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ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY 

BY 

P. ERDljS 

ABSTRACT 

The author proves that if C is a sufficiently large constant then every graph 
of n vertices and [Cn3/2] edges contains a hexagon X1, X2, X3, X4, XS, X6 and 
a seventh vertex Y joined to X1, X3 and X5. The problem is left open whether 
our graph contains the edges of a cube, (i.e. an eight vertex Z joined to X2, X4 
and X6). 

Throughout this paper G, G’ will denote graphs, V(G) denotes the number 
of edges, rc(G) the number of vertices of G. G(n;m) is a graph of n vertices and 
nl edges. Vertices will be denoted by x1 ... y1 ... edges by (x, y). {x1, ‘a., x,> denotes 
a path whose edges are (x~,x~),..~,(x,-~,x,), the vertices x1,.*.,x, are assumed 
distinct, n - 1 is the length of the path, similarly (x,, .a., x,) is a circuit of length n 
whose edges are (xI,xz), .‘.,(x,,- l,~,), ( x,, xi). V(X), the valency of x is the number 
of edges incident to x. G(x,, .a. , A$ is the subgraph of G spanned by (x1, ~~~, x,), 
In an even graph all circuits have even length. It is well known and easy to see 
that the vertices of an even graph can be divided into two classes A and B so that 
every edge joins a vertex of A to a vertex of B. C, c, ci ..a denote suitable positive 
absolute constants. 

Recently several papers appeared which discussed various extremal problems 
in graph theory [l]. Denote by f(n; k,Z) the smallest integer for which every 
G(n;f(n; k; I)) contains a G(k, I). Two years ago Turban asked me to determine 
or estimate the smallest integer m for which every G(n;m) contains the various 
graphs determined by the vertices and edges of the regular polyhedra. For the 
tetrahedron the problem was solved many years ago by Turan himself [6], for the 
octahedron I proved several years ago that (n ‘/4) + cn 3’2 < m <: (nZ/4) -I- Cn3”, 
details of the proof have not been published [l] and in this note we do not discuss 
the octahedron. The question for the dodecahedron and icosahedron seems 
difficult. 

It is well known that f(n;4,4) > cn3”, but for a sufficiently large C every 
f(n; [CPX~‘~]) contains a rectangle [2]. One might conjecture that for a sufficiently 
large C every G(n ; [Cn3j2]) contains a cube. In fact I proved thatf(n; 8,12) < Cn312, 

and I even showed that every G(n; [Cn 3’2]) contains a G(8; 12) having the vertices, 
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x1,x2,x3,x4;yi,y2,y3,y4 and the edges (xi,yi) where mint&j) 5 2 [3]. But at 
present I can not prove that it must contain a cube. I can prove the much 
weaker result that it contains a G(7,9) consisting of a hexagon (x1, em., x6) and a 
vertex y joined to x1,x3 and x5. To prove the existence of a cube we would need 
an eighth vertex z joined to x2, q and x6, and I have not succeeded in showing this. 

More precisely I am going to prove the following 

THEOREM. Let n >nO(k).Then euery G(n; 10[k”2n3’2])cOMfains a 

G(2k+1;4k-2) 

which has a path of length 2k{xl, yl, -..,Y~,x~+~) and the further edges 
(X1,yi),(yIpXj), 2 5 i 5 k, 3 5 j 5 k + 1. 

Clearly our G(2k + 1,4k - 2) contains for every 2 6 1 S k a circuit of length 
and another vertex joined to every second vertex of our circuit, 

It seems likely that for a sufficiently large c, every G(n;[c,n3”]) contains 

( > 

k 
aG(lSk+ 2 ; k2) defined as follows : The vertices are x0 ; yl, .**,Y, ; Zi,j, 

1 $ i < j 5 k, x0 is joined to all the y’s and Zi,j to yi and yj , I can not prove this 
for k > 3. 

To prove our Theorem we need two lemmas. 

LEMMA I. Every G(n;m) has an even subgraph having at least m/2 edges. 

We prove the Lemma by induction for n. It is clearly true for n 6 2. Ame 
that it is true for n - 1, we shall show it for n. Denote the vertices of G(n.; fi$ 
by ~1, -a., x,, Since the lemma is true for n - 1, we can split the vertices x1 ... x,- 1 
into two classer A and 3 so that the number of edges joining a vertex of A to a 
vertex of B is at least $V(G(x,, *a*, x,- 1)). Without loss of generality we can assume 
that the number of edges joining x, to the vertices of B is at least 4~ (x,). But then 
the even graph spanned by the vertices A u X, and B has at least +(V(G(xl ,,., x,- 1) 
+ v(x,)) 2 (m/2) edges, which proves the Lemma. 

By a slightly more careful induction process we can prove that if the graph 
G(n;m) has no vertices of valency 0 then it contains an even graph having at 

least > + f edges. The complete graph of n vertices G n ; l I 1 i ( >> shows that 

this result is in general best possible. It seems probable that if we know that our 
G(n;m) contains no triangle, the lemma can be considerably strengthened i.e. 
m/2 can perhaps be improved to cm for some c > l/2, but I did not succeed in 
doing this. 

LEMMA 2. Every G(n;m) contains a subgraph G’ every vertex of which has 
valency (in G’) greater that [m/n]. 
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The Lemma is known [4]. The proof is very simple. 

Now we can prove our Theorem. By Lemmas 1 and 2 our G(n; 10[k1’2n3’2]) 
contains an even subgraph every vertex of which has valency greater than 
5k1’2n”2. Let xi,s..,xU ; yi *a. ,yU u + u 5 n be the vertices of G’. Let yl,.‘.,yt, 
t > 5k’12n’/’ be the vertices joined to x1 and let x2, “.,xp,, U’ =< u be the other 
x’sjoinedtoay;,l~i~f,G”isthesubgraphofG’spannedbyy,,...y,,x,...x,. 
Clearly each y in G” has valency > 5k1’2n1’2 - 1 > 4k1’2n1’2, i.e. each yi has 
valency (in G’) greater then 5k1’2n1’2. Thus 

(1) V{G”) > 4tk”2n1’2. 

Denote by xz, ‘..x,,~ the xi with 

(2) u(xJ > 2tk1j2/n112. 

Let G”’ be the subgraph of G” spanned by x2, . . ..x.,, ; y,, ..s,y,. By (l), (2) and 
ti’ -c n we have 

(3) V(G’“) > V(G”) - 2tk”2n”2 > 2tk1’2n”2, 

By (3) one of the y’s has valency > 2k”‘n’12 (in G’“). Let this vertex be yl 
and let x2, kvs xl+ 1 I> 2k”2n1’2 be the vertices joined to yi . Consider finally the 
graph G”‘(x~,+..x~+~, y, me., y,), each xi has by (2) valency greater than 
2ptqn1/L - 1 > tk”2/n”2 (t > 4ki’2n”2). Thus by a simple computation 

(4) 

since by t > 4k”2n”2, 

and71(Gm(x2..,xlfl,).2...yt))= I+ t- 1. 
From (4) we obtain by a theorem of Callai and myself [5] that 

has a path of length 2k - 2 (xz,yz, em., y,, xk + i>. By our construction x1 is joined 
to every y of our path and y1 to every x of it. Thus finally G’“(xl, ..u x1+ l,yl, *‘.y3 
satisfies the requirements of our Theorem. 

The constant 10 could clearly be reduced, but I made no attempt in doing so 
since I am not sure if the factor k112 is of the right order of magnitude. 
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