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HAJNAL and FOLKMAN (3], [2], independently of each other,
proved the following Lemma: Let [¥| = 2n-f, A;c ¥, [A;l = n be subsets
of ¥ so that to every element x of ¥ there is an A; not containing x. We
define now a graph as follows: xef, yed¥ are joined if for some A; they
are both contained in A; . The Lemma asserts that this graph contains a
complete graph of n+1 vertices. We are going to generalise and extend this
Lemma in various directions and establish some connections with RAMSEY's

theorem. First we have to introduce some notations.

The basic elements of an r-graph are its vertices and the r-tuples
formed from some of its vertices. K (n) is the complete r-graphof n vertices

and all its (:) r -tuples.

For r =2 we obtain the ordinary graphs. Let § be a set. A family
of subsets A; c§ defines an r-graph q.(")(:?', Aq,...) as follows: The vertices
are the elements of ¥, an r-tuple belongs to our graph if and only if it isa
subset of one of our A’s. Such r-graphs were, as far as I know, first studied
in [1] in a context that differs from this. We say that the family can be
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represented by i vertices if there are i elements x,,..,x; of ¥, so that
all the A’ s contain one of the x.i’s, 1<j=i.The symbol (m,n,i,r) — u
means that if |f|=m=2n and A;cY¥,[A;lz2n is any family of subsets which
cannot be represented by i vertices, then g‘r)( §5;A,,..) containsa Kew).
(m,n,i,r) > y means that {m,n,i,r) — u does not hold (i.e.
there are sets A;c¥, |[§1=m, [A;lzn which cannot be represented by i
vertices but q&h Ays-..) does not contain a K(r)(u)). f(k,8) are the so-
called Ramsey numbers, }(k,{) is the smallest integer, so that every graph of
f(k,{) vertices either contains a h(£) or its complementary graph contains a
K(2) (in the complementary graph, two vertices are joined if and only if they
are not joined in the graph).

Trivially (m,n,i,r) — n always holds and the only interesting

cases occur for u>n . Clearly the following monotonicity relations hold:

(1) (m,n,i,r) —u implies (m,n,i',r) — u if U>i
(2) (myn,i,r) —u implies (m,n,i,r) — u if m>mz2u
(3) (m,n,i,r) — u implies (m,n,i,r) if <r

The Lemma of Hajnal and Folkman can be expressed in our notation
as (2n-1,n,4,2)—n+1. Clearly (2n,n,1,2) 4> n+41 (it suffices to take two
disjoint n-tuples in EP, || =2n ), also for every mzn (m,n,1,2) 4> n+2
(take all n-element subsets of ¥, |J| = n+4 ). On the other hand we prove the

following generalisation of the Lemma of HAJNAL and FOLKMAN:

THEOREM. Let (24. Then
4) (2n+i-2,n,i,2) — n+i.

For i =1 thisis the Lemma of Hajnal and Folkman. To prove (4)

for 1>1, we use induction with respect to i .
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Assume that (4) holds for i-{ and every n. Let |#| =2n+i-2
and let 1; be any element of . Consider the family of all the A’ s contained in
d-%; . They cannot be represented by i-{ elements, hence by our induction
hypothesis (2n+i-3,n, i~1,2) — n+i-1, thus for every X Q(2>(:?~ x,j,A1,,.,)
contains a complete graph Ki(n+£-1) which is contained in C}(”C:?, LR
Denote the set of vertices of this graph by F;, Fjcd-i;. Clearly the family
of sets Fj cannot be represented by one element, thus by the Lemma of
HAJNAL and FOLKMAN f(and (2)) we have (2n+i-2, n+i-1,4,2) — n+(,
or Ck(z)(:]‘; F,,..) contains a K, (n+i), but since C&(")(@; Fy»-) is clearly
a subgraph of q(“(s?i Ay,...), this completes the proof of our Theorem.

Our Theorem is the best possible. To show this observe that

(3) (Zn+i=-2,n,01,2) 4 n+i+1,
(6) (anei=t, n50,2) 45 n+[L—;{} 5
(7 (Zn+1-2,n,1-1,2) > n+i.

(5) is obvious, it suffices to consider all n-element subsets of
g, 1¢] = net

(7) immediately follows from (6). (6) is slightly less obvious.
Assume first that (=2j+{. Let the elements of § be x.,y,, t=1,...,n+1.
Let the Aj: |Aj| =n be all subsets of ¢ which contain at most one of the

elements XprYyr t=4, nej.

Clearly q_(i)( g, A-.) does not containa Ky (n+j+4) and the
A’ s can not be represented by 2j+1{ elements; this proves (6) for odd (.
Assume next i =2j+2. We then have to show (2n+2j+1, n,2]+2,2) 4> n+j+4.
Let the elements of ¥ be the residues mod (2n+ 2j+1). The sets At yALC ?,IA,CI=11
are those n-element subsets of ¥ which do not contain two consecutive residues.
Clearly G (9¥;A,,..) does not contain a K,;(n+j+4) thus, to complete our

proof, we only have to show that the A’ s are not represented by 2j+2 residues,
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Let |u] = 2j+2 be a set of 2j+2 residues; we show that 4-u
must contain an A. Without loss of generality, we can assume that { is in U.
Let ¥, be the set of odd residues excluding 1 and ¥, is the set of even
residues. |U| = 2j+2 implies that either |$,nWl<j or |fHalUl<j.
Assume without loss of generality |$,nU| <j. Butthen |¢, -4 nlU|=2n
or ¥,-U contains an A, as stated. This completes the proof of (6). It seems

certain that (6) is not the best possible.

Several unsolved problems can be posed. Denote by A(n,i) the
smallest integer for which (A(n,i), n,i,2) 4> n+1. (6) and our Theorems
show A(n.41) =2n, A(n.2) = 2n+41. Iconjectured A(n,3) > 2n+2,

in other words I conjectured
8) (2n+2,n,3,2) — n+i.

For n=2 (8) is Ramsey’ s theorem (a graph of 6 vertices: either
contains a triangle or a set of three independent vertices). HAJNAL and I
proved (8) for n=3 and recently SZEMEREDI has proved (8) for all n.

HAJNAL and I proved A(n,3) < 3n i.e. we proved
(9 (3n+4,n,3,2) 4> n+.

To prove (9), let ¥ be the set of residues mod(3n+4) and the
A’s are all the sets of n consecutive residues. Perhaps (3n,n,3,2) — n+{
holds.

It is clear that many further problems can be posed.

We just state one more tirival result:
(10) (myn,i,r) — u implies for every t>0 (m+t,n,i+t,r) — u.

The simple proof of (10) we leave to the reader.
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Let us now establish tho connection of our symbol with the RAMSEY

numbers. Let n=2 denote, say, by g(i) the smallest integer for which
(1) (g(i), 2,i,2) 4 3

holds. (11) means that there is a graph of g(i) vertices which contains no
triangle, and for which the complementary graph contains no K,(gti)-i) and
g(i) is the smallest integer with this property in other words, g(i) is the

smallest integer for which
(12) g(i) < §(gCid)-1,3).

It seems hopeless to determine {(k,3), even to get an asymptotic
formula is probably very difficult, thus the determination of g(i) is no doubt

very difficult,

It would be interesting to determine the largest integer m  for

which (m,n,{,3) — n+1{ holds,

One final remark. HAJNAL and I proved (41,3,6,2) = 4.
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