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Let a, <a,< .. be a sequence of integers denoted by A. Put
A(x) = ¥, 1. If no a, divides any other then A4 is called a primitive
sequence. It is well known and easy to see that, for a primitive
sequence, max A(x) = [H(x+1)]. Besicovitch (1) constructed a primitive
sequence of posmlve upper density and Behrend and Erdds (1) proved that
every primitive sequence has lower density 0. Davenport and Erdés (1)
proved that if 4 has positive upper logarithmic density then there is an
infinite subsequence (a;);., of 4 such that a;|a, . Erdos (2) proved
that, if we assume that no a; divides the product of two others, then}
¢yt cyt
(logx)? (logz)?’
where the maximum is to be taken over all sequences no term of which
divides the product of two others.

These results led us to consider the guestion: assuming that no a;
divides the sum of two others, how large can max 4(z) be? In this form
the question can be reduced to an old problem. Denote by r,(x) the
maximum number of integers not exceeding x which do not contain an
arithmetic progression of I terms. Then it is easy to see that

rg([32]) < max A(x) < ry(x) < 3ry([52]) + 1.
Further, a well-known result of Roth (3) states that

< max A(zx) < w(x)+

m(x) +

7o(x) < _&E
2 loglog

These facts lead us to modify our condition slightly. We say that a
sequence A has property P if no term @; divides the sum of two larger

terms. We believe that if 4 has property P then
(1) max A(z) = [3z] + 1.

t Supported in part by NSF Grant No. GP-9661.
m(x) denotes the number of primes not exceeding z and C. ¢, ¢, ¢,, ... denote
suitable positive absolute constants not necessarily the same at each occurrence.
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It is perhaps surprising that we could not prove (1). To show that
max A(x) > [$z]+1 is easy—it suffices to let 4 be the [x]+ 1 greatest
integers not exceeding x. Szemerédi has proved (oral communication)
that if A(x) > [42]+ 1 then there are three distinct terms a;, a;, a; such that
a;| (a;+a) but (a;+a;)/a; # 2. We do not give the proof of Szemerédi.

We prove the following

THEOREM, Let the infinite set A satisfy property P. Then A has density 0.

Before we prove our theorem we make a few remarks. Our theorem is
best possible in the following sense. Let f(z) be an increasing function
tending to infinity as slowly as we please. Then there exists a sequence 4
having property P such that A(z,) > z./f(z,) for a sequence =z, tending
to infinity.

To see this, let y; < ¥, < ... be a sequence tending to infinity sufficiently
fast. Our sequence A consists of all integers a satisfying y; < @ < 3y, and
a = 1{mod(2y; ;)!), ¢ = 2, 3, .... It is easy to see that 4 has property P
and, in fact, that a;+a; = 0 (mod a,) implies a;+a; = 2a,. Further, if the
sequence (y;) tends to infinity fast enough we evidently have

Yi
AR > 55,51 Ty

which proves our assertion.

Despite this counter-example it seems to us that our theorem can be
improved. Probably, if 4 satisfies P then 3} 1/a; is convergent and in fact
> 1/a; < ¢ where ¢ is an absolute constant. Also, probably, A(z) < z1—
for infinitely many =.

Let a; = p;* where p,; is the ith prime congruent to 3 (mod 4). This
gives an example of a sequence A with property P for which
A(z) > cxt/logz for every x. We have not been able to do better.

A similar situation prevails with a different problem. Let A have
property P’ if no a; is the sum of distinct terms of 4. Erdds proved (4)
that, if A has property P’, then 4(z) = o(z). This result is best possible,
but X 1/a; < 103 and A(x) < '~¢ for infinitely many «; further, there is a
sequence with property P’ such that A(z) > #'— for every w.

Denote by p(n) the least, and by P(n) the greatest, prime factor of n.
To prove our theorem we need two lemmas.

Lemma 1. Let | be an integer, x > zy(l), a, < ... < ay, <z, kb > c,x. There
exists d, where d < I, P(d) <1, ¢y = ¢y(c,), such that the number of a; of the
form dt with p(t) > 1 is greater than cye/dlogl for some suitably small
positive constant c,.
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Proof. Putt
Jim) =TT (p*: p*||m, p <1).

We evidently have, by the theorem of Mertens,

(2) ﬁ fi'(m) = Hp[xmlﬁzm’]h,, < H P;cf(p_l,
m=1 p<l p<l
= B"P(-”:‘E ]Oﬁ)) < exp(egrlogl).
pzp—1

Denote by N the number of integers m less than a for which f{m) > lc.
From (2) we have

JeeN gca:c’
or
Cyt e
(3) N < & Lo

for sufficiently large ¢,.
From (3) and the inequality k > ¢,z it follows that, for at least ¢
indices ¢, we have
(4) fla;) < I
Thus, if our lemma were not true, we should have (by (4) and the
theorem of Mertens)
cyt Cq ( 1 )
G < 4 < 1+——| < sty
b _p(dz,g;dlogl loglpg; p—1 5¢a%

which is false for sufficiently small ¢;. This contradiction proves the lemma.

Lemma 2. Let 1> lye,k), and let ¢, < ... <t, <y be a sequence of

integers satisfying
plty) > 1, r > cy/logl.

Then there are k terms t; which are pairwise relatively prime.

The proof is very simple. Denote by ¢ the least prime greater than I.
Clearly, for any z, the f; satisfying 2z < ¢ < z+¢ are pairwise relatively
prime. Since » > cy/log! there is a z for which there are at least [cl/log]
terms {; in (z,2+¢) (and these are relatively prime). Further, for
I > ly(c, k), cllogl > k, which completes the proof of the lemma.

One could pose here the following extremal problem. Denote by
fly; 1, k) the largest value of r for which there is a sequencet, < ... < ¢, < v,
with p(t;) > 1 for each ¢, such that no k of the ¢; are pairwise relatively
prime. Our guess is that f(y;[, k) is obtained as follows. Let
Dis1s --o» Prop—y e the first k— 1 primes greater than I, and let A(y; I, k—1)

T p*||m means p~|m, p*+lt m.
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denote the number of distinet integers not exceeding y of the form
P, with 1 <4 < k—1, p(t) > 1. We conjecture that

(5) fly: Lk) = Aly; Lk-1);
but this has been proved only in a few special cases.

Now we are ready to prove our theorem. We show that if 4 has
property P it must have density 0. For if not, there are infinitely many
integers z; satisfying
(6) Alx;) > eyry.

Now let I = I(c,) be sufficiently large but fixed and independent of the
z;. By Lemma 1, for every x; there exists d; such that

(7) d; <l?, P(d,) <!, and the number of terms in A of the form

C5%;

d;logl’

dt, with f, <ux;/d, p(t,)>1 is greater than

Since the number of z; is infinite and the number of d, is finite (in fact
less than ) there are infinitely many x, for which the same d; satisfies (7).
We now show that this leads to a contradiction.

Choose two values x;, x; for which the same d; satisfies (7) and which
satisfy

10
(8) 2k > —, gpmm
Cy

Apply Lemma 2 to the integers ¢, in (7). IfI > ly(c,, k) then we can assume
that there are & integers ¢, (1 < s < k) which are pairwise relatively prime
and for which

o
d;’
Now observe that d, satisfies (7) for z,. Thus there are integers T},
(1 < u < r) satisfying

(9) ditseA! ts < P(ts) > I (.g = 13---; k), P(di) < L.

Ceyr
(10) diﬂseAJ r>d£10gr p(Tu)>l

Now we show that (8), (9), and (10) lead to a contradiction. Since 4
has property P we have

(11) T,+T,%:0 (modt) (1<u <u,<7,1<s<k).

From (11) it follows that the T, lie in at most }f, residue classes mod ¢,
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and, since (f;,#;) = 1 (1 € ¢ <j < k), the 7, lie in at most

k
residue classes mod [] ¢, It immediately follows from the sieve of
s=1
Eratosthenes that, for sufficiently large x;, there are at most

X, 1 10z,
(1+0(1)) —i— TI (1--)< .l
e, P a1t logl
g=1 §=1

k
T, in any residue class mod [] #,. Thus, by (8), the number of 7, is less

than
10z, < Gy
d;2¥logl ~d;logl’

which contradicts (10) and hence our theorem is proved.
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