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In the present note I discuss some unsolved problems in graph theory and 
combinatorial analysis which I have thought about in the recent past. I hope 
that at least a good proportion of them are new. 

First I introduce some notation. G(n; k) wil1 denote a graph of n vertices 
and k edges. C, denotes a circuit having r vertices, KI denotes the complete 
graph of 1 vertices. A graph is said to have girth k if it contains a C, but no CI 
for I < k. A clique is a maximal complete subgraph (i.e. it is a complete 
subgraph which is not properly contained in any larger complete subgraph). 
UP r, . . ..P~) denotes the complete r-chromatic graph where there are pr 
vertices of the ith colour and any two vertices of different colour are joined 
by an edge. By an r-graph G(‘) we shall mean a’ graph ,.liose basic elements 
are its vertices and r-tuples; for r = 2 we obtain the ordinary graphs. 
G(‘)(~n;li) will denote an r-graph of n vertices and k r-tuples. A set of u-tuples 
is called independent if no two of them have a vertex in common. c, c,, cz, . . . . 
will denote position absolute constants. 

1. In the colioquium on graph theory at Tihany, Bollobis and I stated the 
following problem: is it true that every graph of n edges contains a subgraph 
of at least cn3j4 edges which has no rectangle? Folkman (in a letter) gave the 
following counter-example. Let the vertices of our C be x1, . . . , x,; yl, . . ,, ym2, 
every x is joined to everyy. This graph has nr3 edges and it is easy to see that 

every subgraph having in2 + 
( ‘1 ;” 

+ 1 edges contains a rectangle (this state- 

ment is false form” + 
0 
‘2” edges) 

Perhaps our conjecture is true with a~“~ instead of CH’/~, but I cannot even 
prove it with c/tf” (cn* is trivial).? 

2. Is it true that every graph of 5n vertices which contains no triangle can 

7 Note added in proof: Szemerddi proved cd@. 
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be made two-chromatic by the omission of at most n2 edges? It is easy to see 
that if this is true it is best possible. 

3. I proved that if k < cn then every G(n; [in’] $ k) contains k edge- 
disjoint triangles. The proof uses the following theorem of Gallai and myself: 
every G(rz; [$(n - l)“] + 2) which has chromatic number 3 contains a 
triangle. 

I first thought that the theorem might hold for very much larger values of k, 
but Sauer showed by a simple example that this is not so. Let the vertices of 
Gbex ,,..., x,;jt,, . . . . y,,;z,, . . . . z,. Every x is joined to every y and z, every y 
is joined to every z, and any two z’s are also joined: This is a G(2n + 4; 
(n -t 1)2 + 4n -t 2) or k = 4n -I- 2, and it is not difficult to prove that G 
contains only4tz + 1 edge disjoint triangles. 

It would be interesting to determine the largest value of k for which our 
result holds; our proof only gives small values of k < cn(c < 3)‘ Perhaps the 
following result holds: to every c1 there is an f(c,) so that every 
G(n; [&n’] + k), k c c1 n contains at least k -f(cl) edge disjoint triangles. 

In view of my theorem with Galiai the following question could be asked: 
what is the smallest integer U, so that every G(n; u,> which has chromatic 
number > Y, contains a triangle? u2 = [in”] + 1 (this is the well known 
theorem of Turban) and u3 = [*(14(n - 1)2] + 2. U, is unknown C5J.t 

4. We proved that every G 11 
(;(“2’) ) 

+ 2 is Hamiltonian and that this 

is best possible. I showed that for n > no(k) every 

G(n;(“;“)+(“:‘)+I) 

contains a C,-,. My proof is not quite trivial. The result is easily seen to be 
the best possible. It would be interesting to determine or estimate q,(k) [6]* 

5, Rinyi and I considered the following problem. Determine or estimate 

the smallest f(n) for which all but o([$?))) of the graphs G(n;f(n)) on n 

IabelIed vertices are Hamiltonian. This question seems to be difficult. Recently 
Moon and Moser and I. Palgsti provedf(n) < d2, but it seems certain that 
f(n) < 12’ +e [24]. 

6. Denote by g(3, n) the smallest integer for which there is a graph of 
g(3, II) vertices which contains no triangle and has chromatic number n. 
It is known that 

cl n2 log n/log Iog n < g(3, n) -=z c2 n2(log n)“. (!I 

It would be desirabIe to improve (1) and to give an asymptotic formula for 

t Nufe added in proof: Simonovits determined u,. 
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g(3, n), also it might be of some interest to prove 

lim g(3, n + l)jg(3, n) = 1. 
“=a 

Denote by f(l, YI) the smallest integer so that every graph ofS(I, n) vertices 
either contains a K, or a set ofn independent points. It is known that 

cg Pi* log n/iog log n < f(3, n) < c4 n2(log n)? (21 

It would be desirable to improve (2) and to obtain an asymptotic formula 
Forf(l, 0). I cannot even prove 

lim f(/, n + l)/f(l, n) = 1. 
A=OD 

Recently Yackel proved 

1 proved by probabilistic methods 

f(n, n) > 2”‘2. 

It would be very interesting to prove that 

lim f(n, n)“” 
II=00 

(4) 

exists and to obtain a non trivial lower bound forf(rr, n) by non-probabilistic 
methods [4), [13], [27], [30]. 

Yackel’s proof of (3) wili appear in the Jowlal of Combinatorial Theory. 

7. Clearly every graph can be directed so that it should contain no directed 
circuit. The following problem is due to Ore. Let G be a graph. We want to 
direct its edges so that it should contain no directed circuit, and further, that 
it shouId contain no circuit which becomes directed if one reverses the 
direction of one of its edges. What is the necessary and sufficient condition 
that G can be directed in such a way? 

Clearly G can contain no triangle, At first one may guess that every G 
which contains no triangle can be directed in such a way, but Ore showed 
that this is not true. 

Gallai showed that the graph of Gr6tsch (Fig. 1) gives a counterexample. 
I could find no graph whose girth is greater than four and which cannot be 

directed in such a way. 
The graph of Grdtsch is 4-chromatic and has no triangle. Perhaps it is the 

only graph of not more than 11 vertices with this property.? 

f Nore aaS/ itt proof: I learned that this is known to several mathematicians. 
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8. HajnaI and I conjectured that every graph of infinite chromatic number 
contains a subgraph of infinite chromatic number which contains no triangle 
(or more generally has girth > k). If our graph is the infinite complete graph 
this is a well known theorem of Tutte.) We also formulated the finite version 
of these conjectures: is it true that there is anf(/c, r) so that every G having 
chromatic number >f(k, r) contains a subgraph of girth > k and chromatic 
number r? 

Finally we asked: let m be an infinite cardinal and G be an m-chromatic 
graph. It is true that G has a subgraph of chromatic number nz which contains 
no triangle? If G is the complete graph of power m this is a result of Rado 
and myself. 

Perhaps these problems could be formulated for connectivity instead of 
chromatic number, e.g. is it true that if G remains connected after the 
omission of any finite set of its vertices and all the edges incident to them, 
then G has a subgraph with the same property and which has girth 2 k? [3], 

rm 
9. Moon [32] proved that if n = 3k + 2 > 8 and we colour the edges of 

a K,, with two colours, then there are always k vertex disjoint triangles whose 
edges have the same colour (different triangles can have different colours). 

Let J(1) be the smallest integer with the property that, if we colour the 
edges of a K, with two colours, then there are always [n/l] -j(I) vertex 
disjoint KI’s all of whose edges have the same colour. Ramsey’s theorem 
implies f(1) < 4r’ but it seems certain that $(I)“’ -+ 1 and perhaps $(I) .c c I, 
orf(l) is bounded. 

How many vertex disjoint &‘s are there, all edges of which have the same 
colour? (Here different K,‘s must have the same colout.) It is easy to see that 
for I = 2 the answers is +n + O(1) [31]. 
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10. Denote by log,n the r-fold iterated logarithm and let L(n) be the 
smallest integer k for which 1 < log,n < e. I state two simple problems in 
graph theory, which seem to lead to this function L(n). Moon and Moser 
proved that iff(n) is the largest integer for which there is a graph of n vertices 
havingf(rz) cliques of different sizes, then 

log n logn 
n---loglogn<f(n)<n--. 

log 2 log2 (1) 

log I1 
I improved the lower bound to 11 - - 

log 2 
- L(n), but could not improve 

the upper bound. 
Bondy considered the following problem. Denote by h(a) the smallest 

integer for which there exists a G(n; n + h(n)) which contains a Ck for every 
3 ,< k < n. Bondy proved (not yet published) 

logn logrz 
- c h(n) < - 
log2 log 2 + L (4. 

It seemed to us that in (1) the lower bound, add in (2) the upper bound, is 
close to the truth but we could not even prove [12) 

h(n) 
logn 

-log2*co’ 
logn 

n - log2 -JO4 -+ 00. 

Bondy’s paper is not yet published.? 

1 I. Goodman, P&a and I [IQ proved that every G(n; k) is the union of at 
most [&r*] edge-disjoint complete graphs, where in fact the complete graphs 
can be chosen as edges and triangles. It is easy to see that [;tn*] is best possible, 
We thought that for k > in* our theorem could be sharpened. Lovasz proved 

in this direction the following result: put e = 2” - k and let t be the 

largest integer for which t * 
0 

- t < e. Then G(n; k) is the union of e + t 
complete subgraphs. For e = t* and e = t* - t the result is sharp, 

Lovasz does not assume that the complete graphs are edge disjoint and 
observes that the result no longer holds if edge disjointness is insisted upon. 
In this case no satisfactory non-trivial sharpening of our theorem is known. 

Gallai and I considered the following further problems. Is it true that every 
connected graph of rz vertices is the union of [+(n + l)] edge disjoint paths? 
Lovasz proved this if all the vertices of G have odd valency. 

Denote by h(n) the smallest integer so that every graph of n vertices is the 

log n 
t Note added in proof: Spencer provedf(n) > n - log - c. 
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union of /I(U) edge-disjoint edges and circuits. We showed h(n) < cn Iogn, 
but probably h(n) -c c,n. K2(3, n - 3) shows that h[n) > (1 f c2)n. Perhaps 
every graph of n vertices is the union of n - 1 edges and circuits if we do not 
require them to be edge disjoint [29). 

12. Is it true that every G(n; [r~‘~‘]) contains a subgraph which is non- 
planar and has at most c, vertices? It is not difficult to see that c, -+ co 
ass+& 

13. It is well known that G(Iz; k) can be planar only if k < 3n - 6. A planar 
graph G(n; 3n - 6) is called saturated. A theorem of Tut&r implies that every 
G(n; [&rt”] + 1) contains a triangle, i.e. a saturated planar graph of three 
vertices. It is easy to construct a G(n; &rz*] c [3;(n - l)]) which contains no 
saturated planar graph of more than three vertices; perhaps this example is 
the best possible, and every G(n; [$n*] -I- [$(n + l)]) contains a saturated 
planar graph of more than three vertices. Simonovits has just proved this 
conjecture ClYJ, [34-J 

14. T. Gallai and I proved that if 

I> (k- l)n- k;1 
( ) 

then G(M; 1) contains k independent edges. 
I proved that if n > 4OOk* and 

I> ‘I2 - k -+ ‘I2 
4 

f (k - 1) )2 - (k _ 1)2 + (2) 

then G(n; 1) contains k vertex independent triangles. 
P&a and I proved that if n > 24k and 

1>(2k-l)n-2k2fk (3) 

then G(rr; /) contains k independent circuits. 
It is easy to see that (I), (2) and (3) become false if the inequality is replaced 

by equality. 
It would be desirable to improve (2) and (3) so that like (1) they would be 

valid for all n, but I have not succeeded in doing this, and did not even 
formulate a reasonable conjecture. 

Denote by J(n; r, k) the smallest integer so that every G”)(n;f(n; r, k)) 
contains k independent r-tuples. The value off@; 2, k) is given by (1). 

Denote by g(n; r, k - 1) the number of those r-tuples formed from the 
elements x1, x2, . . . . x;, each of which contains at least one of the elements 
x1 ,..., x,_,.Clearlyf(n;r,k)>g(n;r,k- I). 
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I proved that for n > c, k 

Perhaps 
f(n;r,k) = 1 + g(n;r,k- 1). 

J(n;r,k)= 1 + rnax((rky ‘),g(n;r,k - 1)). 

If r = 2, (4) is true and becomes (l), but I could not even settle r = 3 [I I], 
c171, WI. 

J. Moon, found a simpler proof of (1) and (2). 

15. Recently several papers were published on extremal problems in graph 
theory; here I want to mention only a few of them. Let G’ be a graph.f(,r; G’) 
is the smallest integer so that every G(n;f(n; G’)) contains G’ as a subgraph. 
Kovari, the Turans and independently I, proved that 

f(n; K,(r, r)) < c, n*- ‘jr. (1) 

It would be very desirabIe to prove that 

f(n; K,(r, r)) > c,’ n2-1’r. (2) 

(2) is known for r = 2 and r = 3 but no good Iower bound is known for 
r > 4. For r = 2, Brown, Mrs Tut-an, RCnyi and I in fact proved 

f(n; K,(2,2)) = (1 -+ o(l)) 113’72. (3) 

Perhaps if G is a graph of II vertices which contains no triangle and rcc- 
tangle, then it has at most (1 + 0(I))n~‘~/2J2 edges. 

Very likely 
c(*)nl+“’ <f(n; C,,) < t!2)n’f1’r. I (4) 

The upper bound is not hard to prove but the lower bound is not known 
for r > 2. 

Let Gk be the following graph: its vertices are x;J’~, . . ..yk. z,, .,.,z(;). 

x; is joined to every y, and every z is joined to two J~‘s; distinct z’s are joined 
to different pairs. Perhaps 

f(n; G& < c, n3/*. (5) 

I proved (5) for k = 3, but had no success with k > 3. f(n; Gk) > cf13/* 
is trivial, since for k > 3, GI contains a rectangle (i.e. a K,(2, 2)). 

Simonovits and I tried to investigate f(n; Gk - X) (i.e. we omit from Gk 
the vertex x and all edges incident to it). It seems likely that f(n; Gk - X) = 
~(rr~‘~) and in fact we conjecture 

f(‘fn; G, - X) < d3’2)-Ek (6) 
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but we could prove none of these results. We showed that to every E > 0 
there is a K, so that 

f(n; GKt - x) > L+~‘~)--’ (7) 

The proof of (7) is not published. 
Perhaps the most interesting unsolved problems in this field are the original 

problems of Turan which are perhaps not sufficiently we11 known. Therefore 
I restate them here: denote by g(n; k, I) the smallest integer so that if ISI = n 
and A r, . . . . A,, s = g(n; k, I) are subsets of S, IAil = k, 1 < i < s, then there 
is a B c S, lB/ = 1 all of whose subsets of k elements occur amongst the A’s. 
Turin determined g(n; 2, l) for every 1, but fork > 2 the problem is unsolved. 
It is easy to see that 

exists for every k and I, but for k > 2 the value of the limit is not known, 
In particular Turfin conjectured 

g(3n;3,4) = 3n i + 1, 
0 

g(2n;3,5)=2n “2 + 1 
0 

but the proof of (8) seems elusive [2], [lo], [14], [25], [333, [34]. 

16. Rado and I considered the following question: let f(n; k) be the 
smallest integer so that if A, 1 < i i f(n; k) /AtI = n are sets, then one can 
always find k. A’s which have pairwise the same intersection. We proved 

(k - l)“+l <f(n;k) 

1 2 n- 1 
- - “’ - 2!(k - 1) 3!(k - 1)2 n!(k - l>,-l (1) 

We conjectured that 

Abbott improved (l), but (2) is far from being settled. Recently Sauer 
determined 5(2; k) (not yet published). 

(2), if true would have several applications in number theory. 
Rado and I aIso investigated these questions if n and k are infinite cardinal 

numbers, but all the problems can then be solved completely. 
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Finally, the following question could be considered: let g(n;k) be the 
smallest integer so that if ISI = n, Ai c S, 1 < i < g(n; k) then one can always 
find k A’s which have pairwise the same intersection. Determine or estimate 
g(n; k); compute ,Ilrnm g(n; k)llk [I], [23]. 

17. Let {Al), (J 4 = S, IAll > 2 be a set system. This set system is said 

to be k-chromatic if one can divide S into k disjoint sets Si, fi S, = S 
i=l 

so that no A, is contained in any Si and such a division into less than k sets 
is impossible. (A set system is thus two-chromatic if it has property L3 accord- 
ing to Miller.) I conjectured and Lovasz proved that if iAil > 2 and for every 
S, < S there are fewer than S1 A’s contained in S, then the chromaticnumber 
of the system is 2. The Steiner triplets of n = 7 show that this result is best 
possible (even if IJril > 2). 

Probably the foIlowing result holds: there is a constant c,, c, + co as 
t -+ co so that if (A,} is a set-system, iA,1 z t, and for every S, c S there 
are fewer than c,lS,I A’s contained in S,, then the system has chromatic 
number 2. 

Lovlisz proved that if IAll = r > 2 and the set system is k-chromatic and 
does not contain all the r-tuples of a set of (k -11) (r - 1) + I elements, then 
there are k A’s any two of which intersect in the same element. This is a general- 
ization of a well-known theorem of Brooks. 

Is it true that if lAI\ >, t and the system is three-chromatic then there is an 
element which is contained in at least (1 + c)’ A,‘s? [20], [29]. 

18. Let ISI = n, A, c S, 1 < i < I,,. Assume that no Ai is the union of 
other ~4’s. Kleitman and I observed that (unpublished) 

Probably there is a c so that 

max I, = (1 + o(l)) c~*//z~/~. 

19. Let ISI = n, A, c S, 1 < i < u,,, ldil = 3. Assume that any subset 
Si c S, lS,l = 6 contains at most two A’s. How large can u,, be? No doubt 
u, = o(n’) and I expect that u,, < nzwc for some c > 0. 

Let ISI = n, Ai c S, IAJ = 3, IAi n Ajl < 1. It is easy to see that there 
always exists an S, c S, IS,1 > crJn so that no A, is contained in S,, but 
the above result becomes false if .c,Jn is replaced by c2 n2’3. A set S, is 
called independent if no A is contained in it. Denote byf(n) the minimum of 
the largest independent set where the minimum is extended over all possible 
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choices of the sets A;, lAIl = 3, JAi n Ail < 1. AS stated cl& <f(n) < ~2 12~‘~. 

Improve the estimation forf(n). 
Hajnal and I considered the following question: let S have the elements 

x,, . . ..x.. To each couple (xi, X’j) make correspond an element .Ui, 
x, = p{xi, xj), r # i, I B j. A set S1 c S is said to be independent if for any 
xie S,,X~E S,,p(x,, Xj)~ S1. Denote by g(n) the minimum of the largest 
independent set where the minimum is taken over all functions P(Xi, xj). 
We proved 

Cl IP < g(n) < t,Jn log??. 

Improve the estimations of g(n) [20). 

20. Kleitman proved the following conjecture of mine. Let /Sl = n, Ai c S, 
1 < i d k. Assume that the union of two A’s never equals a third. Then 

max k = (1 + o(1)) c.:l . 
( 1 

(1) 

Moser now asked: let A r, .,.) AI be k arbitrary sets. Denote by f(k) the 
largest integer so that for every choice of the k sets there always aref(k) of 
them Ai,, . . ..A.,(*) so that the union of two of them never equaIs a third. 
Riddel observedf(k) > c,Jk and recently KomIos and I showedf(k) < cJk. 

Moser’s beautiful question can clearly be modified in various ways. It can 
also be given a number-theoretic interpretation, e.g. let a, < . . . < ak be k 
integers, let g(k) be the largest integer so that one can always find g(k) 
integers ai, < . . . so that the sums (or products) of any two are distinct (or 
never equals a third etc.) [9]. 

21, Let ]Sl = n, k < n/2, Ai t S, 1 < i < r, IAil = k < n]2, IA, n Ail Z 

I,1 f i < j d r. Ko, Rado and I proved that then max r = 
n-l 

0 
k , . In fact 

the same result holds if instead of IAil = k we only assume lAi/ < k, Ai Q ~j. 
Let us now assume JAi A Ai/ > s > 1. What can be said about max r? 

If n is sufficiently large we proved that max r = 
t-1 
z - z , but Min showed 

that this is not always true and there does not seem to be an easy way to 
determine max r. Denote max r =f(n; k, 3). We conjectured [I61 

f(4k;%2) = ((ii) - (2kk)‘)/2. 

It is easy to see that 

fW;2k,2) 2 ((g) - (‘k”)‘)/2. 
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22. Szekeres and I proved that if x1, .,., x,,, 1 is any sequence of distinct 
numbers one can always find n -t- 1 of them which form a monotonically 
increasing or decreasing sequence; it is easy to see that this theorem is false 
for n2 numbers. 

I now asked: letf(b) be the largest integer so that every sequence of distinct 
numbers x1, . . . . xl(n) can be decomposed into the union of n monotonic 
sequences. Hanani proved that 

n(n “i- 3) 
J-w = 2 - 

As far as I know the following question is not yet settled.-Let x1, . . . . x, 
be a sequence of distinct numbers, determine max (c Xc) where the maximum 
is to be taken over all monotonic sequences [263, [28]. 

23. Let lAil = n, 1 < i =S l, I< c12” rf, Ai 
I I 

= N. Is it true that if 
i=l 

1 
II > nofcll there are c~~~(c~ = c,(c,)) subsets B of u Ai which have a non- 

i=l 

empty intersection with every Ai but which contains none of the Ai’s? if 
I = 2” I cannot even prove the existence of a single such set B [S]. 

24. Let the vertices of K, be x1, . . . . x,,. Denote by (i,j) the edge joining 
X; and Xj. Let f(i,j) = + 1,l < i < j < R Put 

where in (1) the maximum is taken over all complete subgraphs of 
K,(l < r G n), the summation is extended over all the edges of K, and the 

minimum is taken over all the 2(z) functionsf(i, j). I proved [7] 

+ g H(n) < CP. (2) 

It would be desirable to improve (2).? 
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