ON SOME EXTREMAL PROPERTIES OF SEQUENCES OF INTEGERS

By

P. ERDŐS, A. SÁRKÖZI and E. SZEMERÉDI Mathematical Institute of the Hungarian Academy of Sciences, Budapest

(Received 15 March, 1969)

Let $\{A\} = a_1 < a_2 < \dots$ be a sequence of positive integers. Put $A(n) = \sum 1$. Denote by $f_k(n)$ the smallest integer so that every sequence A satisfying $A(n) = f_k(n)$ contains a subsequence of k terms which are pairwise relatively prime. It is easy to see that $f_2(n) = \left\lfloor \frac{n}{2} \right\rfloor + 1$ and it seems likely that

(1)
$$f_k(n) = 1 + \varphi_{k-1}(n)$$

where $\psi_{k-1}(n)$ denotes the number of integers not exceeding *n* which are multiples of at least one of the first k-1 primes 2, 3, ..., p_{k-1} . Clearly (1) if true is best possible. (1) is easy to show for k = 3, but we have not been able to prove it in general. On the other hand we prove in a sharper and more general form several conjectures stated in [1]. First we introduce some notations. $A_{(m,u)}$ denotes the integers $a_i \in A$, $a_i \equiv u \pmod{m} (A_{(m,u)}(n)$ denotes the number of terms of the sequence $A_{(m,u)}$). $A_{(2 \ 1)}$ respectively $A_{(2, \ 2)}$, we will denote by A_1 respectively A_2 . $\varphi(n)$ denotes Euler's φ function.

$$\varphi(A, k) = \sum_{\substack{a_i \le n \\ (a_i, k) = 1}} 1.$$

 $\Phi(A)$ denotes the number of pairs $(a_i, a_j) = 1, a_i < a_i \le n$. Put

$$F(n) = \min_{A} \max_{a_j \in A} \varphi(A, a_j)$$

where the minimum is to be taken over all sequences A satisfying $A(n) \ge \left\lfloor \frac{n}{2} \right\rfloor + 1$.

For simplicity we will henceforth assume that n is even, all our results could easily be extended for odd n. c_1, c_2 ... denote suitable positive absolute constants.

Let
$$A(n) = \left\lfloor \frac{n}{2} \right\rfloor + 1$$
. P. ERDős proved that for $n > n_0 \Phi(A) > c_1 n/\log \log n$

9*

and in fact the minimum of $\Phi(A)$ is assumed if A consists of the even numbers and u_r where

$$u_r = 3.5, \ldots, p_r, 3 \ldots p_r \le n < 3 \ldots p_r \cdot p_{r+1}.$$

He also conjectured that

(2)

$$\lim_{n\to\infty}F(n)=\infty.$$

We now prove (2). In fact we prove the following sharper THEOREM 1.

$$F(n) > c_2 n / \log \log n$$
.

We first prove two other theorems which will easily imply Theorem 1. THEOREM 2. Let A satisfy

$$(3) A_1(n) = s, 1 \leq s < c_3 n,$$

$$A(n) > \frac{n}{2}.$$

Then for $n > n_0$

(5)
$$\max_{a_i \in A} \varphi(A, a_i) > c_4 n / \log \log \frac{n}{s}$$

and

ł

(6)
$$\Phi(A) > c_5 sn/\log \log \frac{n}{s}.$$

We need the following known

LEMMA 1. The number of integers $1 \le k \le n$ satisfying $\varphi(k)/k < 1/t$ is less than $(\exp z = e^z) n \exp(-\exp c_6 t)$, uniformly in t > 1. Choose

(7)
$$t = \frac{1}{c_6} \log \log \frac{2n}{s}.$$

We obtain from Lemma 1 that the number of integers $1 \le k \le n$ which satisfy $\varphi(k)/k < 1/t$ (where t is defined by (7)) is less that s/2. Thus the number of integers $a_i \in A_1$ for which $\varphi(a_i)/a_i > 1/t$ is by (3) greater than s/2. Denote now by $b_1 < \ldots < b_r \le n$, r > s/2 the integers in A_1 satisfying $\varphi(b_i)/b_i > 1/t$. Clearly the number of integers $2u \le n$ satisfying $(2u, b_i) = 1$ is greater than $\frac{n}{2} \frac{1}{2} \varphi(b_i)/b_i > n/4t$. Thus (in $\Sigma' a_j$ runs through the numbers of A_2)

(8)
$$\sum_{(b_i,a_i)=1}^{\prime} 1 > A_2(n) - \frac{n}{2} + \frac{n}{4t},$$

or by (8) and (7) for sufficiently small c_3 and c_4 we obtain by a simple computation for sufficiently large n

(9)
$$\varphi(A, b_i) > A_2(n) - \frac{n}{2} + \frac{n}{4t} = A(n) - A_1(n) - \frac{n}{2} + \frac{n}{4t} > \frac{n}{4t} - s > c_4 n / \log \log \frac{n}{s}$$

which proves (5).

To prove (6) observe that (9) holds for every $1 \le i \le r$ and $r > \frac{s}{2}$, hence from (9)

$$\Phi(A) > \frac{c_4}{2} \, sn/\log\log \, \frac{n}{s},$$

which proves (6) and hence the proof of Theorem 2 is complete.

THEOREM 3. To every c_9 there is a $c_{10} = c_{10}(c_9) | c_{10}$ is bounded in terms of

$$\frac{1}{c_9} | \text{ so that if } A_1(n) = s > c_9 n \text{ and } A(n) > \frac{n}{2} \text{ then for } n > n_0$$

$$\Phi(A) > c_{10}n^2.$$

For $s < c_3 n$ Theorem 3 would follow from Theorem 2, but for the large values of s we need a separate proof.

Denote by P_r the product of the primes not exceeding r. We first prove LEMMA 2. To every $\varepsilon > 0$ and $\delta > 0$ there is an $r = r(\varepsilon, \delta)$ so that if n > $> m_0(\varepsilon, \delta, r)$ then for all but $\varepsilon \frac{n}{P_r}$ integers k satisfying

$$1 \le k \le n$$
, $k \equiv u \pmod{P_r}$

we have

$$\alpha(k) = \prod_{\substack{p \mid k \\ p > r}} \left(1 - \frac{1}{p} \right) > 1 - \delta.$$

The Lemma is very easy to prove and we only outline it. We evidently have (in $\prod' k \equiv u \pmod{P_r}$, $1 \le k \le n$)

(10)
$$\prod' \alpha(k) > \prod_{r \prod_{p < n} \left(1 - \frac{1}{p} \right) \left(\prod_{r < p < n} \left(1 - \frac{1}{p} \right)^{1/p} \right)^{n/P_r} > > (1 - \eta_r)^{n/P_r},$$

where η_r can be chosen as small as we wish if r is sufficiently large. (10) implies Lemma 2 by a simple argument.

Now we prove Theorem 3. We evidently have

(11)
$$\sum_{i=1}^{\frac{1}{2}P_{t}} \left(A_{(P_{r}, 2i-1)}(n) + A_{(P_{r}, 2i)}(n) + A_{(P_{r}, 2i+1)}(n) \right) = A_{2}(n) + 2A_{1}(n) = A_{2}(n) + s = A(n) + s > \frac{n}{2} + s.$$

Hence by (11) there is an i_0 for which

(12)
$$A_{(P_r, 2i_0-1)}(n) + A_{(P_r, 2i_3)}(n) + A_{(P_r, 2i_j+1)}(n) > \frac{n+2s}{P_r}.$$

Clearly for every $u A_{(P_r, u)}(n) < \frac{n}{P_r} + 1$. Thus we obtain from (12) that there are two integers u_1 and u_2 , u_1 odd, $|u_1 - u_2| = 1$ or 2 satisfying

(13)
$$A_{(P_{r_{i}},u_{l})}(n) \geq \frac{1}{2} \left(\frac{2s}{P_{r}} - 1 \right) \quad (l = 1, 2).$$

Denote now by $a_1^* < \ldots < a_l^*$ the sequence of integers for which

(14)
$$k \in A_{(P_r, u_1)}$$
 and $\prod_{\substack{p \mid k \\ p > r}} \left(1 - \frac{1}{p} \right) > 1 - c_9/10$

From Lemma 2 and (13) we have for $r > r_0$, $\varepsilon = \frac{1}{3} c_9 (s > c_9 n)$

(15)
$$t > A_{(P_r, u_1)}(n) - \frac{\varepsilon n}{P_r} > \frac{2}{3} \frac{s}{P_r} - \frac{\varepsilon n}{P_r} > c_9 n/3P_r.$$

Now we estimate from below the number of solutions of

(16)
$$(a_i^*, a_j) = 1, \qquad a_j \in A_{(P_r, u_j)}.$$

Assume $p|(a_i^*, b), b \equiv u_2 \pmod{P_r}$. As $|u_1 - u_2| \leq 2$ and u_1 is odd, we have p > r. Denote by $B_i(P_r, u_2)$ the number of integers $b \leq n$, $b \equiv u_2 \pmod{P_r}$ for which $(b, a_i^*) = 1$. We have by a simple argument

(17)
$$\left| B_i(P_r, u_2) - \frac{n}{P_r} \prod_{\substack{p \mid a_i^* \\ p > r}} \left(1 - \frac{1}{p} \right) \right| < 2^{V(a_i^*)} < 2^{2 \log n / \log \log n}$$

since it is well known (and follows from the prime number theorem or a more elementary theorem) that for m < n $V(m) < 2 \log n / \log \log n$.

Thus from (14) and (17) for sufficiently large n

(18)
$$B_i(P_r, u_2) > (1 - c_9/7)n/P_r.$$

From (18) and (13) we obtain that the number of solutions of (16) is greater than $(s > c_9 n)$

(19)
$$\frac{1}{2} \left(\frac{2s}{P_r} - 1 \right) - c_9 n / 4P_r > c_9 n / 2P_r.$$

From (15) and (19) wo evidently have

$$\Phi(A) > c_9^2 n^2 / 6P_r^2$$

where r is bounded in terms of $1/c_9$ which proves Theorem 3.

It is now easy to prove Theorem 1. Let A be any sequence satisfying $A(n) \ge \frac{n}{2} + 1$. We distinguish two cases. Assume first $A_1(n) < c_3n$. In this case

(5) and the definition of F(n) implies Theorem 1. Assume next $A(n) \ge c_3 n$. Then from Theorem 3 we have

$$\max_{a_i} \varphi(A, a_j) \geq \Phi(A)/n > c_{10}(c_3)n$$

which completes the proof of Theorem 1.

We outline the following sharpening of Theorem 1.

THEOREM 4. Let $n > n_0$. The only class of sequences A^* for which F(n) is assumed is defined as follows: $A^* = A_1^* \cup A_2^*$, where A_1^* consists of all odd multiples not exceeding n of u_r $(3 \dots p_r \le n < 3 \dots p_r p_{r-1}, u_r = 3 \dots p_r)$ and A_2^* consists of the set of even numbers (not exceeding n) from which $A_1^*(n) - 1$ even numbers relatively prime to u_r have been omitted.

Theorem 4 clearly implies that

(20)
$$F(n) = \varphi_n^{(2)}(u_r) - \left[\frac{n}{u_r}\right] + \left|\frac{n}{2u_r}\right| + 1$$

where $\varphi_n^{(2)}(u_r)$ denotes the number of even integers not exceeding *n* which are relatively prime to u_r .

We only outline the proof of Theorem 4. Let $A\left(A(n) \ge \frac{n}{2} + 1\right)$ be any sequence which contains an odd number u which is not a multiple of u_r . A simple argument shows (see [1]) that

$$\varphi_n^{(2)}(u) > \varphi_n^{(2)}(u_r) + c_{11}n/(\log n)^2.$$

Thus if

$$\varphi(A, u) \leq \varphi_n^{(2)}(u_r) - \left[\frac{n}{u_r}\right] + \left[\frac{n}{2u_r}\right] + 1$$

we must have $A_1(n) = s > c_{11} \frac{n}{(\log n)^2}$. But then from (5) and Theorem 3

we have

$$\max_{a_i \in A} \varphi(A, a_i) > c_{12} n / \log \log \log n > \varphi_n^{(2)}(u_r)$$

which proves Theorem 4. Theorem 4 implies by a well known theorem of Mertens that (C is Euler's constant)

$$F(n) = (1 + o(1))e^{-C}n/\log \log n.$$

References

- P. ERDŐS, Remarks on number theory, V. Extremal problems in number theory II. (in Hungarian), Mat. Lapok, 17 (1966), 135-155.
- [2] P. ERDŐS, Some remarks about additive and multiplicative functions, Bull. Amer. Math. Soc., 52 (1946), 527-537.