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G(n; 1) will denote a graph of » vertices and / edges. Let f,(n, 2) be
the smallest integer such that there is a G(n; fy(%, k)) in which for every set
of & vertices there is a vertex joined to each of these. Thus for example
fo(3, 2) = 3 since in a triangle each pair of vertices is joined to a third.
It can readily be checked that f,(4, 2) = 5 (the extremal graph consists of
a complete 4-gon with one edge removed). In general we will prove: Let
#n > k&, and

1) fon, B) = (k—T)n— (:) " [”-21%] +1;

then fy(n, &) = f(n, k).

It will be convenient to say that the vertices #,, . . ., #, of G are visible
from x,,,, if all the edges (x,, 2;.4), =1, & occur in G. A graph is said
to have property Py if every set of & of its vertices is visible from another
vertex. G, will denote a graph of » vertices (the number of edges being
unspecified) and G(m) denotes a graph having m edges. Let G = (Gn;
f(n; k)) be defined as follows: the vertices of G\ are z,,:--, «,. The
vertices @,,7 = 1, -+, k—1 are joined to every other vertex and our G
has [#n—k4-2/2] further edges which are as disjoint as possible. In other
words if n—£k-1 is even G has the further edges (Zypq;, Trrnir1), 1= 0,7+,
[n—k—1/2], if n—E+1 is odd the edges are (%, Zry1), ®r» Ters)y @rassrs
Xppsra) =1, [n—%k—2/2]. Tt is easy to see that G!” has property P,.
Now we prove

THEOREM 1. A graph G(n; f(n, k) has property P, if and only if it is
our graph G0,

Theorem 1 is vacuous for # < % and it is trivial for # = k-1, thus we
can assume # = k42, Clearly Theorem 1 implies (1). To see this it suffices
to observe that if a G(n; f(n, k) —1) would have property P, we could add
to it a new edge so that the resulting G (#; f(n, k)) would not be a G
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Since G has property P, we only have to prove that a G(x; f(», k)
has property P, then it must be our G!”. Before we give the somewhat
complicated proof we outline a simple proof of (1) for 2 = 2.

LeMMA. Let G, have property P, then every pair of its vertices is visible
from at least k— 1 vertices.

Assume that the Lemma is false. Then say z, and x, are visible
from only #,... ¥, { = k—2. But then the set of /42 =< % vertices
Zy, Xy, Yy, . . ., ¥, would not be visible from any vertex of G,, which contra-
dicts our assumption.

Let now @, =1, ..., n be the vertices of G, and assume that v, is
the valency of z, (i.e. z; is joined to v, vertices of G). Our Lemma implies

@ > ()zen())

i=1

since the number of pairs of vertices visible from =, is (g‘)

From (2) it is easy to deduce (1) for £ = 2. To see this observe that the
number of edges of a graph is 1 37 v,.

By (2) S ("2‘) = (’2‘) and thus by a simple argument $ 37 ; »; will be
at least as large as in the case that one v, say #, is as large as possible i.e.
vy =n—1, and v,, . .., v, are as small as is consistent with (2). Now it is
easy to see that P, implies v; = 2 for all 7. Hence

(3) 33v, = j(n—142(n—1)) = F(n—1)
f=1
which agrees with (1) for 2 = 2 if » is odd. If # is even a similar but some-
what more complicated argument proves (1).
It does not seem easy to deduce (1) from (2) for # > 2. One could
easily obtain

fn, k) = (k—%)n+0(1)

but a more precise estimation seems difficult. Hence to prove (1) and
Theorem 1 we shall use a different method.

We say that G(m) has property 6, if it contains a set S of 7 vertices
%, ..., @, each of which is joined to some vertex of G(m) not in S. G is the
complementary graph of G i.e. two vertices are joined in & if and only if
they are not joined in G.

Put # = k+¢—1. Then

() -rm0-()-[]

Now a simple argument shows that the fact that G (n; f(», k)) does not have
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property P, is equivalent to G(n;f(n, k)) = G((;)—[(t—{—])ﬁ]) having
property 6,_,. Thus Theorem 1 is equivalent to the following

THEOREM 2. Every G((;) —[(t+ 1)/2]) has property 0, except if it
is a G,

Clearly our G'? is a G(t, (;)-[(:4—1)/2]) where the missing [(¢+1)/2]
edges are as disjoint as possible.

Theorem 2 is vacuous for { < 2 and trivial for # =< 3. Henceforth as-
sumef = 4.

To prove Theorem 2 let G ((;) —[(t—1)/2]) = G be any graphs which
does not have property 0, ;. We will show that it must be a G, First of
all we can assume that all vertices of our G have valency < ¢#—2. For if not
then say z, is joined to ¥, . . ., ¥,_, which shows that G has property 0,_,
which contradicts our assumption.

Assume next that G has a vertex z of valency {—2 (this will be the
critical case). Denote by ¥, . . ., y,_, the vertices joined to z and let z,, . . .
be the other vertices of G. Clearly no two 2’s can be joined. For if (z;, z,)
would be an edge of G then z,, ¥y, . . ., ¥,_, are —1 vertices each of them
are joined to a vertex not in the set, or G has property 6, ;. Also no y
can be joined to two 2’s. For if %, is joined to 2, and 2, then the £—1 vertices
Zy, 29, Ya, -« +, Y4_p would show that G has property 6,_;.

Next we show that at least {—3 #’s are joined to some z (as we know
each y can be joined to at most one z). Assume that # %’s are joined to
some z(u < t—3). Clearly (v(G) denotes the number of edges of G)

4)  0(6) = (;) ~ [?] = u+ (5;1) —N or u—N = [-;-] i

where N is the number of the edges of the complete graph spanned by
Y1, « + - Y, Which do not occur in G. Now clearly
u-+1

5 e i i
o - [
since a y joined to a z cannot be joined to all the other %’s (since otherwise
Its valency would be #—1), hence a missing edge (i.e. an edge not in G)
is incident to every y which is joined to a z and this proves (5). From (4)
and (5) we have

2= (4

(6) clearly implies # = ¢{—3 as stated.
Hence either ¥ = #—3 or 4 = {—2. (4) and # = {—2 implies that we
must have equality in (5) i.e. N = [(u#41)/2].
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First we prove Theorem 2 if # ={--3. (6) implies that if # ={—3, {is
odd and since N = [(#+1)/2] 4 [#/2] = [({—2)/2] and every y which is
joined to a z must be adjacent to a missing edge we obtain that the [#/2]
missing edges must be isolated. In other words we can assume that our G
contains all the edges of the complete graph spanned, by =, ¥,, ..., ¥,
with the exception of the edges (¥s;, ¥si1), ¢=1, ..., [({—2)/2]. Further
every ¥;,+ = 2, ..., —2is joined to exactly one z. If all these z’s coincide
then G is spanned by @, ¥y, . . ., ¥;_y, 2 and is clearly our G!” and Theorem 2
is proved in this case.

To complete our proof of the case # = £{—3 assume that #, is joined
to z; and y, to z;, (z; # 2,), 2 =17 <<j =< ¢—2. But then the {—1 vertices
%, 2y, 25, {y b1 <1< 62,15 1,15 j show that our G has property 0, ;
(r and z; are joined to y,, z, is joined to y; and every other ¥, [ # 4,1 # 1
is joined to y, or y; [since the missing edges were isolated]). This contradic-
tion completes the proof of Theorem 2 if # = {—3.

Assume next # = ¢{—2. Then each y is incident to at least one missing
edge and since the number of missing edges is [(#+1)/2] = [(f—1)/2] we
obtain that for even £ there are (¢—2)/2 isolated missing edges. Just as in
the case # = t—3 we see that all the {—2 ¢’s must be joined to the same z.
But then we again obtain our G/%. This disposes of the case u = {—2,
¢ even.

Assume next # =¢—2, { odd. These are [({—1)/2] missing edges and
since each ¥ is incident to one of them we can assume without loss of
generality that the missing edges are (y,, ¥2), (¥, ¥s), (Wor, Yor1), L =2, ...,
[(¢—2)/2]. If all the y’s are joined to the same z we again get our G{’. Thus
we can assume that not all the s are joined to the same z. Now to complete
our proof we have to distinguisn two cases. Assume first that there is a z
say z; which is joined to only one y say ¥;. This case can immediately be
disposed of since the set of {—1 wvertices =, z;, {7;,}, 1 =l =¢(—-2,1+#1
shows that our G has property 0,_, (z and 2, are joined to ¥, and all other
#’s are by our assumption joined to a z different from z,). This contradiction
proves Theorem 2 in this case.

Assume finally that every z is joined to more than one y and there
are at least two z’s. Let, say, 2, be joined to y, and y, and z, to y,. Observe
now that either every y is joined in G to one of the two vertices ¥, and g,
or every ¥ is joined to one of the two vertices y; and y, (this follows from
the fact that the missing edges are either isolated or have at most one vertex
of valency two). Assume thus that every y is joined either to y, or to y,.
But then the set of {—1 vertices z, 2,2, {y,}, 1 S I = ¢t—-2,15£4,1#7
show that our G has property 0, , (# and z, are joined to ¥;, ¥, to ¥, and
every ¥,, ! 5= 1,1 5= # is joined either to y, or g,). This contradicticn com-
pletes the proof of Theorem 2 if G has a vertex of valency = f—2.
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Assume now that all vertices of G = G((;)—[{H—l}m]) have valency
< t—2. We will show by induction with respect to ¢ that then our G must
have property 6, ; and this will complete the proof of Theorems 2 and 1
and also of (1).

Assume that the maximum valency of a vertex of our G is 7 < #—2.
Let z be joined to 4, . . -, %,. Denote as before by z, . .. the other vertices
of G and let # be the largest number of z's joined to a y. Assume that ¥, is
joined to z, .. ., 2,. We evidently have

(7) # = min (f—r—1, r—1).

To prove (7) observe that » = » would imply v(y,) > r and # = {—v
would imply that G satisfies 0, ; (consider the vertices ¥y, . .., ¥,, 21,...,%,).
Denote by #; the number of z’s joined to y; (¥, = #) and by w, the
number of ¥’s joined to y,. By (7) v(y;) = 1+u,+w,; = r—1. Thus by (7)

the number E of edges incident to the vertices z, y,, - . ., ¥, equals
’ r(r—u—1 r{r+u-1
® E=rt3 (ko) St ) S <

(8) follows from the fact that E is evidently maximal if all the #; are # = r—1
(i.e. they are all as large as possible) and if w, = r—u—1 = 0. From (7)
we have (G, is the graph spanned by the 2’s)

t 41
9 G, = —_ = =
(o) o6 = () - [2] —
Assume first » =< #/2. Then we obtain from (9)
t—7r t—r—+1
10 G — .
(10) 6> () - ||
Hence by our induction assumption G, has property 0, ,_, i.e. it con-
tains a set of wvertices z, ..., 2,_,_; each of which is joined to some z;,
i > t—r—1. But then the t—1 vertices z,, ..., Z,_,_y, ¥4, . . -, ¥, show that

G has property 8,_,, which proves Theorem 2 if r < £/2.
Assume next ¢/2 < 7 <{—3. From (7) we have #; =<t—r—1 and by (8)
E is maximal if all the %, are f—7—1 and w; = r—1—u, = 2r—¢. But then

by (8)
(11) E < rdr(t—r—1)+ % (2r—t) = %‘

From (11) we have

e ()[4 % (7) - [552)
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Thus the proof can be completed as in the previous case, and the proof of
Theorem 2 is complete.

Denote by fy(n, k,7) the smallest integer for which there is a
G(n; fo(n, k, 7)) in which every set of k vertices are visible from at least »
vertices. We say that a graph has property P, , if every set of % of its
vertices is visible from at least » vertices. Just as in our Lemma we can show
that if G, has property P, , then every pair of its vertices is visible from at
least &+-r—2 vertices (our old property Py is P; ,).

Thus we obtain as in (2) that if G, has property P, , thenif £ > 1

’ = v n
(2') gl (2) = (k+r—2) (2)
From (2') we can deduce that if n < ny(k, ») then
(12) fo(n, &, 7) = [o(n, k+r—1) = f(n, k+r—1).

(12) certainly does not hold for every #, k and ». It is easy to see that
f0(10, 2, 6) = 40 but f(10, 7) = 41. Our Theorem 1 states that (12) always
holds for » = 1 and perhaps it always holds for # = 2 also if 2 > 1. For
k = 1 every G, each vertex of which has valency = 7 clearly has property
P, ., thus fo(n, 1,7) = [(rn+1)/2], in other words if £ =1, > 1 then (12)
is not true. We hope to return to these questions on another occasion.

Finally we can ask the following question: Denote by F (%, k) the smal-
lest integer for which there exists a directed graph G(n; F(n, k)) so that to
every & vertices &, . .., @, of our G there is a vertex y of G so that all the
edges (y,2;)¢=1,..., %k occur in G and are directed away from y. It is
easy to see that for # =3, F(n, 1) = n (for n =< 2 there clearly is no
solution). It is not hard to show that forn = 7, F(», 2) = 3n and forn < 7
there is no solution. For 2 = 3, we only have crude inequalities for F (%, k).
We say that G, has property S, (after Schiitte who posed the problem) if
for every set of & nodes (2, ..., %;) there is at least one node y in G, so
that all the edges (y,®;), ¢ = 1,..., & occur in G and are directed away
from y. Denote by /(%) the smallest value of # for which an S;-graph of #
vertices exists. We have

(13) (f—1)2"+3 < f(k) < ck?2*.

(13) is due to P. Erdos, E. Szekeres and G. Szekeres (Math, Gazette 47 p. 220
and 49 p. 290). We can show that for n > #n,(%)

(14) [(k—=1) -n < F(n, k) < (&) - .
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