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Let (A} = a,eu,-=~. . . be a sequence of positive integers. Put A(n) = 
= X 1. Denote by f,(n) the smallest integer so that every sequence A satisfying 

cI[ c 77 
A(lz) =fk(n) contains a subsequence of k terms which are pairwise relatively 

prime. It is easy to see that &(rz) = t -+ I and it seems likely that 
I 1 

where ,~~-~(n) denotes the number of integers not exceeding tt which are multi- 
ples of at least one of the first k- i primes 2, 3, . . .) +I. Clearly (1) if true is 
best possible. (1) is easy to show for k = 3, but we have not been able to prove 
it in general. On the other hand we prove in a sharper and more general form 
several conjectures stated in [I]. First we introduce some notations. A,,, uj 
denotes the integers a:~ A, aj = u(mod m) (Ax,,,,(n) denotes the number of 
terms of the sequence A,,+,). A,, Ij respectively A,,, ?), we will denote by 
A, respectively A,. ~(12) denotes Euler’s F function. 

‘li(A, k) = 2 1. 
ai =s* 

(ai,k)=l 

@(A) denotes the number of pairs (nj, aj) = 1, a;-=~~~n. Put 

F(n) = min max y(A, nj) 
A ajEA 

where the minimum is to be taken over all sequences A satisfying A(n) 2 
L I 
: + 1 . 

For simplicity we will henceforth assume that I; is even, all our results could 
easily be extended for odd n. c,! cn . . . denote suitable positive absolute 
constants. 

Let A(n)= $ $ I. P. ERD~S proved that for n=--n, @(A)~cc,n/log log 
L 1 

9* 
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and in fact the minimum of @(A) is assumed if A consists of the even numbers 
and II, where 

u, = 3.5, 1 . . .) pr, 3.. .pr 5 n-=3.. .~~‘p~+~. 

He also conjectured that 

(2) lim F(n) = 00. 
n=.s 

We now prove (2). In fact we prove the following sharper 

THEOREM 1. 

F(n) =- c,n/log log n. 

We first prove two other theorems which will easily imply Theorem 1. 

THEOREM 2. Let A satisfy 

(3) A,(n) = s, 1 =Ss<c$7, 

(4) A(n) z=- ;. 

Then for n > n, 

(5) ITII~ p(Ap Ui) ~C,TZllOg log’ 
1‘ s 

and 

(6) @(A)=-c,sn/log log E. 
‘9 

We need the following known 

LEMMA 1. The number of integers I I k 5 n satisfying p(k)/k-= l/t is less than 
(exp z = ez) n exp (- exp c6t), uniformZy in t> 1. 

Choose 

(7) 
2n f = -L log log -. 

C6 s 

We obtain from Lemma I that the number of integers I-=~k--rn which satisfy 
p?(k)/k< l/f {where t is defined by (7)) is less that s/2. Thus the number of in- 
tegers a,E A, for which ~(aJ/a, =- I/t is by (3) greater than s/2. Denote now by 
b,K... -=b,~n, rzs/2 the integers in A, satisfying e(bi)ib,~lit, Clearly the 

number of integers 2us n satisfying (au, hi)= 1 is greater than 5 + pj(b,)/bl=- 

=- n/4t. Thus (in .Z’ aj runs through the numbers of A,) 

(8) 

or by (8) and (7) for sufficiently small c, and c, we obtain by a simple compu- 
tation for sufficiently large n 
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which proves (5). 

To prove (6) observe that (9) holds for every 1 --rigs and TS~, hence 

from (9) 

@(A) >+ sn/loglog n, 
s 

which proves (6) and hence the proof of Theorem 2 is complete. 

THEOREM 3. To every c!, there is a c 1o = c,,(cg) c,, is bounded in terms of 
( 

1 - 
c9 I 

so that if A,(n) = s=-c,n and A(n)=- 5 then for n=- n, 

@(A) I-=- c,,n”. 

For S-CCJZ Theorem 3 would follow from Theorem 2, but for the large va- 
lues of s we need a separate proof. 

Denote by P, the product of the primes not exceeding r. We first prove 

LEMMA 2. To every E>O and 6 ~0 there is an r=r(E, S) so that if n=- 

=-&,(E, 6, r) then for all but 6:; integers k satisfying 
r 

1 -=k<n, 
we have 

kz rl(mod P,) 

x(k) = 17 1 - -!- z=- l-6. 
P’k i 1 P 

P>r 

have 
The Lemma is very easy to prove and we only outline it. We evidently 
(in 17’ k- rr(mod P,), 1 cr k 5 n) 

> (1 - .q)“lP,, 

where ‘rl, can be chosen as small as we wish if r is sufficiently large, (1O)implies 
Lemma 2 by a simple argument. 

Now we prove Theorem 3. We evidently have 

$5 
(11) 2 (ApI> -7i-1)($ + A,, r, ei)(n) + J&P,, zi+l)(n)) = A,(n) + 24(n) - 

i=l 

= A(n) +s > II_+,. 
2 
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Hence by (11) there is an i, for which 

(12) 
II + 2s 

A(pr, 2i,-l)(n> + A(P, , PQ(~) - A(p, , qi,+l) (II) > p’ 
I 

Clearly for every u A(P,, ,,,(n)c$.+l. 771~1s we obtain from (12) that 

there are two integers U, and II,, 11, odd, 1 II,- II,] = 1 or 2 satisfying 

Denote now by a:-r . . . --a: the sequence of integers for which 

(14) kc AP, , q) and 17 1 --l z=- 1 -c,/lO. 
plk i I P 
P>r 

From Lemma 2 and (13) we have for t-=-r,, e= i c, (s>c$) 

Now we estimate from below the number of solutions of 

(16) (nj*, “j) = 1, QjE A(P,., us). 

Assume pl(ai*, b), b= u,(mod P,). As I U- zl,l r 2 and zll is odd, we have 
p>r. Denote by B,(P,, Us) the number of integers bsn, bzrr,(mod P,j for 
which (b, a;) = 1. We have by a simple argument 

(17) ‘B,(P,, UJ-$ g 1 -f 
! 11 

( 2v(ai*) < 22 lognllog 1ogn 

I PIni* 
Pzr 

since it is well known (and follows from the prime number theorem or a more 
elementary theorem) that for m c n V(m)-== 2 log n/log log n. 

Thus from (14) and (17) for sufficiently large n 

(18) BP,, II,) > (1 -c,/7)nlP,.. 

From (18) and (13) we obtain that the number of solutions of (16) is greater 
than (s > cgn) 

(1% 
1 2s - -- 

i I 2 pr 
1’ -- cg n/4P, > c,@P, . 

From (15) and (15) wo evidenily have 

@(A) > c;rz”/W; 

where r is bounded in terms of l/c,, which proves Theorem 3. 
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It is now easy to prove Theorem 1. Let A be any sequence satisfying 

A(n)-+ + 1. We distinguish two cases. Assume first A,(n)-=~c,n. In this case 

(5) and the definition of F(U) implies Theorem 1. Assume next A(n)=-c,n. 
Then from Theorem 3 we have 

which completes the proof of Theorem 1. 
We outline the following sharpening of Theorem 1. 

THEOREM 4. Let n=-n,. The only class of sequences A* for which F(n) is 
assumed is &fined as follows: A*= AT u J4z, where A: consists of ail odd multiples 
not exceeding n of 11, (3. . . pr’ ni 3. . .P#-~, II,= 3. . . p,) and AZ consists of 
the set of even numbers (not exceeding n) from which AT(n)- I even numbers 
relatively prime to II, have been omitted. 

Theorem 3 clearly implies that 

where p(i’(ur) denotes the number of even integers not exceeding n which are 
relatively prime to 21,. 

We only outline the proof of Theorem 4. Let A A(n)> :+ 1 
i i 

be any sequ- 

ence which contains an odd number u which is not a multiple of u,. A simple 
argument shows (see [I 1) that 

Thus if 

we must have A,(n)= s2c11 L . 
(log II)’ 

But then from (5) and Theorem 3 

we have 

max pj(A, a,) I> c,,n/log log log n > &‘(a,) 
UiFA 

which proves Theorem 4. Theorem 4 implies by a well known theorem of Mertens 
that (C is Euler’s constant) 

F(n) = (1 + o( l))e-“n/log log n. 
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