PARTITION RELATIONS AND TRANSITIVITY DOMAINS OF BINARY RELATIONS

P. ERDOS and R. RADO

1. Introduction

Let a, β and γ be order types and r a positive integer. The *partition* relation **[1]**

$$\alpha \to (\beta, \gamma)^r \tag{1}$$

expresses, by **definition**, the following condition. If S is an ordered set, of order type tp S = |a|, and if the set $[S]^r|$ of all subsets of S of exactly r elements is arbitrarily expressed as the union of two sets $K_0|K_1|$ then there always exists a set $X \subseteq S$ such that either $\operatorname{tp} X| = \beta|$ and $[X]^r \subseteq K_0$, or $\operatorname{tp} X = \gamma|$ and $[X]^r \subseteq K_1|$. The following result is known [1]; Theorem 25] involving the least infinite ordinal $\omega_d = \omega$ and the negation $\alpha \mapsto (\beta|\gamma)^r \circ (1)$.

THEOREM 1. Given positive integers m and n, there is a positive integer $l_0(m|n)$ such that

$$\omega_{0} | l_{0}(m, n) \rightarrow (m, \omega_{0} n)^{2},$$
$$\gamma \rightarrow (m, \omega_{0} n)^{2}$$

for every ordinal $\gamma < \omega_0 l_0(m, |n)$. The number $l_0(m, |n)$ is the least positive integer l such that, whenever $\rho(\lambda, |\mu) \in \{0, 1\}$ for $0 \leq \lambda, \mu \triangleleft l$, then there always exists either (i) a system $\lambda_0, \ldots, \lambda_{m-1}$ of m distinct numbers out of $0, 1 \downarrow \ldots, l \dashv 1$. such that $\rho(\lambda_i, |\lambda_j) = 0$ for $0 \leq i < j < m, l$ or (ii) a system $\lambda_0, \ldots, \lambda_{n-1}$ of n distinct numbers out of $0, 1 \downarrow \ldots, l \dashv 1$. such that $\rho(\lambda_i, |\lambda_j) = 0$ for $0 \leq i < j < m, l$ or (ii) a system $\lambda_0, \ldots, \lambda_{n-1}$ of n distinct numbers out of $0, \ldots, l \dashv 1$ such that $\rho(\lambda_i, |\lambda_j) = \rho(\lambda_j, \lambda_i) = 1$ for $0 \leq i < j < n$.

It will be seen that $l_0(m, n)$ is characterized by a finite combinatorial property and can therefore be determined for every given pair m, n. We have $l_0(1, n) = l_0(m, 1) = 1$ for all m and n, and $l_0(m, 2) = 2^{m-1}$ for $m \leq 4$. In Theorem 2 of this note we show that, more generally, there is a positive integer l(m, n) such that, for every ordinal m and positive integers m, n_1

$$\omega_{\alpha} l(m, n) \rightarrow (m, \omega_{\alpha} n)^2.$$

We recall that ω_{α} is the least ordinal whose cardinal is \aleph_{α} . We give an explicit upper estimate for l(m, 12). We conjecture that $l_0(m, n)$ can be taken as l(m, n) but have only been able to prove this when $m \leq 4$ and $n \leq 2$.

Theorem 3 is a "stepping-up" result of the general form : if $\alpha_{\nu} \rightarrow (\beta)_{k}^{1}$ for all $\nu \triangleleft n$ and certain k and if every a, is a power of ω_{λ} then $\Sigma \alpha_{\nu} \rightarrow (3, \beta)^{2}$. The symbols involved here will be defined in §6.

Theorem 4 was suggested by the following corollary of Theorem 2. Let the binary relation $x \prec y$ be defined on a set \mathcal{S} and have the property

Received 1 January, 1966.

that for $x, y \in S$ exactly one of the relations $x = y + x \prec y + y \prec x$ holds. Then, given a positive integer a, there always exists a subset X of S, of cardinal a, such that the given relation is transitive on X, provided that S has at least $2^{\alpha-1}$ elements. This result was first obtained by R. Stearns [7]. His proof is reproduced in [8]; p. 126] and is very simple indeed. In the present note we establish a similar result for infinite cardinals a,

We should like to thank the referee for his helpful suggestions and, above all, for having pointed out two errors in the first version of this paper.

2. Small letters denote ordinals unless another convention is introduced.

THEOREM 2. Given positive integers m and n_{\downarrow} there is a positive integer l(m, n) such that, for every α_{i}

$$\omega_{\alpha} l(m, n) \to (m, \omega_{\alpha} n)^2.$$
⁽²⁾

If $l_{\alpha}(m, n)$ denotes the least number l(m, n) such that (2) holds for a given α_{α} thent

$$l_{\alpha}(m, n) \leq (2n-3)^{-1} [2^{m-1}(n-1)^m + n - 2],$$
(3)

 $\gamma \mapsto (m, \omega_a n)^2$ (4)

for every $\gamma < \omega_{\alpha} l_{\alpha}(m, n)$. Also, (4) holds for every α and every $\gamma < \omega_{\alpha} l_{\alpha}(m, n)$.

Remarks. (i) We conjecture that $l_{\alpha}(m|n) = l_{\alpha}(m|n)$. This has so far only been proved when $m \leq 4$ and $n \leq 2$.

(ii) If in the first relation of Theorem 1 we make $n \rightarrow \omega$ we obtain, formally,

$$\omega^2 \rightarrow (m, \omega^2)^2 \quad (m \triangleleft \omega),$$

a relation which was, in fact, proved by Specker [3]. It is not known whether the same process, when applied to the relation (2) of Theorem 2, leads to a correct relation. This has not even been decided for $\alpha = 1$ and m = 3 when we are led to the relation

$$\omega_1 \omega
ightarrow (3, \omega_1 \omega)^2.$$

3. Before proving Theorem 2 we introduce some notation and conventions. For $\alpha \leq \beta$ we put $[\alpha, \beta] = \{\xi : \alpha \leq \xi < \beta\}$. Capital letters denote sets, and |A| denotes the cardinal of A. By $|\alpha|$ we denote the cardinal of a set or dered according to the type a. By $A \subset B$, A + B, A - B and ABwe denote inclusion in the wide sense, union, difference and intersection respectively. Also, $\Sigma(\nu \in N) A$, and II ($\nu \in N$) A, are alternative ways of denoting unions and intersections. If S is ordered and $[S]^r = \Sigma(\lambda \in L) K_{\lambda}$

The right hand side of (3) is \mathbb{R} positive integer, equal to $1 + (n-1) \Sigma(\mu < m - 1)$ (n-1)". JOUR. 168 2N

then we put

$$[K_{\lambda}] = \{ \operatorname{tp} X \mid X \subset S \mid [X]^{r} \subset K_{\lambda} \} \quad (\lambda \in L).$$

If, in addition, n = 2 then we put

$$U_{\lambda}(x) = \left\{ y : \{x, y\} \in K_{\lambda} \right\} \quad (\lambda \in L \; ; \; x \in S).$$

We use the obliteration operator \wedge whose effect on a well-ordered sequence consists in removing the member above which it is placed. The symbol $\{x_0, \ldots, \hat{x}_n\}_{\neq}$ denotes the set $\{x_0, \ldots, \hat{x}_n\}$ and also expresses the condition that $x_{\mu} \neq x_{\mu}$ for $\mu \triangleleft \vee \triangleleft n_{\perp}$ Following Tarski, we denote by $of(\alpha)$ the least β such that \aleph_{α} is the sum of \aleph_{β} cardinals less than \aleph_{α} . We put a' = \aleph_{β} if $a = \aleph_{\alpha}$ and $of(\alpha) = \beta$. The symbol A + B denotes the set A + B and, at the same time, expresses the condition that $AB = \emptyset$. More generally, $\Sigma'(\nu| < n) A$, denotes the set $\Sigma(\nu| \lhd n) A_{\nu}$ and also expresses the condition that $A_{\mu}A_{\nu} = \emptyset$ for $\mu < \nu < n_{\perp}$ If, for $\nu < n, S_{\mu}$ is an ordered set then $\Sigma(\nu| < n) S_{\nu}(\mathrm{tp})$ denotes the set $S = \Sigma'(\nu| < n) S_{\mu}$ and expresses the fact that S_{μ} is ordered in such a way that the order in each S_{μ} is preserved and every member of S_{μ} precedes every member of S_{μ} for $\mu < \nu < n$.

4. We need the following result in the theory of graphs due to de Bruijn and **Erdős** [2] Let $c < \omega_{J}$ and let Π be a finite directed graph such that from every node of I' there start fewer than c edges. Then the chromatic number of I' is less than 2c. For convenience we state this result without using the language of graphs and give the very simple proof.

LEMMA. Let $p < \omega$; $Q \subseteq \{(\beta, \gamma) : \beta, \gamma < p; \beta \neq \gamma\}$, $v(\beta) = |\{\gamma| : (\beta, \gamma) \in Q\}| < c < \omega \quad (\beta < p).$

Then there are numbers $k_0, \ldots, k_p < 2d - 1$ such that $k_\beta \neq k_\gamma$ whenever $(\beta, \gamma) \in Q$.

Proof. The case p = 0 is trivial. Let $p \ge 1$ and use induction over p, **Put** $w(\beta) = |\{\gamma \mid 1 \ (\beta, \gamma) \in Q| \text{ or } (\gamma, \beta) \in Q\}| |(\beta| < p)|$ We may assume that $w(0) \ge \ldots \ge w(p - |1)$. By induction hypothesis there are numbers $\hat{k}_{01}, \ldots, \hat{k}_{p-1} \triangleleft 2c - 1$ such that $k_{\beta} \ne |k_{\gamma}|$ whenever $\beta, |\gamma| and <math>(\beta, \gamma) \in Q$. Since

$$w(p-1) \leq p^{-1} \Sigma(\beta < p) w(\beta) = 2p^{-1} \Sigma(\beta < p) v(\beta) \leq 2c-2,$$

there is $k_{p-1} \leq 2c - 1$ such that $k_{p-1} \neq k_{\beta}$ whenever $(\beta, p-1) \in Q$ or $(p-1, \beta) \in Q$. This proves the lemma.

5. Proof of Theorem 2. Let $\alpha \ge 0$. Then, clearly, for $1 \le n < \omega$, we have $l_{\alpha}(1, n) = 1$ and $l_{\alpha}(2, n) = n \downarrow$ It is known ([5], also [1]; Theorem 44)) that

$$w_{\alpha} \rightarrow (\omega_0, \omega_{\alpha})^2.$$
 (5)

Hence $l_{\alpha}(m, 1) = 1$ for $1 \leq m < \omega$. It is now easily verified that (3) holds

for m < 3 and arbitrary n_{\downarrow} and also for n = 1 and arbitrary m. Therefore it suffices to consider the *case* when $m \ge 3$ and $n \ge 2$, and we may assume that $l_{\alpha}(\mu \downarrow n)$ exists for $I \le \mu < m \downarrow$

Let $1 \leq p \leq \omega$ and $\omega_{\alpha} p \mapsto (m, \omega_{\alpha} n)^{2}$. This is, for instance, true if p = 1. Let $S = \Sigma(\pi < p) S_{\pi}(\operatorname{tp})$, where $\operatorname{tp} S_{\pi} = \omega_{\alpha}$ for $\pi < p$. Then $\operatorname{tp} S = \omega_{\alpha} p$, and there is a partition $[S]^{2} = K_{0} + K_{1}$ such that

$$m \notin [K_0]; \ \omega_{\alpha} n \notin [K_1]. \tag{6}$$

By (5) and the relations $\omega > m_{\#} \notin [K_0]$ there is a set $S_{\pi} \cap \subset S_{\pi}$ such that $|S_{\pi}'| = \aleph_{a}$ and $[S_{\pi}']^2 \subset K_1$ for $\pi < p$. Put $N = \{(\beta, \gamma) : \{\beta, \gamma\}_{\neq} \subset [0, p)\}$. We define operators O_0 , 0, which operate on systems (A, \ldots, A_{p-1}) of p sets $A_{\pi} \subset S_{\pi}$ and are defined as follows. We have, for $\lambda < 2$, $O_{\lambda}(A_0, \ldots, A_{p-1}) = (A_0^{\lambda}, \ldots) A_{p-1}^{\lambda}$. We now define A_{π}^{λ} .

(i) If there is a pair $(\beta, \gamma) \in N$ such that, for suitable sets $A_{\beta} \subset A_{\beta}$ and $A_{\gamma} \subset A_{\gamma}$, we have $|A_{\beta}'| = |A_{\gamma}'| = \aleph_{\alpha}$ and $|U_0(x)A_{\gamma}'| < \aleph_{\alpha}$ for $x \in A_{\beta}'|$ then we choose such β, γ and put $A_{\beta}^0 = A_{\beta}'; A_{\gamma}^0 = A_{\gamma}'; A_{\pi}^0 = A_{\pi}|$ for $\pi \in [0, p) - \{\beta, \gamma\}$. Then $|A_{\beta}^0| = |A_{\gamma}^0| = \aleph_{\alpha}$ and $|U_0(x)A_{\gamma}^0| < \aleph_{\alpha}$ for $x \in A_{\beta}^0$. If there is no such pair (β, γ) then we put A, " = A, for $\pi < p_{\beta}$.

(ii) If there is a pair $(\beta, \gamma) \in N$ such that, for a suitable element $\overline{x} \in A_{\beta}$, we have $|U_0(\overline{x})A_{\gamma}| = \aleph_{\alpha}|$ then we choose such β and γ and put $A_{\beta}^{1} = A_{\beta} - \{x| : U_0(x)A_{\gamma}| < \aleph_{\alpha}\}; A_{\pi}^{1} = A_{\pi}|$ for $\pi \in [0, p) - \{\beta\}|$ Then $|U_0(x)A_{\gamma}^{-1}| = \aleph_{\alpha}|$ for $x \in A_{\beta}^{-1}|$. If there is no such pair (β, γ) then we put $A_{\pi}^{-1} = A_{\pi}$ for $\pi < p$.

We now iterate these operators O_{λ} and put in particular

$$O_1^{p(p-1)}O_0^{p(p-1)}(S_0',\ldots,S_{p-1}') = (S_0'',\ldots,S_{p-1}').$$

Then $S_{\pi}'' \square S_{\pi}' \square S_{\pi}$ and $S_{\pi}'' \square \aleph_{\alpha}$ for $\pi < p$.

Denote by *P* the set of all pairs (β, γ) such that $\beta, \gamma < p$ and $|U_0(x) S_{\gamma''}| < \aleph_{\alpha}$ for $x \in S_{\beta''}|$ Then, by definition of $S_{\pi'}, (\pi, \pi) \in P$ for $\pi < p$. We have, for j3 < p and all $x \in S_{\beta''}$,

$$|U_0(x)S_{\gamma''}| < \aleph_{\alpha} \text{ if } (\beta, \gamma) \in P,$$
$$= \aleph_{\alpha} \text{ if } (\beta, \gamma) \in N - P.$$

In order to see this we need only observe that the relations between cardinals of sets of the form $U_0(x)$ A which have been established by an application of 0, and 0, are not destroyed by any further applications of the operators 0 $_{\lambda 1}$

Let $\beta_{|\gamma|} < p_{|}$ and $x \in S_{\beta''}$. Then tp $U_0(x) | S_{\gamma''} = \omega_a|$ if $(\beta_{|\gamma|}) \notin P$. Moreover, by (6) and the definition of $l_a | (m| - 1, n) = c$, say, we have tp $U_0(x) < \omega_a| c$. Hence $v(\beta) < c$, where

$$v(\beta) = |\{\gamma : (\beta, \gamma) \in N - P\}| \quad (\beta < p).$$

By applying the lemma to the set Q = N - P we find numbers

$$\begin{split} k_0, \ldots, k_{p-1} &< 2c-1 \text{ such that } k_\beta \not = k_\gamma \text{ whenever } (\beta, \gamma) \in N - | \text{ P. } \text{ Put } \\ M_\rho &= \{\beta : k_\beta = \rho\} \text{ for } \rho < 2c-1. \text{ We may assume that } | M_0 | \ge p (|2c|-1)^{-1}. \\ \text{We have } (\beta, \gamma) \in P \text{ whenever } \beta, \gamma \in M. \end{split}$$

Case 1. $|M_0| \ge n$. Then $\Sigma(\pi \in M_0) S_{\pi'} \supset T_0 + \ldots + T_{n-1}$ (tp), where tp $T_{\nu} = \omega_0$ for $\nu < n$ and

$$|U_0(x) T_{\nu}| < \aleph_{\alpha} \ (\mu, \nu < n; x \in T_{\mu}).$$

Case la. $cf(\alpha) = \alpha$. Then we write

$$((v, \sigma) : v < n; \sigma < \omega_{\alpha} = \{(v_{\rho}, \sigma_{\rho}) : \rho < \omega_{\alpha} \}.$$

We can choose $x_{01}, \ldots, \hat{x}_{\omega_n}$ such that

$$x_{\rho} \in T_{\nu_{\rho}} - \left(\{x_0, \dots, \hat{x}_{\rho}\} + \Sigma(\tau < \rho) \ U_0(x_{\tau}) \right) \text{ for } \rho < \omega_{\alpha}$$

Put $X = \{x_{\alpha} \mid : p \lhd \omega_{\alpha}\}$. Then $[X] \stackrel{a}{\simeq} \square K_1$ and tp $X \ge \omega_{\alpha} n$ which contradicts (6).

Case lb. $cf(\alpha) \triangleleft \alpha$. Let $r = \omega_{cf(\alpha)}$. We can write

$$\{(\nu, \tau) : \nu < n \ ; \ \tau < r\} = \{(\nu_{\rho}, \tau_{\rho}) : per\}.$$
⁽⁷⁾

Also, $\aleph_a = \Sigma (p < r) a(p)$, where

$$\begin{vmatrix} r \mid < a(0) < \dots < \hat{a}(r) < \aleph_{\alpha}, \\ \left(a(\rho) \right) \end{vmatrix}' = a(\rho) \quad (\rho < r).$$
 (8)

The $a(\rho)$ can be found by the following standard procedure. There are cardinals $b(\rho) < \aleph_{\alpha}$ such that $\aleph_{\alpha} = \Sigma (p < r) b(p)$. Then, by definition of r, we have

$$\sup(\rho < \bar{\rho}) b(\rho) < \aleph_{\alpha} = \sup(\rho < r) b(\rho) \text{ for } \bar{\rho} < r.$$

Hence there is $\rho_0 \triangleleft n$ such that $b(\rho_0) \bowtie |n|$, and we can find inductively ordinals ρ_1, \ldots, ρ_n such that

$$b(\rho_{\lambda_0}) > \Sigma(\lambda < \lambda_0) b(\lambda) + \sup(\lambda < \lambda_0) b(\rho_\lambda)$$
 for $\lambda_0 < r$.

Now we may put $a(\lambda) = (b(\rho_{\lambda}))^+$ for $\lambda \triangleleft r_{\lambda}$ where b^+ denotes the least cardinal greater than b_{λ}

We can write $T_{\nu} = \Sigma(\rho < r) T_{\nu}(\rho)$ (tp), where $|T_{\nu}(\rho)| = a(\rho)| (\nu < n \mid \rho < r)$. Let Y, $\nu' < n \mid \rho < r \mid x \in T_{\nu}(\rho)|$ Then $|U_0(x)| T_{\nu'}| < \aleph_{\alpha}|$ There is $\pi(x, v') < r$ such that $|U_0(x)| T_{\nu'}| < a(\pi(x, \nu'))|$ Put $\pi(x) = \max(\nu' < n)\pi(x \mid v')$. Then, by (8), there are a set T, (p) $\subset T_{\nu}(\rho)$ and a number $\pi_{\nu}(\rho) < r$ such that

$$|T_{\nu}'(\rho)| = a(\rho), \qquad (9)$$

$$\pi(x) = \pi_{\nu}(\rho) | \quad (\nu < n; \ \rho < r; \ x \in T_{\nu}'(\rho)).$$

Then

$$|U_0(x)|T_{\nu'}| < a\Big(\pi_{\nu}(\rho)\Big) \quad (\nu, \nu' < n \ ; \ \rho < r \ ; \ x \in T_{\nu'}(\rho)\Big).$$

There is $\tau(\rho)$ such that $\rho \leq \tau(\rho) < r$ and

$$\left| \Sigma \left(x \in T_{\nu}'(\rho) \right) | U_0(x) T_{\nu} \right| < a \left(\tau(\rho) \right) \quad (\nu, \nu' < n; \rho < r).$$
 (10)

We now define ordinals s(p) for $\rho < r \downarrow$ Let $\rho_0 < r \downarrow$ and let the ordinals s(p) be defined for $\rho < \rho_0$ and satisfy s(p) < r for $\rho < \rho_0$. Then we can choose $s(\rho_0)$ such that $\rho_0 \leq s(\rho_0) < r$ and

$$\Sigma(\rho < \rho_0) a\left(\tau\left(\tau(s(\rho))\right)\right) < a\left(\tau(s(\rho_0))\right). \tag{11}$$

This defines s(p) for p < r. Now consider the sets $A_{11} \dots A_{r}$ defined inductively by

$$\begin{array}{l} A_{\rho_0} = \left. T'_{\nu\rho_0} \! \left(\tau \! \left(\! \left| s(\rho_0) \right\rangle \right) \! \right) \! - \! \Sigma \left(\rho < \rho_0 \, ; \hspace{0.5cm} x \in A_\rho \right) \! \right| \hspace{0.5cm} U_0(x) \hspace{0.5cm} \left(\rho_0 < r \right). \end{array}$$
 Let $\rho_0 < r$. Then

$$\begin{split} \left| \begin{array}{c} \Sigma(\rho < \rho_{0}; \ x \in A_{\rho}) U_{0}(x) \ T_{\nu\rho_{0}}^{\prime} \Big(\tau \Big(s(\rho_{0})\Big) \Big) \\ &\leq \Sigma(\rho < \rho_{0}) \left| \begin{array}{c} \Sigma(x \in A_{\rho}) U_{0}(x) \ T_{\nu\rho_{0}}^{\prime} \Big(\tau \Big(s(\rho_{0})\Big) \Big) \right| \\ &\leq \Sigma(\rho < \rho_{0}) \left| \begin{array}{c} \Sigma \Big(x \in T_{\nu\rho}^{\prime} \Big(\tau \Big(s(\rho)\Big) \Big) \Big) U_{0}(x) \ T_{\nu\rho_{0}} \\ &\leq \Sigma(\rho < \rho_{0}) a \Big(\tau \Big(\tau \Big(s(\rho)\Big) \Big) \Big) \\ &\leq u \Big(\tau \Big(s(\rho_{0})\Big) \Big) \\ &\leq u \Big(\tau \Big(s(\rho_{0})\Big) \Big) \\ &= \left| \begin{array}{c} T_{\nu\rho_{0}}^{\prime} \Big(\tau \Big(s(\rho_{0})\Big) \Big) \Big| \\ &\qquad (by|\ (9)). \end{aligned} \end{split}$$

Hence

$$|A_{\rho_0}| = a\left(\tau\left(s(\rho_0)\right)\right) \ge a(\rho_0) \quad (\rho_0 < r).$$

It now follows from (7) that tp $\Sigma(\rho \triangleleft r) \land \exists \omega_{\alpha} \land$ Since, in addition, $[\Sigma(\rho \triangleleft r) \land \rho]^2 \subset K_1$ we have a contradiction against (6).

Case 2. $|M_0| < n$. Then $p(2c-1)^{-1} \leq |M_0| \leq n-1$; $p \leq (n-1)(2c-1)$. Hence $l_{\alpha}(m, n)$ exists, and we may put in all foregoing relations $p = l_{\alpha}(m, 2n)$. We note that $p \geq 0$. We have thus shown that

$$l_{\alpha}(m, n) - 1 \leq (n-1) \Big(2l_{\alpha}(m-1, n) - 1 \Big).$$

Put n-l=q and $l_{\alpha}(\mu, n) - 1 = d_{\mu} | (2 \le \mu \le m)|$ Then $d_m \le q(2d_{m-1} + 1)|$, *i.e.*, $d_m + e \le 2q(d_{m-1} + e)|$ where $e = q(2q - 1)^{-1}|$ Hence

$$d_m + e \leq (2q)^{m-2}(d_2 + e) = (2q)^{m-2}(q + e)$$

which is the same as (3).

We now prove (4). Let $\operatorname{tp} S = \gamma < \omega_{\alpha} l_{\alpha}(m, n)$. Then $\gamma = \omega_{\alpha} l' + s'$, where $l' < l_{\alpha}(m, n)$ and $s' < \omega_{\alpha}$. We have $S = S_0 + S_1(\operatorname{tp})$; $\operatorname{tp} S_0 = \omega_{\alpha} l'$; tp $S_1 = s'$. By definition of $l_{\alpha}(m, n)$ there is a partition $[S_0]^2 = |K_0| + |K_1|$ such that (6) holds. Then we can write $[S]^2 = K_0 + L_1$ and we have, obviously, $\omega_{\alpha} n_{\parallel} \notin [L_1]$ Hence (4) follows.

To complete the proof of Theorem 2, let us suppose that $\gamma \triangleleft \omega_{\alpha} l_0(m, n)$. Then $\gamma \models \omega_{\alpha} l'' \models s$, where $l'' \triangleleft < l_0(m, n)$ and s'' $< \omega_{\alpha}$ By the property of $l_0(m, n)$ stated in Theorem 1, there is a function $\rho(\lambda, \mu) \in \{0, 1\}$ defined for $\lambda \mid \mu < l'' \mid$ such that

(i) there is no set $\{\lambda_0, \ldots, \lambda_{m-1}\}_{\neq} \subset [0, \mathbb{Z}^n)$ such that

$$\rho(\lambda_i, \lambda_j) = 0$$
 for $i < j < m$,

(ii) there is no set $\{\lambda_0, \ldots, \lambda_{n-1}\} \neq \square$ [0, Z") such that

$$\rho(\lambda_i, \lambda_j) = \rho(\lambda_j, \lambda_i) = 1 \text{ for } i < j < n.$$

Let S= [0, γ) and order S by magnitude, so that tp S = γ . Then $[S]^2 = K_0 + K_1$, where

$$K_0 = \left\{ \left\{ \omega_{\alpha} \lambda + \tau \right\} \omega_{\alpha} \lambda' + \tau' \right\} : A, \ \lambda' < l'' \\ \downarrow \lambda \neq \lambda'; \ \rho(\lambda, \lambda') = 0 \\ \downarrow \tau < \tau' < \omega_{\alpha} \right\}.$$

Then it follows from the property (i) of $\rho(\lambda, \mu)$ that $m \notin [K_0]$ and from the property (ii) that $\omega_a \, n \notin [K_1]$. Hence (6) holds, and Theorem 2 is established.

6. Before stating our next theorem we introduce another kind of partition relation. Let α and β be order types and let k be an ordinal. Then the relation-t

$$\alpha \rightarrow (\beta)_k^1$$

expresses the following condition. Let S be an ordered set and tp S= α_{k} Let S = $\Sigma(\kappa \triangleleft k) K_{\kappa}$ | Then there always exists a number $\kappa \triangleleft k$ such that tp $K_{\kappa} \ge \beta$. We recall that *initial ordinals* are ordinals δ such that $\epsilon \triangleleft \delta$ implies $|\epsilon| \triangleleft \delta$ |.

THEOREM 3. Let *n* be an ordinal. Let $a = a, +... + \hat{\alpha}_n$ and $\beta = \beta_0 + ... + \hat{\beta}_n$, where, for $\nu < n$, *a*, is such that \ddagger

$$\alpha_{\nu} \to (\alpha_{\nu}, |\alpha_{\nu})^{1}, \tag{12}$$

and β_{μ} is an initial ordinal. Suppose that

$$\alpha_{\nu} \rightarrow (\beta)_{k}^{1} \quad (\nu < n ; |k| < |\beta|). \tag{13}$$

Then

$$\alpha \to (3, \beta)^2 \tag{14}$$

COROLLARY. If $cf(\alpha) = \alpha$, then

$$\omega_a^{2p+1} \rightarrow (3, \omega_a^{p+1})^2 \quad (p < \omega). \tag{15}$$

[†] This relation is a special case of the relation $\alpha \rightarrow (\beta)_k$ which is defined in the obvious way.

 $[\]ddagger$ As is well known, (12) holds if and only if $\alpha_{\rm M}$ is either zero or a power of $\omega_{\rm A}$

Remarks. (i) For $\alpha = 0$ the relation (15), in fact, the stronger result

 $\omega^{1+ph} \rightarrow (2^{h}, \omega^{1+p})^{2} \quad (p < \omega_{1}; h < w)$

has already been obtained by E. C. Milner [4].

(ii) It is not known whether (15) remains valid when $cf(\alpha) < \alpha$.

7. Let us begin by deducing the corollary from the theorem. We apply Theorem 3 with $n = \omega_{\alpha}{}^{p}$; $\alpha_{\nu} = \omega_{\alpha}{}^{p+1}$ and $\beta_{\nu} = \omega_{\alpha}$ for $\nu < n$. Then (14) becomes (15), and we need only verify (12) and (13) which amounts to showing that $\omega_{\alpha}{}^{p+1} \rightarrow (\omega_{\alpha}{}^{p+1})_{k}{}^{1}$ (kc ω_{α}). Let k be fixed, $k < \omega_{\alpha}$. Then, clearly, $\omega_{\alpha}{}^{0} \rightarrow (\omega_{\alpha}{}^{0})_{k}{}^{1}$ Let $q < \omega_{1}$ and suppose that

$$\omega_{\alpha}{}^{q} \to (\omega_{\alpha}{}^{q})_{k}{}^{1}. \tag{16}$$

It suffices to deduce that

$$\omega_{\alpha}^{q+1} \to (\omega_{\alpha}^{q+1})_k^{-1}. \tag{17}$$

Let $\operatorname{tp} S = \omega_{\alpha}^{q+1}$ and $S = \Sigma(\kappa < k) K_{\kappa}$ [Then $S = \Sigma(\nu < \omega_{\alpha}) S_{\nu}(\operatorname{tp})$, $\operatorname{tp} S_{\nu} = \omega_{\alpha}^{q}$ $(\nu \lhd \omega_{\alpha})$] Then, for $\nu < \omega_{\alpha}$, we have $S_{\nu} = \Sigma(\kappa \lhd \lambda) S_{\nu} K_{\kappa}$ and therefore, by (16), there is $\kappa_{\nu} \lhd k$ such that $\operatorname{tp} S_{\nu} K_{\kappa_{\nu}} = \omega_{\alpha}^{q}$. Since $\operatorname{cf} (\alpha) = \alpha_{\lambda}$ there are a number $\kappa < k$ and a set $M \subset [0, \omega_{\alpha})$ such that $|M| = \aleph_{\alpha}$ and $\kappa_{\nu} = \kappa$ for $\nu \in M$. Then

$$\operatorname{tp} K_{\kappa} \geq \Sigma(\nu \in M) \operatorname{tp} S_{\nu} K_{\kappa} = \Sigma(\nu \in M) \omega_{\alpha}^{q} = \omega_{\alpha}^{q+1},$$

and (17) follows.

8. Proof of Theorem 3. Let tp $A_{\nu} = \alpha_{\nu}$ (v < n) and order the set $P = \{(\nu, | x) : \nu < n; x \in A_{\nu}\}$ lexicographically. Then the $P = \alpha$. Let $\alpha \leftrightarrow (3, \beta)^2$. Then there is a partition $[P]^2 = K_0 + K_1$ such that

$$3 \notin [K_0], \tag{18}$$

$$\beta \notin [K_1], \tag{19}$$

We have to deduce a contradiction. We can write

$$\{(\mathbf{v}, t) : \mathbf{v} < n ; t < \beta_{\mathbf{v}}\} = \left\{ \left(\mathbf{v}(\lambda), t(\lambda) \right) : \lambda < t \right\},\tag{20}$$

where l is the initial ordinal satisfying $|l| = |\beta||$ We now define elements p_0, \ldots, \hat{p}_l of P. Let $\lambda_0 | < l$, and suppose that $p_0, \ldots, \hat{p}_{\lambda_0} \in P$. We shall define $p_{\lambda_0}|$ Put $Q_{\lambda} = |U_0(p_{\lambda})|$ for $\lambda < \lambda_0|$ Then, by (18), $[Q_{\lambda}]^2 \subset K_1$ and hence, by (19), $|\mathbf{p} Q_{\lambda} \ge \beta$ for $\lambda < \lambda_0|$ Since $|\lambda_0| < |\beta|$ we deduce from (13) that

$$\operatorname{tp} \Sigma(\lambda < \lambda_0) Q_{\lambda} \not \supseteq \alpha_{\nu(\lambda_0)}. \tag{21}$$

We have $|\lambda_0| < |l| = |\beta|$ and so $|\beta| \ge 1$ and $n \ge 1$. If $\beta = 1$ then $\alpha \mapsto (3, 1)^2$, so that a = 0 and therefore, by $(13), |0| = \alpha_0 \to (1)_0^1$ which is false. Hence $|\beta| \ge 2$ and we may put k = l in (13) and obtain $\alpha_v \ge \beta |(v < n)$. Therefore $|\{p_0, \dots, \hat{p}_\lambda\}| \le |\lambda_0| < |\beta| \le |\alpha_{\nu}(\lambda_0)|$ and hence

$$\operatorname{tp}\{p_0, \dots, \hat{p}_{\lambda_0}\} \not\geqslant \alpha_{\nu(\lambda_0)}. \tag{22}$$

It follows from (21), (22) and (12) that

$$\operatorname{tp} \Sigma(\lambda < \lambda_0)(Q_\lambda + \{p_\lambda\}) \not\geqslant |\alpha_{\nu(\lambda_0)} = \operatorname{tp} P(\nu(\lambda_0)),$$

where

$$P(\mu) = \{(\mu, x) : x \in A_{\mu}\} \quad (\mu \triangleleft n).$$

Hence we can choose

$$p_{\lambda_0} \in P(\nu(\lambda_0)) - \Sigma(\lambda < \lambda_0)(Q_\lambda + \{p_\lambda\}))$$

This defines a set $X = \{p_0, \ldots, \hat{p}_l\}_{\neq}$ which satisfies $[X]^2 \subset K_1$. We have, by (20), $|XP(\nu)| \ge |\beta_{\mu}|$ and hence, since β_{ν} is an initial ordinal, $\operatorname{tp} XP(\nu) \ge |\beta_{\mu}|$ ($\nu | < n$). But then $\operatorname{tp} X = \Sigma(\nu < n) \operatorname{tp} XP(\nu) \ge \Sigma(\nu < n) \beta_{\nu} = \beta$ which contradicts (19). This proves Theorem 3.

9. In this final section we consider a binary relation $x \prec y$ defined on a set S, such that for all x, $y \in S$ exactly one of the three relations x = y; $x \prec y$; $y \prec x$ holds. The relation is said to be *transitive* on a subset X of S if, for $x, y, z \in X$, whenever $x \prec y$ and $y \prec z$, then $x \prec z$.

THEOREM 4. Let a be a cardinal. Then the relation $x \prec y$ is transitive on some subset X of S such that |X| = |a|, provided that

(i) $|S| \ge 2^{a-1}$ if $a < \aleph_0$, (ii) $|S| \ge \aleph_0$ if $a = \aleph_0$, (iii) $|S| > \Sigma(b < a) 2^b$ if $a > \aleph_n$,

where the summation extends over all cardinals b less than a.

Remarks 1. If $a > \aleph_0$, and if the following weak version of the generalised continuum hypothesis is assumed : $2^{a} \leq a$ for b < a, then (iii) is the same as |S| > a.

2. The condition under (i) is best possible for $1 \leq a \leq 3$.

Proof of Theorem 4. Case 1. $a < \aleph_0$. Although, as was mentioned in the introduction, there is a very simple proof for this case in [8], it is of interest to show that the conclusion can be deduced from Theorem 2. We may assume that $a \ge 2$ and $S = [0, 2^{a-1})$. Let $R = [0, \omega 2^{a-1})$. Then $[R]^2 = K_0 + K_1$, where

$$K_0 = \left\{ \left\{ \omega \lambda + \tau_1 OX' + \tau' \right\} : \lambda \mid A' < 2^{a-1} \mid \lambda \prec \lambda' \mid ; \tau < \tau' \mid \forall w \right\}.$$

We order **R** be magnitude. Then $\omega 2 \notin [K_1]$, By (3) we have $l_0(a, 2) \leq 2^{a-1}$ and therefore, by (2), tp $R \rightarrow (a, \omega 2)^2$. Hence $a \in [K_0]$, and there is a set

$$T = \{\omega\lambda_0 + \tau_0, \ldots, \omega\lambda_{a-1} + \tau_{a-1}\} \neq \Box R$$

such that $[T]^2 \subset K_0$. We can choose the notation in such a way that $\tau_0 \leq \ldots \leq \tau_{a-1} < w$. Then, by definition of $K_0, \tau_p < \tau_q$ and $\lambda_p < \lambda_q$ forp < q < a, so that we may put $X = \{\lambda_0, \ldots, \lambda_{a-1}\}$.

632

Case 2. $a \ge \aleph_0$. We first show that

$$|S| \to (4, a)^3. \tag{23}$$

If $\boldsymbol{a} = \aleph_0$ then $|\boldsymbol{S}| \ge \aleph_0$, and (23) follows from [6], Now let $\mathbf{a} = \aleph_n > \aleph_0$, By (5), $\omega_n \to (3, |\omega_n|)^2$. Hence, by [1], Theorem 39 (i), we have, for every ordinal $\boldsymbol{\beta}$ such that $|\boldsymbol{\beta}| > \boldsymbol{\Sigma}$ (A $\triangleleft |\omega_n|$) $2^{|\lambda|^2}$, the relation $\boldsymbol{\beta} \to (4, \omega_n + 1)^3$ and therefore

$$|\beta| \to (4, a)^3. \tag{24}$$

Now

$$\begin{split} \Sigma(\lambda < \omega_n) \, 2^{|\lambda|^2} &\leqslant \Sigma(\lambda < \omega) \, \aleph_0 + \Sigma(\nu < n) \, \Sigma(\omega_\nu \leqslant \lambda < \omega_{\nu+1}) \, 2^{\aleph_\nu} \\ &= \aleph_0 + \Sigma(\nu < n) \, 2^{\aleph_\nu} \, \aleph_{\nu+1} = \Sigma(b < a) \, 2^b < |S|. \end{split}$$

Hence in (24) we **may** replace $|\beta|$ by |S|, and (23) follows.

We apply (23) to the partition $[S]^3 = K_0 + K_1$, where

 $K_{0} = \Big\{ \{x, y, z\} : x \prec y \prec z \prec x \Big\}.$

Then we have the following cases.

Case 2a. There is a set $A = \{x_0, x_1, x_2, x_3\}_{\neq} \square S$ such that $[A]^{\mathfrak{q}} \subseteq K_0$. Then we can choose the notation in such a way that $x_0 \prec x_1 \prec x_2 \prec x_0$. Then, by definition of K_0 , $x_0 \prec x_1 \prec x_3 \prec x_0$.

Case 2a1. $x_2 \prec x_3$, Then $x_2 \prec x_3 \prec x_1 \prec x_2$ which contradicts $x_1 \prec x_3$. Case 2a2. $x_3 \prec x_2$. Then $x_3 \prec x_2 \prec x_0 \prec x_3$ which contradicts $x_3 \prec x_0$.

Case 2b. There is a set $B \square S$ such that |B| = a and $[B]^3 \square K_1$. Let x, y, $z \in B$ and $x \prec y \prec z$. Then $x \neq z$. If $z \prec x$, then $\{x, y, z\} \in K_0$ which is false. Hence $x \prec z$ and we may put X = B. This proves Theorem 4.

References

- 1] Pl Erdős and R. Rado, "A partition calculus in set theory " Bull. American Math. Soc., 62 (1956), 427-439.
- N. G. de Bruijn and P. Erdős, "A colour problem for infinite graphs and a problem in the theory of relations ", Nederl. Akad. Wetensch. Proc. (A), 54, 371-373.
- 3. E. Specker, Comment. Math., 31 (1957), 302-314.
- E. C. Milner, Some combinatorial problems in set theory, Thesis (Reading University, 1961).
- B. Dushnik and E. W. Miller, "Partially ordered sets", American J of Math., 63 (1941), 605.
- F. P. Ramsey, "On a problem of formal logic ", Proc. London Math. Soc. (2), 30 (1930), 264-286.
- 7. R. Stearns, "The voting problem ", American Math. Monthly, 66 (1959). 761-763.
- 8. P. Erdős and L. Moser, ¹⁴ On the representation of directed graphs as union of orderings " Publ. Math. Inst. Hung. Acad. Sc., 9 (1964), 125-132.

Magyar Tudomanyos Akadémia, Budapest, Hungary.

The University,

Reading.