
PROBLEMS AND RESULTS IN COMBINATORIAL

ANALYSIS

P. ERDÖS

This review of some solved and unsolved problems in combinatorial analysis
will be highly subjective. i will only discuss problems which I either worked on or
at least thought about . The disadvantages of such an approach are obvious, but the
disadvantages are perhaps counterbalanced by the fact that I certainly know more
about these problems than about others (which perhaps are more important). i will
mainly discuss finite combinatorial problems . I cannot claim completeness in any
way but will try to refer to the literature in some cases ; even so many things will be
omitted. ISO will denote the cardinal number of S; c, cl , c2, . . . will denote absolute
constants not necessarily the same at each occurrence .

I. I will start with someproblems dealing with subsets of a set. Let IS I =n. A well
known theorem of Sperner [57] states that if Aia S, 15 i 5m, is such that no A,
contains any other, then max m=(aA) . The theorem of Sperner has many appli-
cations in number theory ; as far as I know these were first noticed by Behrend [2]
and myself [8].

I asked 30 years ago several further extremal problems about subsets which also
have number theoretic consequences. Let At a S, 15i 5mi , assume that there are
no three distinct A's so that Ai V A! = A, . I conjectured that

max mi = (1 +0(1)) n ,
(In/2l

but could not even prove max mi =o(2"). This latter result was proved by Sárközi
and Szemerédi but was never published because it was superseded by the result of
Kleitman [44], who first of all proved that max m < 2S1'(ul2y) and recently (in this
volume) that

max mi < t[n/2~ (1 +ckn n) i
which is in fact stronger than my conjecture. It would be of interest to determine
max mi; maybe this question has no simple solution, but perhaps an asymptotic
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formula for

max ml - n i
[n/2)

is not quite hopeless.
The second problem I asked was , Let A,c5,15i< mz. Assume that there are not

four distinct A's say A,, A„ A„ A, satisfying

A,VA,-A„ A,nA,=At .

Kleitman proved max m, < c i2"/nlr11 and I showed that max mz >c,2"/n11-
Presumably

max % _ (c+x(1))2"/01'

but as far as I know this has not yet been proved. These results are not yet
published (they will appear in Proc. Amer, Math. Soc.) .

Here I would like to mention a question which goes back to Dedekind : How
many families of subsets of S are there where no set of a family contains any
other? Denote the number of such families by f(n) . There may not be a simple
explicit formula for f(n), but Kleitman, sharpening previous results of several
authors, proved (not yet published)

logf(n) _ (1 +0(1))(~/2,) log 2 .

It would be interesting to give an asymptotic formula for f(n) but this is probably
rather difficult .

Kleitman proved several other conjectures of mine involving subsets, some of
which have not yet been published.

Rota observed that Dilworth's theorem [6] implies Sperner's theorem and many
other results in combinatorial analysis .
Ko, Rado and I (26] proved that if n z2k, A, a S, IA,I =k, A,() A100,

I Si <j<m, then

(1)

rnax m - {k
n-
-

I
1) .

Assume now JA, n Aj I Z r. Put max m=f(n, k, r). We proved that for n > n o(k, r),

1(n, k, r) _ ( _r)r
Min [26] observed (in the same paper) that (1) is not true in general ; the deter-
mination off(n, k, r) in general seems to be a difficult problem . We conjectured

(2)

	

f(4k, 2k, 2) g 2((2k) - ( k
)4)

but we could not decide whether (2) is true.
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We also observed that if A,cS, A, n Al# 1ő, 15i<jsm, then max m-2'-1. It
does not seem to be easy to determine the number of families A, C S, A, n A, # o,
15i<j520-i. We could not even get an asymptotic formula for the number of
these families .

Let I S I =n, A, c S, 15 i 5 k . What is the smallest value of k so that there should
always be three A's any two of which have the same union? This question like some
other problems in this chapter has connections with number theory. (More gener-
ally we can ask what is the smallest value of k=k, so that there always are r A's
any two of which have the same union .)

U. Some geometric problems. Let z,;-- 1, 15 i 5 n . Consider all the sums
~,,_1 e,z,, a,= ± 1 . I [9] proved as an easy application of Sperner's theorem that the
number of sums which fall into the interior of an interval of length 2 is at most
{á„r4), with equality if z, =1,15 i s n . I conjectured that if the z, are complex num-
bers satisfying (z,, 21, then every circle of radius 1 contains at most W sums
J 1 s,z, (this would sharpen a result of Littlewood and Offord) ; more generally I
conjectured that the above result may remain true if the z, are vectors in Hilbert
space or even in a Banach space.
Katona [40] and Kleitman [43] independently and almost simultaneously

proved my conjecture in the plane by giving an interesting generalization of
Sperner's theorem, and Kleitman [43] also proved that my conjecture holds in k-
dimensional space if n > no(k), but the general conjecture has not yet been settled.
Sárközi, Szemerédi and I have the following conjecture : Let 12,1 51, 1 :9 is n, then
there are at least c2"ln summands } 1 s,z,, s,= f 1, which are of absolute value
S -,/2 (it is easy to see that V2 cannot be diminished ; let an odd number of z's be
1 and an odd number i) . The order of magnitude c2nln is easily seen to be best
possible if true . Analogous conjectures can easily be made for higher dimensions .
Sárközi and Szemerédi proved that if - l s z, 51 then there are at least (1 .%)
sums r.1 qz,, s,-- f 1, which are less than I in absolute value . It is easy to see that
(w2) is best possible .

Sárközi and Szemerédi further observed that our conjecture in the plane is true
if the following purely combinatorial result holds : Let I S I =n, A, c S, 15 i 5 k,
B, S, 15 j <_ 1(the A's and B's are all distinct). Assume JA,1 n Aj 2 2, l 5 it s
is 5 k ; JBj1 n B,,,1y 2, I sj1 < js 51 ; 1 .4, n B I k 1, 15 i 5 k ; I <_ j s l. Then

k+1 s 2'-1-c2"/n.
Miss E. Klein raised in 1932 the following problem : Let f(n) be the smallest

integer with the property that from f(n) points in the plane one can always select
vertices of a convex n-gon . Miss Klein proved that f(4)=5, Makai and Turin
proved f(5)=9. Szekeres and I [31], [32] proved

2*-9<f(n)5k-2)

(our proof of the lower bound contained an inaccuracy which was corrected by
lbfleisch). It seems likely that f(n)=2"''+ 1 but this is not known for n2:6.
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Let there be given 2" points in the plane . Szekeres and I [32] proved that these
points always determine an angle greater than w(1-1 /n), an earlier result of

Sze-keres [58]states that to every s thereare2" points so that every angle is less than
w(1-I/n)+a . Thus for 2* points the problem of minimizing the maximum of the
greatest angle is completely solved. It is not impossible that if n > n o then already
2`2+1 points always determine an angle >w(1-1Jn), but we only proved that
2"-1 points always determine an angle z w(1-1/n). In higher dimensions sharp
results are known only for special values of a, thus Danzer and Grünbaum [S]
proved that 20+1 points in n-dimensional space always determine an angle >w/2 .

Sylvester conjectured and Gallai first proved that if we have n points in the plane
not all on a line then there is at least one line which goes through exactly two of the
points. Denote byf(n) the minimum number of such lines . N. G . de Bruijn and I
conjectured that f(n) -). co as n --~ co . This was proved by MotzkinM. Kelly and
Moser [41] proved that f(n) z 3n/7 and this is best possible for n=7. Motzkin
conjectured that f(n) z [n/2] and showed that for infinitely many n this is best
possible.

Let there be given n points not all on a line, I observed that it easily follows from
Gallai's result that these points determine at least n lines. G. Dirac conjectures that
one of the n points is such that it is connected with the other points by more than
cn distinct lines.

Assume now that the n points are such that not more than n-k of them are on
a dine. I conjectured that these points determine at least ckn lines. If k is fixed and
n > no(k) then Kelly and Moser [41] determined the minimum number of lines which
these points determine .

Let there be given n points in the plane, not all on a circle . I conjectured that
these points determine always at least ("z ~) circles. B. Segre disproved this conjec-
ture for n= S, but Elliott [7] proved it for n > no .

One can pose the following general problem : Let a,, . . ., a„ be n elements,
A,, . . ., A,, t > 1; be sets whose elements are the a's . Assume IA,I z r, 1 S i5 t, and
that each r-tuple is contained in precisely one of the A's. Put min t =f(n ; r) .
Hanani, Szekeres, de Bruijn and 1 [3] proved that f(n; 2)=n and Hanani proved
(see Erdös, [16n

clnara < f(n ; 3) < csng".
Thus for r-2 the combinatorial and geometric problem has the same solution

(in the geometric problem the A's are the lines joining the points) but for r=3 this
is no longer the case (for r-3 the is are circles) . The cases r>3 have not been
investigated.

Further geometric problems and results of a combinatorial nature can be found
in [10], [12], [42] . Many very interesting problems on combinatorial geometry are
found in the lithographed notes of Croft . Further I would like to refer to two books,
Hadwiger and Debrunner [35] and [42] .

III. A well-known theorem of Ramsey [50] states that if I S I Z Ko and wee split
the i-tuples of S into two classes then there is an infinite set all of whose i-tuples



are in the same class . Many extensions and generalizations of Ramsey's theorem
have been published in the last few years (see my remarks under Ramsey [SOD .
Here we will only be connected with the finite version of Ramsey's theorem .
Denote by f(i; k,1) the smallest integer so that if IS I f(i ; k, l) and we split the
i-tuples ofS into two classes then there either is a subset of k elements all whose
i-tuples are in the first class or a subset of 1 elements all whose i-tuples are in the
second class. Ramsey was the first who obtained upper bounds for f(i ; k,1) .
Szekeres and I proved [31]

(3)
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f(2 ; k,1) 5 (k+1-1)k-1
and I [11] proved that

(4)

	

f(2 ; k, k) > 2k/'.

It would be very nice to prove that

lim f(2 ; k, k)"k
k- so

exists and to determine its value .
(4) was proved not by an explicit construction but by a simple probabilistic

reasoning. It would be very desirable to obtain a good lower bound for (4) by an
explicit construction .

I [15] proved by a more complicated probabilistic reasoning
(5)

	

f(2 ; 3,1) > c/'/(log !)'

and Graver and Yackel [33] recently showed that

(6)

	

f(2; k,1) < c1 11- 1 log log 1/log 1.

My method which I used to prove (S) very likely will also give (k fixed, I -> 00)

(7)

	

f(2; k,1) > c,lk-i/(log 1)°s

but I have not worked out the formidable details .
Very little is known about the exact values off(2 ; k,1) . Triviallyf(2 ; 2,1)-1and

f(2 ; k, 2)-k . Further we have (see Graver and Yackel, [33D

f(2; 3, 3) - 6,

	

f(2 ; 3, 4) - 9,

	

,t(2; 3, S) - 14,

	

f(2 ; 3, 6) - 18,
f(2; 3, 7) = 23,

	

f(2; 4, 4) = 18 .

As far as I know nothing is known about the exact values off(i; k, 1) for i2:3 .
Hajnal, Rado and 1 [25] proved that f(i ; k, l) is less than an (i-1}times iterated
exponential and greater than an (i-2)-times iterated exponential .

We can generalize the Ramsey numbers by division into more than two classes-
even less is known about these than about division into two classes (Greenwood
and Gleason [34]) .

The following question which is related to Ramsey's theorem is perhaps of some
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interest : Let K„ be the complete graph of n vertices . Denote its vertices by Xl , . . .,
X, . To the edge (X,, X,) we make correspond e, ,, where e,.,. t 1 . Put

F(n) = min max I e,,,

where the maximum is taken over the edges of all the complete subgraphs of K .
and the minimum over all the 2e•.! (C is the binomial coefficient) choices of the
as,,. I can only prove [181

n/4 < F(n) < cne1'.
It would be desirable to obtain better estimates for F(n).
ADDED ix PROOF . J . Spencer and I proved F(n) > clna" .
IV. Miscellaneous combinatorial problems . Miller [46] in the course of some

investigations in set theory introduced the following concept : A family of sets
(A.) is said to have property B if there is a set S which has a nonempty intersection
with every A, and does not contain any of the A`'s .

Hajnal and I [23) continued Miller's investigations and also asked the following
question about finite sets : What is the smallest integer m(n) for which there is a
family of sets (A k), (A, r j =n,15k5 m(n), which does not have property B? Trivially
m(2)=3. It is not difficult to see that m(3)-7. The value of m(4) is unknown .
Schmidt [351 and I [19] proved

21(1+4fn)' 1 < m(n) < n'2"+ 1 .

It would be of interest to give an asymptotic formula for m(n) and to compute
rn(4). Perhaps no simple formula for m(n) exists .

Gallal asked: Does there exist a family of sets (Aj, 15k5m1(n), not having
property B and satisfying JAk1 Sn and 1 .4,,,, n AkJ 5 l, 1 <k1 5k, . m1(n)? A
priori it is not obvious that ml(n) is finite, but Hajnal and I proved that ml(n) < e
for every n [24). We cannot prove that lim, . o ml(n)"" exists .

Rado and I investigated the following question : A family of sets is called a
A-system if every two members of the family have the same intersection . Denote by
F(k,1) the smallest integer for which if (A,), 15i5 F(k,1), is a family of sets each
having k elements, then it always contains a subfamily A,,, I Sr 51, which is a
A-system. We proved

(1-ly < F(k,1) < k!(I-1)k(1- 1

	

k-1 1 .
t 21(1-1)- . . ._kl(1-1r~ )

We believe that

(8)

	

F(k,1) < ekl k

holds. (8) would have many number-theoretic applications but is also of great
intrinsic interest .

We investigated the problem of A-systems also if k+/ ZMo. But this set-theoreti-
cal problem is much simpler than the combinatorial one and we have determined
F(k, l) in this case ['29]. ,
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I conjectured that if a,, . . ., a2l, is a sequence of length 2 1: where a, is one of the
integers 0, 1, . . ., k- i then there are always two consecutive blocks containing
each of the integers the same number of times . This is obvious for k-2 and de
Bruijn proved it for k=3. But for k=4 de Bruijn and I disproved it . Later Croft
constructed a sequence of length 50 for k=4 without such consecutive blocks and
he suggested that for k=4 there probably is an infinite sequence without two such
consecutive blocks. With the help of the Atlas computer Churchhouse constructed
such a sequence of length about 1700 which gives a strong support to the conjecture
of Croft.

Steiner conjectured that if n=ók+l or 6k+3 then there exists a system of trip-
lets of n elements so that every pair is contained in one and only one triplet of our
system. It is obvious that if n is not of the above form then such a system does not
exist.

Steiner's conjecture was first proved by Reiss [51] . More generally the following
question can be asked: For which values of n is there a system of combinations
taken s at a time formed from n elements so that every r-tuple is contained in one
and only one of our s-tuples. Hanani[37),[38]settled the casesr=3,s=4, r=2,
a=4 and r-2, s=5 . The general problem seems very difficult .

Finally I would like to call attention to an old conjecture of van der Waerden
which seems surprisingly difficult : The permanent of an n by n doubly stochastic
matrix is zn!/n". Equality only if all elements of the matrix are 1/n .
V. Some problems in combinatorial number theory . Van der Waerden [59]

proved the following theorem : If we split the integers into two classes at least
one of them contains arbitrarily long arithmetic progressions . Here we are more
concerned with the following finite form of van der Waerden's theorem : Let f(n)
be the smallest integers so that if we split the integers not exceeding f(n) into two
classes at least one of them contains an arithmetic progression of n terms . Van der
Waerden's proof gives a very poor upper bound for f(n). Sharpening a previous
result of Rado and myself, Schmidt proved f(n) > 2" -aá "'"' [54] I understand
that recently Belrekamp proved f(n) > 2" (Caned . Math . Bull. 11 (1968), 409-414) .
It would be very desirable to obtain better lower and especially upper bounds for
f(n). Undoubtedly lim"*o f(n)"* exists-I expect the limit to be infinite. One
could try to estimatef(n, m) wheref(n, m) is the smallest integer so that if we split
the integers not exceeding f(n, m) into two classes either the first class contains an
arithmetic progression of n terms or the second an arithmetic progression of m
terms. Also one can consider splittings into more than two classes . R. Schneider
and R. Ecks have certain results in these directions .
Definef,(n) to be the smallest integer so that if g(m)= f l, 15 m < f,(n), is any

number-theoretic function then there is an arithmetic progression of n terms
0<a<a+d< . . .<a+(n-1)d:5f,(n)

for which

g(a+kiOI > an.
k~0
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í proved f,(n)> (1 + v))", +1= q(e) [18] . The proof is probabilistic and similar to my
proof with Rado . I would guess thatf,(n) < (1 +)1)" and perhaps 9)1-- 1 as At --1- 0
but I cannot disprove

lim f,(n)1"* = coa. 0
for every s > 0 .
Roth [52], proved that if g(m)= t 1, 1 :5 m :5 n, there always is an arithmetic

progression 15 a < . . . < a +kd5n for which (for every e >0 if n > n o(e))
k-1

(9)

	

g(a+Id)
I
> 016-e

and he conjectured that in (9) n"11- e can be replaced by nl 12- •. I proved [22] that
there is a constant C and a g(m) = t 1 so that for every progression

k-1

(10)

	

g(a+Id) < Cnl 12
l

and I conjecture that (10) holds for every C > 0 if n > n o(C).
ADDED 1N PROOF . This conjecture was just proved by L Spencer.
An old conjecture of mine states that if g(m)= 1, 15 m:5co, then to every c

there is a d and an m so that

(11)

	

111
e(kd) I > c.k

The proof of (11) seems to present great difficulties .
Let a,< . . . < ak be k distinct real numbers. Denote by f(n; a.,,

	

aJ the
number of solutions of

k

t.l

^ -0or1.

Moser and I [21] proved that

(12)

	

f(n ; al, . . .,at) < elk/ke/'(log k)°/2
and we conjectured that in (12) (log k)''' can be omitted. This conjecture was
proved by Sárközi and Szemerédi [53] .

Moser and I further conjectured that if k-21+1 then

(13) f(n; (al , . . ., ay.,,)) 5 f(n; -1, -1+ 1, . . ., -1, 0, l, . . .,1-1,1).
As far as I know (13) has not yet been proved. Van LintW found an asymp-

totic formula for f(n ; -1, . . .,1).
We further conjectured that the number of solutions of

k

	

k

n= ~ SA,i.i

	

A
is for every t less than c2'/k'.



Donald Newman conjectured that for every n and m there is a function h a ,,,
having the following properties : ha, . is defined for 15 i _< n and

ha,,a(i) # h.. .(j),

	

1 5 i< j 5 n, m< ha,,,(i) S m+n,

(h ha,m(1)) - 1,

	

1 < 1 5 n .

Baines and Daykin Ill proved that for n =m such a function exists, but the general
case is not yet settled. One would think that Hall's theorem can be applied here,
but this seems to present great difficulties .

Schur [56] proved the following result : Denote by H(n) the least integer so that
if we split the integers from 1 to H(n) into two classes, the equation x+y-z is
solvable in at least one class . Schur proved H(n)5 fen! ] . It would be very interesting
to decide whether lima_„ H(n)"', is finite or not.

Saunders in his dissertation written under Ore proved the following result : To
every k there is an F(k) so that if we split the integers from 1 to F(k) into two
classes there are always k integers a i < . . . < ak so that all the 2k-1 sums
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k
(14)

	

*A,

	

s, = 0 or 1 (not all ej - 0),
!-i

are in the same class . Graham and Rothschild then asked the following question :
Split the set of all the integers into two classes . Does there then exist an infinite
sequence ai < . . . so that all the sums

a,=0or1,

are in the same class, where in (15) not all the e, are 0 but only a finite number of
them are different from 0?

I do not know the answer to this question . It easily follows from Ramsey's
theorem that there is an infinite sequence where all the sums

.~

	

4
~e,a,, s, =0or1,

	

~s,=t,
1 .1

	

1 .1

are in the same class. But I cannot decide the following question : Does there exist
an infinite sequence a, < . . . where all the a,, 15 i< oo, and all the sums a,+al,
15 i<j < oo, belong to the same class . This would of course follow from Graham's
conjecture. The following weakening of Graham's conjecture also does not seem
to be completely trivial : There is an infinite sequence ai < . . . so that all the sums

qa,, e, - 0 or 1,

	

a, = t, 15 t < ao,
f .1

	

1~1

belong to the same class but the class may depend on t .
Finally I would like to ask the following question which I could not decide

even if we assume the continuum hypothesis . Split the real numbers into two
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classes. Does there then exist a set of power HiL, {a.), 15 a < wl, so that all the sums
a,,+a,,,,

	

1 :gal < a2 < wl,
belong to the same class?

For further problems of combinatorial number theory I refer to [22) and my
first paper on extremal problems in number theory [17] . See also [20] .
VI. Finally I would like to call attention to some curious results and problems

of Czipszer, Hajnal and myself {4] which are partly graph-theoretic and partly
analytic-in fact they deal with Tauberian theorems .

Let G be an infinite graph whose vertices are the integers and g(n) the number of
edges of G both vertices of which do not exceed n . A monotone path of length k is
a sequence of integers it < • • • < ik+l where it and il,1, j= 1, . . ., k, are joined by
an edge. We conjecture that if for every e > 0 and n > no(e)

g(n) > n'(4- +e)

then G contains infinitely many monotone paths of length k .
We proved this conjecture for k=2 and k=3, but could not settle the general

case.
For k=2 we proved the following stronger theorem: Assume that for n>no(e)

B(n) > 8 + (32+e) (log n )2'n

then G contains infinitely many monotone paths of length k . This result is best
possible since it fails if we only assume

z

	

s
8(n) 8 +32(log n)~+a((log n)i) •

We further proved that there is a G for which

lim inf g(n)/n' > }a e*
but G does not contain an infinite monotone path . On the other hand we showed
that there is an a > 0 so that if

lim infg(n)/n' > I-a

then G contains an infinite monotone path . We do not know the largest value of a
which will insure this conclusion .

Several further problems of a combinatorial nature can be found in my two
papers [13], [14] on unsolved problems .
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