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ON RANDOM ENTIRE FUNCTIONS 

This paper deals with random power series, a topic concerning which 
the first important results are due to H. Steinhaus [4]. 

While in [4] power series with a finite radius of convergence were 
considered, we study random entire functions. 

Let 

(1) 

be an arbitrary entire function; let 

(2) JO+) = maxlf(x)l ,q =r 

denote the maximum-modulus function of f(x) and 

(3) p(r) = rnaxIkj,lm 
98 

the maximal term of the series (1). 
According to Wiman’s well known theorem, for every 6 > 0 there 

exists a set B6 of finite logarithmic measure (i.e. such that ,$ ( bo) 
Ed 

such that if r#Ed one has 
:+d 

(4) Jf(r1 < P P) (lw4~))2 l 

The simplest proof of this theorem is the probabilistic proof given 
by Rosenbloom [2], which deduces (4) from Chebishev’s inequality. 

It is known that the number 4 in the exponent of logp((r) on the 
right hand side of (4) is best possible, as there exist entire functions f(x) 
for which there exist’s a constant c > 0 such that 

N(r) > cjs(r)(logp(r))” for all T 3 0. 
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As a matter of fact, if f(x) = e”, M(r) = e’ and p(r) 
rM 

= - for r > 0 
[rl! 

where [r] denotes the integral part of r; thus by Stirliug’s formula 

The first-named author has stated without proof some years ago - 
in a paper [l] which was dedicated to Professor Steinhaus - that if 
we give random signs to the terms of the power series of e” then for al- 
most all choices of the sequence of signs the exponent 9 in (4) can be 
replaced by $ but by no smaller number. In the present paper we con- 
sider the same question for an arbitrary entire function. By other words 
we consider the class of entire functions obtained by giving random 
signs to the terms of the series (l), i.e. we consider the entire fun&ions 

where R,(t) is the +th Rademacher function, R,(t) = sign sin(2”xt). 
We shall prove that for almost all values of t in the inequality (4) 

for f(x, t) the exponent & of log,u(r) can be replaced by $. 
We shall prove even more. Rosenbloum in his above mentioned 

paper(l) [2] has proved the following sharper form of Wiman’s theorem: 
for every 6 > 0 there exists a set Ed of finite logarithmic measure, such 
that if rf& one has 

(4*) -Jf(r) < ~C1~)(logC1(r))1’2(10g10g~(r))1fb. 

We shall prove that for almost all values of t, in the corresponding 
inequality for f(x, t) the exponent + of logp((r) can be replaced by &. 
Thus we prove the following 

THEOREM I. Let (1) be auz arbitrary entire function and let p(r) be 
tiefined by (3). Let the entire function f(x, t) be defined by (6) and put 

(7) iW(r, t) = mcsxlf(z, t)l (0 <t < 1). 
I21 =T 

Th.em for every B > 0, for almost all values of t there eaisti a subset E,(t) 
(depending on t) of the half line r >, 0 of finite logarithmic measure, such 
that for raEa ome 71as 

(8) JW, t) < PM (~wW)‘rr (W~aW)‘+B- 

(I) The formulation of Theorem 1 in paper [2] contains some misprints: In 
formula (2) (p. 327) the integral sign is missing; in row 9 of p. 327 the sign = has 
to be replaced by <; in row 10 of p. 327 instead of “inequality (2)” one should read 
‘“inequality (3) “. 
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Proof. Let us put 

(9) 

We may suppose t’hat a, = 1, which implies ~(0) = 1. As ($*) is valid 

for fl(x), there exists for every 8 > 0 a set E6 of finite logarit.hmic measure 
such that for r$Ed the inequalitly 

(10) f1(r) < p(r) (log/& (r)jliZ (loglog~(r))l+~ 

is valid. We may suppose that the set Ed is the union of a denumerable 
set of disjoint open intervals, the endpoints of which have no finite limit 
point. Let us define the sequence r, of nonnegative numbers as follows. 
We put r0 = 0 ; if rk is already defined for k < R, let ri > r, be defined by 

(11) logp(l.;) = logp (ml +I* 

If r&U&, put r,,, = r;. If however TIE&, t,hen Y: is contained in one 
of the open mtervals of Ed ; in this case let r,,, be the lower end-point 
and rn+z the npper end-point of this interval. 

The increasing sequence r,ll defined in this way has the following 
properties : 

a) r,$Ea for n, 3 1. 
b) If the open interval (r%, r,+,) contains a number T not belonging 

t.0 t’he set ES, then 

logp h&+1) = logp Cm) +1. 

c) logp(Tfi,) 3 [in/2 3 where [q&/2] denotes the integral part of rt/2. 
Now let us suppose that for some t one has for rz > n,,(t) 

As M(r, t) and p(r) are bot’h increasing functions of r, it follows (in view 
of property b) of the sequence T,) that for 92 2 ?z,,(t) and for ‘r;, < r ( v,+~ 
and s$E, one has 

x0., t) d +.)(log/4(r)il)“4 (log(log~(r)+l))1f8, 

and thus one can find an nl(t) such that 

03) -4qr, t) c p(~) jiOgp(r)jll*(iOgiOg~((r))l~” 

if r $3, (t) where E, (t) denot’es t’he union of the set E8 and t’he set r < r,l(lJ a 
Thus to prove our theorem it is sufficient to prove that for almost 

all values of t there exist’s a number no(t) such that (12) holds for n 3 ,n,(t). 

Zastosowania Matematyki, tom X 4 
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Now let us put 

(14) g (4 = l0g.L (e”) I 

05) A(r) = g’(logr) = 
az MM”” 

fit4 
and 

(17) 

2 9%” I&Jr” 
B2(r) = g”(logr) = 12=1 

fib9 
-A2 (r) . 

If tP is a random variable such that’(“) 

p(& = y&) = la,l.TR 
fib”) 

(8, = O,l, .-.) 

then clearly A(r) is the expectation and B’(r) the variance of & and thus 
by Chebishev’s inequality one gets(3) for every 2 > 1 

and thus, choosing 2’ = (log~(~))“8(loglog~((r))(1fd)~2 we get from (10) 
for every r$Ed, putting 

(19) C(r) = B(r)(log~((r))~‘8(loglog~(r))(1+~)’2, 

(20) ,n-AJ,c(v) bnl P s P te (NW w)“4- 

Now, in Rosenbloom’s proof of (4*) the set Es is defined as the set, 
on which B’(r) > (logfi(r))(loglogfI{r))2+2r); thus for r#Ed and 8 < l/4, 
using again (10) we have 

(21) B2(r) < 4(logF”(r))‘fg 

and therefore, in view of (201, we obtain, putting 

122) 

that 

Cl (f9 = (lw (r))3’4 

,,_,(T>c (r)la”l r” < /J(r) (1WP b9y4. 
--1 

-.- 

(e) P (...) denotes the probability of the event in the brackets, 
(3) This is the main step in Rosenbloor~~‘s proof of (49. 
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It follows that for r#E, 

(23) JW, t) G P(r)(loga(r))1’4+o~~~~~/ ,k 81~~ol~r)ak~k(t)~ke~~~. 
.I - 

Now we need the following lemma: 
LEMMA. Let b 1, b 2, . . . , bD (D > e”) be arbitraq complea numbers, 

ti, 5 2, . . ., lo indepe&ent random /uariables, taking on the values &I with 
probabz’litg Q. l’hen, putting 

one has 

k=l 

Proof. The idea of the proof of this lemma is web known, and is 
due originally to S. Bernstein. Clearly, if yl, y2, . , . , ye are arbitrary 
complex numbers, yk = ak+ iPk for every A > 0 and E > 0, in view of 
Im+iyJ < I/amax(jz], &/I), one has 

and thus, by the Markov inequality P([ > B) < A’(c)/B (valid for B > 0 
and for every nonnegative random variable 5 with finite expectation 
E(O), 

where I?J( .., ) denotes the expectation of the random variable in the 
brackets. Nom clearly, using the inequality +-(e”+ e-“) < e’l’, 

D 
@k 

D 
e”“k +. e- 64 

2 

and similarly 

E(e 
and thus 
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Choosing 

A = ,I(2 lyeI’)“’ 
* 

and 
1. 

&= 
k=l 

it follows 

(25) 

NOW let US apply (25) for yk = bkeikm wit’h a,n arbitrary real value 
of g7; it follows 

n 

Let us substitute in place of p? successively 
(j = O,l, . ..I N-l) where t#he po&ive integer 
inequality 

27rDyz 
(27) 

~xD~~’ 

il 
<iv<----- 

il 
+I. 

It follows 

t’he values vi = 24/N 
N is defined by the 

P( max !~a,i,d”~~i>li~)~r(~ ) fl eeR2j4. 
o.d<N-1 k=l 

On the other hand, if CJ+ < pl < qj7i+l 

(29) 
D 

ikq 
h&e - c bk Ekeike;! I < ?dii . 

From (28) and (29), putting 1 = J22logD, we obtain (24). 
Let us now apply the lemma to the estimation of the second term 

on the right of (23). As the Rademacher functions are independent with 
respect to the Lebesgue measure and take on the values &l with pro- 
bability Q, and for r#& 

luk12r2k < G 2 bkl r 2k < ~2(T)(log~(r))~‘~(loglog/b(r))‘+~, 
k=O 

it follows for r#EB (denoting by V( . . . ) the Lebesgue measure of the 
set of values of t for which the condition in the brackets holds), and, 
taking (22) into account, that, if r is sufficiently large, 

1 

-G 2”(logjJ((r))3 - 
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Now let us apply (31) for r = r,. It follows that denoting by k, the set 
of those t for which 

(32) Max 1 2 
‘%9=3X Ik-d(+-,)‘<C1(rT’lL) 

ak~~Rk(f)eik~ i > g~(~~)(10gp(~~~))1'4(10g10g~~(r~))1+d 

in view of property c) of the sequence r, 
M 

2 T7&J < -t-m. 
R = 1 

Thus by the Borel-Cant(elli lemma, for almost all values of t (0 < t < 1) 
the inequality (32) can hold only for a finite number of values of YL Thus 
with respect to (23) for almost a811 t (12) holds for IZ > no(t). 

As wa’s pointed out earlier, this proves our theorem. 
As mentioned above, our result is best possible as regards the expo- 

nent of logp(r); however, it is not best possible as regards the exponent 
of loglog,u((r). For instance for the case of f(x) = 8 one can prove more, 
namely that there exist positive constants c, and c, such Ohat for almost 
all values of t one has (“) 

(33) c1 < limsup --~ 
H(r, t) 

< 02. 
r-03 /J(9”)(logy(r))1~4(loglog~(~)j1’2 

To prove the lower inequalit’y of (33), one needs t’he results of 
R. Salem and A. Zygmund eont’ained in t’heir paper [3], dedicated to 
Professor Steinhaus at his 66th birt’hday. 

To get the upper inequality of (33) one has to notice that the proof 
of Theorem 1 yields also the .following result, which is slightly stronger 
than Theorem 1. 

THEORE& 2. Let f(x) be alz arbitrary entire functim, having tlze power 
series (1). Let p(r) be defirted by (3) and p%t 

(34) 8”(r) = m junj2r2n. c *=1 

Let f (x, t) be defi.n.ed by (6) alzd H(r, t) by (7). T&W for almost all t cud 
for P IEd (t) wh.ere Ed(t) is a set of finite logarithmic measure, one has 

(35) M(T, b) < c,kY(r)(loglog~((r))“z 

where c, > 0 is a constcc.~zt, not depending on r OT t. 
REXARK. For t,he case f(x) = e” we have L5’ (Y) = 0 (e’/r”“) a#nd 

l%P (r) - r, and t’hus we get for almost all 5 

(36) 

(“) 111 what follows cl, cg , es, . . . denote positive constants, not depending on 1 
or t, but they may depend on the function f(z) considered. 
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Moreover in this case the set X&(t) is an interval 0 < r < r1 (t). Thus the 
upper inequdity of (33) follows. We can write (33) also in the form; for 
almost all t 

(37) 

where c, and e6 are positive constants. 
Note that (37) is sharper than Dhe corresponding statement in [S]. 
Proof of Theorem 2. The proof of Theorem 2 follows that of Theo- 

rem 1 step by step, only instead of estimating B2(r) as in (30) we express 
our result in terms of 8(r). As by (30) we have for r&?& 

X(r) =c p(r) (log~(r))1~4(loglog~(r))~1+s)2 

it is clear that Theorem 1 is contained in Theorem 2. 
Using the mentioned results of Salem and Zygmund one can prove 

that for alI those entire functions j(x) for which there exists an E > 0 
such that 

(38) B(r) 2 its(~)(log~W)~ for r > c1 

one has for almost all t 

lim sup M(r, t) 
r-+m Asp) (Ioglogp (r))“2 

>/co>o. 

It should be however mentioned that (39) does not mean that the 
statement of Theorem 2 cannot be improved for those functions f(x) 
for which (38) is valid, because (39) does not exclude the possibility that 
those values of r for which 

M(r, t) 
S(r) (loglog/ (?.))I” > c ’ O 

are contained in a set of finite logarithmic measure. However, by restric- 
ting ourselves to the class of those entire functions for which the state- 
ment of Wiman’s theorem is valid for sufficiently large values of r, our 
result is best possible. 

Thus the following result is valid: 
THEORSBI 3. Let f(x) be ati e&ire ficn&io~ with the power series (1) 

such that defirtip~g B(r) by (2) and p(r) by (3) me has for 8orn.e c, > 0 and 
Cl0 > 0 



for all P > 1. Let S(r) be defined by (34) and suppose that (38) holcils. Let 
f(x, t) be defined by (6) ad H(r, t) by (7). The>& for &.~sb all values of 3 
we have 

REMARK 1. Clearly Theorem 3 includes our statement (37) about 
the function e*, as all the assumptions of Theorem 3 are satisfied for 
f(x) = ez. 

RENARK 2, Let us point out that there exist entire functions, having 
a lacunary power series such that M(r)l~~((r) is bounded; for such functions 
for all values of t X(T, $)/p(r) is of cozsrse bounded too. 

Finally n-e should Eke to mention that our results remain valid 
if instead of the Rademacher functions we multiply the terms of the 
series (1) by the ~teinJl.nus-~z~actio~~s, i.e. by the functions ezxie*(t) where 
h(t), **a, &&W, a-- are independent functions, uniformly distributed in 
the interval (0, 1). 

REMTARK ADDED IN PROOF. The random entire functions obtained 
by using Seinhaus factors have been studied first by P. I&y (isur Za 
croissance des fonctio~~ esz~titkes, Bull. Sot. Math. France 58 (1930), pp. 
29-59, 127-149), who has proved for a class of entire funct’ions, the coeffi- 
cients of which satisfy certain conditions of regularity, the inequality 
corresponding to (35). The class considered by P. L&y includes the func- 
tion 8. Thus the inequality corresponding to (36) (if instead of random 
signs Steinhaus factors are used) is due to P. Levy who conjectured also 
for t’his variant of the problem that the lower inequality of (37) holds. 
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