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Denote by V(n) the number of distinct prime factors of II. A well known theorem 
of HARDY and RAMANUJAN [8] states that for almost all IZ V(n) = (1 + o (1)) log, y1 and 
a special case of a result of KAC and myself [3] states that the density of integers y1 
satisfying 

V(n) > log, n f c(iog, Ply2 

is l/J27s 7 FX2” dx (almost all n means for all neglecting a sequence of density 

0, log, IZ denotes the k-fold iterated logarithm). 
Denote by u(n; U, v) the number of prime factors p of II satisfying u<p<v. Let 

u=u(x), v =v(x), and assume that log, v-log, U+CO, TURAN [I 11 proved that for all 
but o(x) integers y1<x u(n; U, v)= (1 +o(l)) (log, u-log, u). Wenow investigate the 
case when u and v depend on n. If the dependence is regular Turan’s method carries 
through without too much difficulty. In the general case, somewhat unexpectedly, 
log, v-log, u-00 is not sufficient for v(lz; U, v)= (1 +o(l)) (log2 u-log, u), but in 
fact we show that this holds uniformly in u and z, under rather mild conditions. 

In fact we prove 
THEOREM 1, Assume (log, v-log, u)/log,n+co. Then we have for almost all n 

uniformly in u and v 

V(n; u, v) = (1 + o(l)) (log,v - log,u). 

Theorem 1 is best possible. In fact we have 
THEOREM 2. There are two continuous functionsf, (c) andf, (c)J1 (0) = co& (co) = 1, 

&(c) is strictly decreasing for O<c<w; f,(c)=0 for O<c<l, f,(a3)=l,f;(c) is 
strictly increasing in 1 < c < UJ, satisfying for almost all n and for every c > 0 

max V(n; zl, v) = (1 + 0 (l))fl (c) (log, v - log, U) 
and 

min V(n; U, v) = (1 + 0 (l))fi (c) (log, 0 - log, 21) 

where the max and min is taken with n fixed over the values 1 d u < v-G n satisfying 

log, v - log, u > c log, n 

We will prove Theorem 1 in full detail, the proof of Theorem 2 is similar but more 
complicated and will be omitted (see [4]). 

Theorems 1 and 2 can be generalised for a large class of additive functions but 
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we will not discuss this here. I only formulate the probabilistic theorem which corre- 
sponds to theorems 1 and 2 in case of Rademacher functions rk(x). 

THEOREM 3. For all x neglecting a set of measure 0 we have 
1) 

1 
hm-- 

V-U c 
r&c) = 0 

k=ld 

uniformly in u and v if (v- u)/log u+co, 
Further 

I, 

1 
lim ~ 

V-U c 
rk @> = fl cc> 

k=u 

where u+cc and v>u+clogu.f(c)=lfor O<c<l, f(co)=O. 
f(c) is strictly decreasing in 1 CC < co. 
The proof of Theorem 3 follows from simple independence arguments and will 

not be given here. Theorem 3 could be generalised for other independent functions 
but I have not investigated how far this generalisation will go. 

Letp,<.-* <pUCnj be the distinct prime factors of n. In a previous paper [5] I stated 
(it can be proved by the methods of probabilistic number theory [5]), that roughly 
speaking the order of magnitude of the i-th prime factor of n is exp exp i (exp z = c’), 
More precisely for every E>O and q>O there is an i, so that for all but EX integers 
lzQx we have for all i,<i<v(n) 

In fact in [5] a sharper result is stated. 
By the same method I can prove that for every E> 0 and n> 0 there is an i, so that 

for all but EX integers n<‘x we have for all i,<i<u(n) 

(l-n)i<loglogn-loglogpic(l+q)i. 

I now state without proof a few results about prime factors of integers which can 
be obtained by standard methods of probabilistic number theory (see [9]). 

We have for almost all integers n 

In fact more generally we have for almost all )1 
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where the dash indicates that the summation is extended over the piln,pi> exp exp 
(i+c P2). 

(1) and (2) follows from a result of CHUNG and myself [2] (which is a generali- 
sation of a result of PAUL LEVY [lo]) and BRUNS method (similarly as in [3]). 

On the other hand it is not true that for almost all n 

c 1 = (i-l- o(l))log,n. (3) 
Prln pi>expexp i 

Instead of (3) the following result holds: Let j, <. . . be a sequence of integers. 
Put C l=A(y)andassumeA(y)-+co,A(2y)/A(y)+l asy+co.Thenforalmostall 

Jr<Y 

integers 
c 1 = (+ -i- 0 (1)) A (log, n) 

PA” 
Pj,> exp exp jP 

From the arc sine law [6] and BRIJNS method we obtain the following result. The 
density of integers y1 for which 

1 -c log2 n 
l<E 

Pilfi 
pi < exp exp i 

holds, equals 2/rr arc sin TV 1’2. This shows that (3) is not true. 
Denote byf(a) the density of integers the largest prime factor of which is <n’. 

It is easy to see thatf( a exists and is a continuous strictly increasing function of tl, ) 
f(O)=o,f(l)= 1. DICKMAN, DE BRUIJN, BUCHSTAB [l] and others obtained more or 
less explicit formulas forf(a). Denote by&(a) the density of the integers IZ for which 
p”(n)-i<nh. It is easy to see by methods similar to those used forf(x)=fo(g) that 
A(E) is a strictly increasing continuous function of CI, &(M) fi (0) = 0, f,(l/i+ 1) = 1. 
As far as I know f;(E) has never been computed explicitely. It follows by the methods 
of probabilistic number theory [3] that the density of integers n for which 

and 
pi > exp exp (i + C i”‘) 

PV(n)-j > explogn/ej-Cj1’2 

approaches as i+co, j-+co 1/Jz r e-x2’2dx. 

Denote by a(i, k) the density 0; the integers the i-th prime factor of which is pk. 
Clearly ~((i, k) exists for every i and k (because the sequence of numbers the i-th prime 
factor of which equals pk can be obtained by set theoretic operations from a finite 
number of arithmetic progressions), and is positive for k > i. It might be of interest 
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to determine max CI (i, k), or at least to obtain an asymptotic formula for it. I only 
succeeded in obtaining here some rather crude results. 

Now we prove Theorem 1. Because of the slow growth of the iterated logarithms 
it clearly will suffice to prove the following. 

THEOREM 1’. To every E>O there is an A so that for every x> x1 (E, A) the number 
of integers n < x for which for every (u < v Q x) 

we have 
log, u - log, U > A log, x (4) 

(1 - E) (log, U - log, U) < V(n; U, v) < (1 -I- E) (log, v - log, U) 

is x+0(x)* 
To prove Theorem 1’ we only have to show that for x>xO(s, A) the number of 

integers n < x for which there are values u < v < x satisfying (4) and for which 

or 
V(n; t(, u) < (1 - E) (log, v - log, u) (5) 

V(n; ll, v) > (1 + E) (log, u - log, U) e> 
is o(x). 

Put wi = exp exp i. First we prove 
LEMMA 1. The number of integers n < x for which 

is o(x). 

max V(pt; Wi,Wi+l) >lOg,X 
i 

(7) 

The number of integers n<x for which V(p1; wi, ~~+J>log, x holds is clearly at 
most C’ [x/aj] where in C’ the summation is extended over the integers aj which are 
the product of t = [log,x] distinct primes p, wi <p -C w~+~. Now clearly by the well 
known theorem of Mertens c lJp=log,y+c+o(l) we have uniformly in i 

P<Y 

I[;+( c JIt=xlq-Q=o(l&). (S) w,<p<wYt1 
In (7) there are only log,x choices of i, thus Lemma 1 follows immediately from (8). 
From Lemma 1 we easily deduce that to prove Theorem 1’ it suffices to consider 

in (5) and (6) only those U’S and o’s for which 

u = Iv. 13 v = wj, l<i<j<log,x, j-i>Alog,x, 

LEMMA 2. For all but o(x) integers n <x 

qn; x1”og2x, x) = (1 + 0 (1)) log, x . 

Lemma 2 follows immediately by the method of TURAN [l 11. 

(9) 
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From Lemma 2 it easily follows that in (9) we can assume j<log,x-log,x or 
Wj<eXp(lOgX/lOg,X). 

Denote (p’lln means that $ln but p”+’ fit) 

A(n) = n’p” 

where the dash indicates $11 n, p d exp (logx/log, x). 
LEMMA 3. For ali but O(X) integers n <x we have A(n) <xii*. 
Lemma 3 is well known, but for the sake of completeness we give the simple 

proof. We evidently have by the theorem of MERTENS (L = exp (logx/log,x)) 

no1 A(n)< pQL~ki’x’p’ = e*p(x C !zP)< exp(2x lOgX/lOg2X). 

p 2-l 

(10) 
c 

From (10) we obtain that the number of integers n <x for which A (n)>x”* is less 
than 4x/log,x, which proves the Lemma. 

LEMMA 4. Let i and j satisfy (9). Then the number of integers S (i, j) satisfying 
A(n) which satisfy (5) or (6) is o(x/(log,x)*) uniformly in i andj. 

Before we prove Lemma 4 we deduce Theorem 1’ from our four Lemmas. We 
already deduced from Lemmas 1 and 2 that to prove theorem 1’ it suffices to consider 
the values i and j satisfying (9) and from Lemma 3 we obtain that we only have to 
consider the n< x with A(n) < x l/*, There are fewer than (log,x)* values of i and j 
satisfying (9), hence from Lemma 4 the number of integers which satisfy (5) and (6) 
for some i and j satisfying (9) is o(x) as stated. 

Thus to complete the proof of Theorem 1, we only have to prove Lemma 4. Let 
i < j satisfy (9) and denote 

Ai,j(n) = n JI’, where pollIn, IVY < Y < Wj. 

LEMMA 5. Let t < x1’*. The number qf integersf,, j(x, t) for ivhich n d x and A,, j(n) = t 
is less than cl x/t exp ( j- i). 

fi, j(x, t) clearly equals the number of integers m < x/t which have no prime factor 
p, satisfying wi<p< wj. It immediately follows from BRUNS method [7] (here we use 
A(n)<x”* )) and the well known theorem of MERTENS wi<~w,(1-llp)<c2/~xp(j-i) 

1 
that,fi, j(x, t) is less than 

~~f~,;<~~(l - :) < c,x/tev(j - iI 

which proves Lemma 5. 
Denote now by aI c -‘. the integers not exceeding x I/* which are composed entirely 
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from the primes Wi <p < Wj and for which 

V(a,) < (1 - s) (j - i) 
or 

(11) 

We evidently have 
V(q) > (1 + .s) (j - i). (12) 

c:< c (C#! + 1 (j#! (13) 
u-=(1-e)(j-1) u>(l+e)(j-1) 

where P runs through all the powers of the primes p, satisfying wi<p<wj. By the 
theorem of Mertens we obtain by a simple calculation (usingj- i> A log, x) 

y< c wy+ c yc41 
\ 

uc(l-E)(j-i) u>(l+E) (j-i) (141 

< exp(j - i + cd) (1 - c,E)-~~‘(~-~) = 0 (exp(j - i)l(log2 x)*) 

for sufficiently large A =A,(&). (14) states a well known property of the exponential 

series, namely in the expansion ez= f zk/k!, the main contribution comes from the 
k=O 

terms k = (1 +o(l))z. 
We evidently have from Lemma 5 and (14) 

which proves Lemma 4 and thus completes the proof of Theorems 1’ and 1. 
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