simple proof of which
we leave to the reader . If a system of k-tuples of integers is
given, no two of which have a common (k-1)-tuple, then there
is an independent sequence n_1 < n_2 < ... satisfying

n t \leq t^{k-1} for all t; on the other hand if we only require that

every (k+1)-tuple contains at most two k-tuples no similar
theorem can hold . Results of the type (1) might hold, but I
have not investigated this .
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