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The following problem is due to L. Moser: Let Al, . . . . An be 

any n sets. Take the largest subfamily A. , . . . . which is 

i.e., union-free, =1 
Ai 

r 

Ai, U Ai. # Ai. l 1 5 j, i r, 1 s j, r; r, 1 i j, d r, 

'1 72 73 

for every triple of distinct sets A. , A. , A. . 
'1 32 J3 

Put f(n) = min r, 

where the minimum is taken over all families of n distinct sets. 

Determine or estimate f(n) . Riddel showed f(n) > c&i and Erd& and 

Koml6s [l] showed 

-- 
j;; s f(n) zx 2J2Jn. 

We now show 

Jzl- 1 < f(n) < 25+1 

and we conjecture that f(n) = (2 + o(l))&. 

Consider now the largest subfamily A. , . . . . Ai so that no 
il r 

four distinct sets satisfy 

Ai. " Ai. = Ai. , Ai, n Ai. =Ai, . 

'1 32 33 '1 72 74 

(1) 

(2) 

(3) 

Put F(n) = min r, where the minimum is taken over all families of 

distinct sets Al, . . . . An' We prove 



76 

(4) F(n) 5 3n2'3 2 * 

Probably F(n) > c2n2'3, and in fact it seems likely that F(II)/II~'~ 

tends to a limit, but we have not been able to show this. 

Hanson posed the following problem: Let 1~1 = n, with g(n) 

the smallest integer so that the subsets of F can be split into 

g (n) classes where each of the classes is union free. Hanson proved 

(5) C3.&<g(n) ST+2 

and he conjectured that the upper bound is substantially correct. We 

prove 

(6) g(n) =-a- 

Let G(n) be the smallest integer so that the subsets of s can 

be split into G(n) classes so that no class contains four distinct 

sets Al, A2, A3, A4 satisfying (3). We prove 

Probably lim G(n)/n v-2 exists. 
n+q 

Now we prove (2). We use a slight improvement of the method of 

[ll to prove the upper bound. Let t be the least integer for which 

[t2/4] > n. Our A'S are the [t2/4] set of integers Ai j = 

[x: i 5z x S j], 1 < i i t/2 < j $ t. We show that the lariest union- 

free subfamily of the A's has at most t elements. To see this let 

1 s r 5 .L, 
T 

A. .t 
'rrJr 

be a union-free subfamily of the A's. An endpoint 

5 (or jr) is called good if there is no other A 
is,3 of our 

family with ir = is and js < jr (or jr = js, is > iz). Clearly 

at least one endpoint of A. 
lrrjr 

must be good, for otherwise A. . 
'r'lr 

would be the union of two A's of our family. But an integer can be 

a good endpoint of at most one A. . 
lrr7r 

, which shows I, s t and our 

assertion is proved. Now clearly 

f(n) s f([t2J41) s t 
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or f(n) zz 2&+1. which proves the upper bound of (2). 

We now prove the lower bound. Let [Al,...,An] be any family of 

n distinct sets. We define a union-free subfamily (A. A. 3 L1““' lr as 

follows. A. 
=I 

is any minimal A, i.e., contains no other as a proper 

subset. Suppose A. A. ll'"“ ls have already been defined. Then 

A. 
is+1 

is chosen to be a minimal member of {A ,...,An)\[A. 1 5 
,...,A is1 

which is not the union of two distinct members of [A. 

0 

il 
,...,A. 1. 

There is clearly a choice for A. if 
is+1 

n-s> 
f ' 

=S 

This process 

therefore defines a subfamily {A. A. ] of r sets, where 

rt r 
0 

ll““' lr 

2 2 n, i.e., r%&G-1. To complete the proof it only re- 

mains to show that the family [A. 
118““ r 

Ai I is union-free. 

Assume 

A. U A. = A. 
1. (j # -5, k # 4). 

3 ik i& 
(8) 

We cannot have & > j and t >k by the construction. So we can as- 

sume k > &. But this is also impossible, since A. was chosen ad 
=& 

a minimal member of {A 1 ,...,An)\(A. ,...,A. 
il i&-l 

1. Hence (8) cannot 

hold and the proof of (2) is complete. 

It is not difficult to improve the lower bound of (2) slightly to 

show that f(n) > (l+c)JZ. However, we cannot show that f(n) = 

(2 to(l) )&. 

To prove (4) we use an idea due to Folkman. Let t be the least 

integer for which t3 2 n. Consider the t3 sets A. . = 

In: isns:j], (l%irt<j St2 +t), Thusthes;;; Aij cor- 

respond to the edges of the complete bipartite graph K(t,t2;. A 

simple argument shows that every subgraph of K(Lt2) having t2 t 
t 

0 2 
+1 edges contains a rectangle: this is false for t2 + t 

0 2 
edges. A rectangle corresponds to four distinct sets A satisfying 

(3)‘ Thus 

F(n) s F(t3) < t2 + (k). 

which proves (4). 
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Instead of (3) we could consider other systems of equations with 

sets as unknowns, but in view of the fact that we did not succeed in 

do not investigate getting a satisfactory lower bound of F(n) we 

this question at present. 

To prove (6) consider again the family of 

used in the proof of (2). 

We already showed that the largest union-fr 

sets has n elements. Thus 

[n2/4 sets A rrs 

ee subfamily of our 

Hanson suggested that a more careful analysis of this family would 

in fact give g(n) 5 n/3. 

Now finally we prove (7). Consider again the sets Ar s used in 

the proof of (2). As stated before the number of these se& is 

[n2/4 and the sets Ar s correspond to a complete bipartite graph 

of n vertices with [n,h white and [(n+1)/2] black vertices. If a 

subfamily (Ar,,S ) is such that no four distinct elements of it 
ri 

satisfy (3). then as stated the corresponding bipartite graph (we 

join the vertices ri and si) has no rectangle, By a theorem of 

Reiman [2] such a graph can have at most 

(1 + o(l))11~‘~/2J~ 

edges; thus we immediately obtain 

G(n) > (1 + o(l))n w,; l/2 1 

Now we prove the upper bound of (7). Let q be the smallest 

prime power for which q2 +q+1zn. By a well known result of 

Singer [3], there are q + 1 residues mod (q2+q+l), al, . . . . aq+l, 

so that all non zero residue classes have a unique representation in 

the form a. - ai. 
7 

Now we split the subsets of a set I$ of q2 +q+lrn elements 

into q + 1 classes so that the sets of none of the classes contain 

four sets satisfying (3). TO see this put in the i-th class (1 c i < 

q + 1) all sets having a. - ai 
3 

(lsjsq+l. i # j) elements, 

where a.-a 
J i 

is the least positive integer E (a. - ai) (mod q2+q+l). 
7 
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If four distinct sets Al, A2, A3s A4 of the i-th class satisfy (3) 

we would have 

or 

a. - a. + a. - a. = (a. -ai+a. -ai) 
71 = 32 = 73 74 

(mod q2+q+l). 

Hence, a. - a. = (a. -a. ) (mod q2+q+l)" 
'1 33 74 32 

which is impossible. 

Thus 

G(n) 5 G(q2+q+l) 5 q + 1 5 +,/z+l, 

which completes the proof of (7). 
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