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ON THE APPLICATION OF COMBINATORIAL 

ANALYSIS TO MUMBER THEORY 

GEOMETRY AND ANALYSIS 

by P. ERDijS 

In this lecture I will discuss the application of some well known and less well 
known theorems in combinatorial analysis to various other branches of mathe- 
matics. In other words I will not mention combinatorial types of reasoning 
the use of which is of course very wide-spread (e.g. the classical proof of Carleson 
on the almost everywhere convergence of Fourier series of functions in L, is 
full of combinatorial reasoning), but will restrict myself to cases where definite 
quotable theorems are used. My paper in no ways claim to give a complete survey 
of all the applications of combinatorial theorems and is certainly heavily biased 
towards my own work. Though combinatorics has been successfully applied to 
many branches of mathematics these can not be compared neither in importance 
nor in depth to the applications of analysis in number theory or algebra to topo- 
logy, but I hope that time and the ingenuity of the younger generation will change 
this. 

First we discuss some applications of Ramsey’s theorem. The classical theorem 
of Ramsey states as follows : Let S be an infinite set. Split the k-tuples of S into 
r classes. Then there is an infinite subset S, of S all whose k-tuples are in the 
same class. The finite form of Ramsey’s theorem states that to every k and 
u,, . * a, U, there is a smallest integer Rf) (u,, . . . , u,) so that if we split the 
k-tuples of a set 131 = R, (ul, . . . , u,) into r classes then for at least one i there 
is dn Sj C S, ISi1 > tli all whose k-tuples are in the i-th class. The exact determi- 
nation, or even good estimation of Rt) (u,, . . . , u,) is a difficult problem which 
is very far from being solved and we do not discuss it here. 

Ramsey’s theorem was often rediscovered. Szekeres [ 1 ] rediscovered it in connec- 
tion with the problem of Miss Klein, Miss Klein observed that if there are 5 points 
in the plane no three of them on a straight line then there are always 4 of them 
which determine a convex quadrilateral. She then asked : Is there a smallest f(n) 
so that if there are f(n) points in the plane no three on a line then there are 
always n of them which determine the vertices of a convex n-gon. Szekeres 
observed that 

(1) f(n) G Ri2) (5, n) 

since an n-gon all whose quadrilaterals are convex is itself convex. Thus Ramseys 
theorem immediately gives a positive answer to Miss Klein’s question. 

(1) gives a very poor upper bound for f(n). Szekeres in fact conjectured 
f(n) = 2”-2 + 1. This is Miss Klein’s result for n = 4 and for n = 5 it was 
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proved by Turin and E. Makai by methods of elementary geometry. n > 5 is 
not settled so far. Szekeres and I proved f(n) > 2”-’ + 1 [2] (there are some 
minor inaccuracies in our proof which were corrected by Kalbfleisch), and I [ 1 ] 

proved f(n) < (21124). 

Ramsey originally discovered his theorem for the purpose of some logical appli- 
cations. Hajnal, Rado and I in our partition calculus [3] systematically studied 
the generalisations of Ramseys theorem to nigher cardinal numbers, our results 
have applications to logic and model theory, also Hajnal and Juhlsz applied 
our results to set theoretic topology, but I do not discuss these transfinite appli- 
cations here. Also Ramsey’s theorem has many generalisations and extensions but 
I can not discuss them here. (Erdbs-Rado London Journal 1950, Nash-Williams. . . 
Cambridge Phil. SOL). 

It is obvious that if there are n f 2 points in n dimensional space then not all 
the distances can be equal. Schoenberg and Seidel in fact determined the minimum 
of the ratio of the maximal distance divided by the minimal distance. Several 
years ago Coxeter asked me to determine or estimate the smallest integer f(n) 
so that if there are f(n) points in n dimensional space then they determine at 
least three different distances. It immediately follows from Ramseys theorem that 

(2) f(n) Q R, (n + 2, n + 2) 

(2) in fact is a very poor estimate, probably f(n) < c, ncz and perhaps 

f(n) =(++o(l)) fi2. By fairly complicated arguments I can prove f(n) < exp (n* -“). 

Let A (k , n) be the smallest integer so that if there are given any A (k , n) 
points in k-dimensional space one can always find n of them so that all their 
distances are distinct. It seems quite difficdt to determine A (k , n) even for 
k = 1, only crude upper bounds are known for the general case. A (2 ,3) = 7 
and Croft proved A (3 ,3) = 9 [4]. 

Ramsey’s theorem easily implies that to every e > 0 and n there is a B (E , n), 
SO that if there are B (e , n) points in the plane then there are always n of them 
Xl,..., x, which determine a convex polygon for which the angle (xi , xi ,x,) 
is greater than f - e (for every 1 Q i < j < r < n). 

A well known theorem of Schur states that if we split the integers not exceeding 
e n ! into n classes then the equation x + y = z is satisfied in at least one of the 
classes. V.T. S6s communicated to me the following simple proof of Schur’s 
theorem : Consider the partition of pairs (i , j) so that the pair (i , j), i < j, 
belongs to the r-th class if j - i belongs to the r-th 8ass. By Ramsey’s theo- 
rem at least one of the new classes contains a triangle (i , j , I), but then 

(j -i) + (I - j) = 1 - i, 

or x + y = z is solvabie in the original class. It is known that 
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which completes the proof of Schur’s theorem. 

The determination of the exact bound in Schur’s theorem is a very difficult 
problem, probably en ! can be replaced by c”, The value of fr) (3, . . . ,3) 
is not known for r > 3. [5]. 

It seems that the following theorem of J. Sanders can not be proved so simply : 
To every r and n there is an f,(n) so that if we split the integers from 1 to&.(n) 
into r classes there are n distinct integers o1 < . . < a, so that all the 2” - 1 
SLlJllS 

;r?: ei ai, cI = 0 or 1, not all ei = 0 
i=1 

are in the same class. Rados results [lo] imply the theorem of Sanders. 

Graham and Rotschild [6] have a very general theorem from which this follows 
as a special case. They have the following very interesting problem : Split the 
integers into two (or more generally into r) classes. Is it true that there is an infinite 
sequences a 1 < . . . so that all the sums 

(3) Iz Ej ai ei=Oor l,notallci=O 

are in the same class ? (in (3) of course only a finite number of e’s are 1). It is 
not even known if there is an infinite sequence a, < . , . for which a1 < a,<. . . 
and al + aj, 1 < i < j < 00 all belong to the same class. 

On the other hand it immediately follows from Ramsey’s theorem that for 
every 1 there is an infinite subsequence a(lr) < . . . so that all distinct sums taken 2 
at a time belong to the same class. I do not know if there is an infinite subsequence 
al, <... so that for every t, (t = 1, 2, . . .).a11 distinct sums taken t at a time 
belong to the same class, the class may depend on t. 

It is easy to see that every infinite sequence of integers contains an infinite 
subsequence so that either no two members of the subsequence divide each 
other or each term of the subsequence divides the subsequent one. This follows 
immediately from Ramsey’s theorem but perhaps is not a good example of its 
use since the direct proof is easier. 

Cdsdr [7] proved the following theorem which arose in his joint work with 
Czipszer : Let g,(x) . . . . g,(x) be n bounded real functions and f(x) another 
real function. Assume that there are two real numbers E > 0 , 6 > 0 so that 
whenever f(x) -f(y) > E there is an i, 1 < i < n so that gj(x) -g,(v) > 8. 
Then f(x) is also bounded. Csaszar gave a direct proof of this theorem and 
V.T. S6s observed that it immediately follows from Ramsey’s theorem. 

A theorem of Van der Waerden states that if we split the integers into two 
classes at least one of them contains an arbitrarily long arithmetic progression, 
The finite form of Van der Waerden’s theorem states that there is a smallestf(n) 
so that if we split the integers from 1 to f(n) into two classes at least one of them 
contains an arithmetic progression of n terms. No satisfactory upper bound is 
know for f(n), the best lower bound is due to Berlekamp [8]. 
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Van der Waerden’s theorem also has many applications e.g. A Brauet [!?I proved 
that if p > me is a sufficiently large prime then there are k consecutive qua- 
dratic residues and non-residues mod p. Rado [lo] gives many interesting genera- 
lisations and applications to new number theoretic and combinatorial problems. 
The theorem of Graham and Rotschild [6] can be considered as a generalisation of 
Van der Waerdens theorem. Finally I would like to drow your attention to a 
beautiful conjecture of Rota [6] which seems very deep. Added in proof : Rotas 
conjecture has been proved by Graham, Leeb and Rotschild. 

Turin and I [ 1 l] raised the following problem in combinatorial number theory : 
Denote by r,(n) the maximum value of 1 for which there exists a sequence of inte- 
gersa, <... < a, < n which do not contain an arithmetic progression of k terms. 
Determine or estimate r,(n). If we could prove that for every k there is an n,(k) 
so that for n > n,(k) r,(n) < n/2, then Van der Warden’s theorem would imme- 
diately follow. Unfortunately this has never been proved. 

It is known that 

n 1 -cl’d’w n < r3 (n) < c* n/log log n 

The lower bound is due to Behrend [ 121 and the upper to Roth [ 131. Szemeredi. 
[14] proved r,(n) = o(n). 

I would like to mention one more old conjecture of mine from combinatorial 
number theory : Let g(n) = +- 1 be an arbitrary function. Then to every E there 
is a d and m so that 

2 dkd)l > c 
k=l 

Now we give some applications of combinatoral inequalities and extremal pro- 
blems. Let u, <... < ok < n be a sequence of integers no a divides any other. 
Then it is easy to see that max k = [(n + 1)/2]. On the other hand if we assume 
that no a divides the product of two others then [ 151 

(4) s(n) + cl n213 < max k < n(n) + c2 n2’3/(log n)’ 

The proof of both the upper and the lower bound in (4) uses combinatorial 
results. The lower bound uses Steiner triplets and the upper bound the trivial 
result that a graph of n vertices and n edges contains a circuit. Assume now 
that all the products ai ui are distinct. Then [ 161 

(5) s(n) + cj n”/4,(log n) 3/2 < max k < a(n) + cq n314/(log n)3/2 

Here the lower bound uses the existence of finite geometries for n = p2 + p + 1 
and the upper bound uses the following result : Let $J be a graph of t, vertices 
which contains no rectangle, further assume that there are t, vertices so that 
every edge of our graph is incident to one of these vertices. Then the number 
R(s) of edges of 9 is less than 

t, + +i] + t: (1 +[$I >-’ 
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Thus, in particular, if $$ has n vertices and contains no rectangle then R (9) <cn3j2. 
W. Brown and Renyi, V.T. S6s and I proved that [ 171 if 9 contains no rectangle 
then 

max c(g) =(++ o(1)) n3j2. 

Assume now that the number of solutions of aiaj = m is bounded. Then we 
have the following result : Let a, < . . . <a, <nnn>nn,(e,Z).Assume 

(6) k > (1 + c) n (loglog ?&l/(1 - 1) ! log n 

Then for some m the number of solutions of m = ai aj is > 2’. (6) is best possible 
in the sense that it fails if 1 + e is replaced by 1 - E [ 181. 

(6) implies that if aI < . . . is an infinite sequence of integers so that every 
large integer can be written in the form aiaj then the number of solutions of 
n = aiaj is unbounded. Now I state an old conjecture of Tudn and myself which 
is an additive analogue of this result (and which in fact lead me to this result) : 
Let a, <... be an infinite sequence of integers, denote by f(n) the number of 
solutions of n = a, + aj. Assume that f(n) > 0 for all sufficiently large n. Then 
lim sup f(n) = 00. This conjecture if true is probably very deep. 

The combinatorial theorem needed for the proof of (6) states as follows. Let r 
and t be given, E = e(r , t) small and n > n,(e, r , t). Let 

I3l=n and A,, . . .,A,,,u>n’-’ 

are r-tuples contained in 8. Then there are rt distinct elements ~7) , i = 1, . . . , t ; 
j= l,..., r of s so that all the r’ sets (x(il,, , ~$2,. , , x$‘!) occur among the 
A’s. For r = 2 this is a theorem of KovAri and the Turzlns [ 191. 

A well known theorem of Tur&n [20] states that in a graph of n vertices which 
has more than 

r-2 
(7) f(n,r)=z(rz’ --h2)+($),n=h(mod r-l),O<hhr-1 

edges there is a complete rgon. This theorem and its extensions have many 
applications in geometry and potential theory. A. Meir, the Turdns and I are 
publishing a series of joint papers on this subject. Here I state only one such 
application. Let 8 be a set of diameter 1 and x1, . . , , x,,, n points in 8. Let 
the packing constants of 8 be p2 = 1 >, p3 > I , i . Then at most f(n ,r) of 
the distances d(x r ,xj) are greater than p,. Let C, be the r-th covering constant 
of 8, using a theorem of Moser and myself (Australien 3. Math. XI (1970), 92-97), 
V.T. Sos obtained a lower bound for the number of distances d(x, , x,) > C,. 
This will also appear in the quadruple paper. 

Another application of (7) is due to Katona [21]. Let fr (x), . . . , fn(x) be 
n functions which satisfy J fi(m* dx > 1. Then there are at most [n2 /4] pairs 
(i,i), i<j for which /(fi(x)+fi(X))2dx< 1. 

I investigated the following question : Let X1, . . , , xk be n distinct points 
in k-dimensional Euclidean space. For how many pairs i, j (i <j) can we have 
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d(xi ,xi) = 1 ? Denote this maximum by f(k , n). For k = 2 and k = 3 I have 
no good estimations for f(k , n), e.g. for k = 2 I only know that 

(8) nl+ cm3 log n < f(2 , n) < C’n3/2 

It seems that in (8) the lower bound is close to being best possible. 
For k > 4 one knows very much more. Lenz and I proved [23] 

lim f(k , n)/n* = t (1 - h) n=o 

and if k = 4, n E 0 (mod 8) I proved [23] 

(9) f(k) n) = 
n1 
T+ n. 

(9) follows from the following result of Simonovits and myself with will 
soon appear in Acta Hungarica : Denote by $$(n ; 1) a graph of n vertices and 
1 edges. k (u,, . . . , ur) denotes the complete r-chromatic graph where there are 
ui vertices of the i-th colour and every two vertices of different colour are joined. 

We proved that every ~(n ; [$I + n + 1 contains a k (1,3, 3). This result ) 

is best possible, there is a $n [$I + n ) which does not contain a k( 1, 3, 3). 

A well known theorem of Sperner [24] states that if 131 = n, A, C 3, 1 G i G k 
is a family of subsets, no one of which contains any other, then 

max k = &y2] , c-1 

This result and its generalisations and extensions has many applications. Using 
(10) Behrend [25] proved that if a, < . . . < ak < n is a primitive sequence (a 
sequence of integers is called primitive if no a divides any other) then 

(11) i 
i= 1 

d < c log n/(log log n)li2. 

and Pillai proved that (11) is best possible. 

Using a more complicated refinement of (10) Sarkiizi, Szemeredi and I [26] 
proved that if a, < . . . is an infinite primitive sequence then 

lim z - 
1 (log log X)1/2 -’ = o 

Oi<X ai ( logx 1 

We also proved that 

max x 
1 

-= f1 + O(l)) (2r l~fgw)‘,2 
#i<X ai 

where the maximum is taken over all primitive sequences [27]. 
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I made strong use of Sperners theorem in my papers on the distribution func- 
tion of additive arithmetic functions [28]. 

Let 191 = n, Ai C g 1 <i <k. Assume that the union of two A’s never 

equals a third. I conjectured that then k <c 
(,;2,>. Kleitman [29] proved this 

conjecture as well as several other related conjectures, all of which have number 
theoretic applications (301. 

Sharpening a result of Littlewood and Offord [31] I immediately deduced from 
(lO)thatifx>l,i= l,...,~tthenthenumberofsums 

i El xi, Ei = + 1 

which fall inside an interval of length 2 is at most 
( ) A * 

I conjectured that 

the same holds if the x, are vectors in a Banach space (the interval of length 
2 has to be replaced by a sphere of radius 1). This was first proved for the plane 
independently by Katona and Kleitman [32] using an ingenious extension of (10). 
Very recently Kleitman proved my general conjecture in a surprisingly simple 
way without using Sperners theorem. Kleitman’s proof is not yet published. 

Rado and I proved the. following theorem. Let II > 2 and b > 1 be integers. 
Then there is a smallest integer f(a ,b) so that if we have f(o , b) + 1 sets each 
having at most b elements there are always a + 1 of them which have pairwise 
the same intersection [33]. We proved 

(12) f(a,b)<b!ab=’ 1 -J----L- b-l 

2 !a 3!g ..--bT 

(12) is far from being best possible and very likely 

(13) f(a ,b) < cb+’ d’+’ 

We are very far from being able to prove (13), even for a = 2 (12) has not 
even been proved with o(b!). 

Sauer determined f(u, 2) for every a. For b > 2 there are only relatively crude 
upper and lower bounds for f(a , b). 

(12) has many applications which could be significantly strengthened if (13) 
would be proved. 

Denote by f,(n) the smallest integer so that if 

1 <a, <..‘ < aI Q n ,I = f,(n) 

is an arbitrary sequence of integers, one can always find r a’s which have pair- 
wise the same greatest common divisor. First I proved by number theoretical 
methods that 

n 
f,(n) < exp ((log n)‘12 + ) 
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Later I observed that (12) implies that for every t and e > 0 there is an n, 
so that for all n > n, (t , E) 

exp (ct log n/log log n) < f,(n) < n3/4+E 

(13) would imply that the lower bound gives the right order of magnitude, 

Using (12) I proved 1351 that for every k there are squarefree integers satis- 
fying (V(n) denotes the number of distinct prime factors of n) 

(Ui ) Ui) = 1, cg(u,) = y?(u& V(u,) = V(Uj>, 1 Q i <j Q k 

If (13) would hold we could add a&) = a@). 

(12) has been improved by Abbot and others but as far as I know nobody 
came close to ( 13). 

Dodson [36] investigated the following problem : Denote by r*(k) p”) the 
smallest value of s for which for every choice of the integers a,, . . . , Q, 
s 

x %Xi k s 0 (mod p”) has a non trivial solution in integers xi, i = 1, . _ . , s) 
i=l 
(i.e not all the xi are multiples of p). In one of the cases (12) was needed. 

(12) has also many applications to combinatorial problems and set theory (see 
Engelking and others). 

Before completing the paper I want to state a few miscellaneous combina- 
torial results which have applications in various branches of mathematics. 

Let ]s]=n,A, C;S, 1 GSiQr,r +masn+M, ]Ai]>cn, O<c< 1 for 

l<i<r,r-*m as n+- 

Then there are two indices i and j for which jAi n A i I > (cz + (I( 1 ))n. This 
statement can be proved easily by using the characteristic functions of the sets 
~4, and it is easy to state various generalisations for the intersection of more 
than two sets, one can also reformulate the result for measurable sets [J7]. This 
theorem has many applications to combinatorial analysis, number theory and 
analysis. 

A theorem of Szekeres and myself states that if there are given 2” points in 

the plane they always determine an angle > n 1 -$ . 
( > 

This result is best pos- 

sible since Szekeres showed previously that to every E > 0 one can give 2” points 

in the plane so that all the angles are < s 1 
1 

( -;;> 
+ f ; see [2]. 

The fact that 2” points determine an angle > n 1 - 1 ( ,> 
follows from the 

fact that the complete graph of 2” + 1 points is not the union of n bipartite 

graphs. The sharper result that one of the angles is > A ( 1 -i) follows from 

a more careful study of the decompositions of the complete graph of 2” vertices 
into n bipartite graphs. 
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Probability methods have often been applied successfully to solve combinatorial 
problems which seemed intractable by more direct methods and conversely com- 
binatorial results often imply unexpectedly beautiful results in probability. e.g. 
the arc sine law of Andersen [38], see also my paper with Hunt [39]. Finally I 
want to mention that Davies and Rogers [40] rediscovered arts used a little 
known theorem of Hajnal and myself on chromatic graphs in the study of Haus- 
dorff dimension of sets. 
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